Extremal Particles in Branching Brownian Motion -Part 1

Sandra Kliem (Part 1) und Kumarjit Saha (Part 2)

Singapore - Genealogies of Interacting Particle Systems - 2017

Overview:

Part 1: Extremal Particles in Branching Brownian Motion.

Part 2: Branching Brownian Motion under Selection.

Part 1

- Branching Brownian motion (BBM) Definition and basic properties.
- The F-KPP equation and its connection to BBM.
- The distribution of the maximum of BBM.
- Extremal particles in BBM
 - * Genealogy of extremal particles of BBM (cf. Arguin, Bovier and Kistler, [ABK11]);
 - * Poissonian statistics in the extremal process of BBM (cf. [ABK12]).

Remark:

Following the bibliography, further slides are given relating to

- The extremal process of BBM (cf. [ABK13]);
- BBM seen from its tip (cf. Aïdékon, Berestycki, Brunet and Shi, [ABBS13]);
- Additional details, with pointers given by \hookrightarrow .

Sandra Kliem (Univ. Duisburg-Essen)

Branching Brownian Motion

Definition (Branching Brownian Motion (BBM))

- t = 0: single particle $x_1(0)$ starts at origin;
- moves as a Brownian motion (BM) in \mathbb{R}^1 until
- after (at) time $au \sim {\it Exp}(1)$ it splits into
- two identical particles that start (both) at $x_1(au)$ and
- move as two independent BMs each.
- Repeat.

The resulting process is a collection of a (random) number n(t) of particles

$$(x_1(t), x_2(t), \dots, x_{n(t)}(t))_{t \ge 0} = \{x_k(t) : k \le n(t)\}_{t \ge 0}$$

Note 1. $n(\tau) = 2$. Note 2. Here we use w.l.o.g. binary branching.

Sandra Kliem (Univ. Duisburg-Essen)

(see homepage of Matt Roberts, Univ. of Bath)

Sandra Kliem (Univ. Duisburg-Essen)

Extremal Particles in BBM

3. August, 2017 4 / 36

(see homepage of Matt Roberts, Univ. of Bath)

Sandra Kliem (Univ. Duisburg-Essen)

Extremal Particles in BBM

3. August, 2017 5 / 36

(see J. Berestycki (Lecture Notes, "Topics on BBM",

http://www.stats.ox.ac.uk/~berestyc/Articles/EBP18_v2.pdf), Image by Matt Roberts)

Sandra Kliem (Univ. Duisburg-Essen)

Remark (see Bovier, [B15] for more respectively for references to literature)

- There are connections to spin glass theory; in particular, Generalised Random Energy models (GREM).
- Ø Many results can be extended to branching random walk.
- Source tion to extremes of the free Gaussian random field in d = 2.
- Gan be extended to variable speed BBM.

Remark (Genealogies of BBM)

Let

 $d(x_k(t), x_\ell(t)) \equiv \inf\{0 \le s \le t : x_k(s) \ne x_\ell(s)\} = time (from 0) to MRCA$ $\equiv unique time where the most recent common ancestor split$

= time of death of longest surviving ancestor of both particles.

A BBM can then also be constructed as follows. Construct first a continuous time Galton-Watson tree with binary branching. Let $\mathcal{I}(t)$ be the set of its leaves at time t. Then, conditional on the GW-process, BBM is a Gaussian process $x_k(t), k \in \mathcal{I}(t)$ with

$$\mathbb{E}[x_k(t)] = 0$$
 and $Cov(x_k(t), x_\ell(t)) = d(x_k(t), x_\ell(t)).$

Sandra Kliem (Univ. Duisburg-Essen)

First Properties

$$\blacksquare \quad \mathbb{E}[n(t)] = e^t.$$

• $e^{-t}n(t)$ is a martingale that converges, a.s. and in L^1 , to an exponential r.v. of parameter 1.

Sandra Kliem (Univ. Duisburg-Essen)

Extremal Particles in BBM

3. August, 2017 8 / 36

The F-KPP equation

Consider the partial differential equation

$$u_t = \frac{1}{2}u_{xx} + u^2 - u, \quad u = u(t, x) \in [0, 1], t \ge 0, x \in \mathbb{R}, \quad u(0, x) = f(x).$$
 (1)

Set v = 1 - u. Then this is a special case of the Kolmogorov-Petrovskii-Piskunov-(KPP)equation (also known as the Kolmogorov- or Fisher-equation).

Let $ig\{x_k(t):k\leq n(t)ig\}_{t\geq 0}$ be a BBM starting at 0 and $f:\mathbb{R} o [0,1].$ Then

$$u(t,x) = \mathbb{E}\left[\prod_{k=1}^{n(t)} f(x-x_k(t))\right]$$

is the solution to the F-KPP equation (1) with u(0,x) = f(x).

Sandra Kliem (Univ. Duisburg-Essen)

Extremal Particles in BBM

3. August, 2017 9 / 36

The F-KPP equation

Consider the partial differential equation

$$u_t = rac{1}{2}u_{xx} + u^2 - u, \quad u = u(t,x) \in [0,1], t \ge 0, x \in \mathbb{R}, \quad u(0,x) = f(x).$$
 (1)

Set v = 1 - u. Then this is a special case of the Kolmogorov-Petrovskii-Piskunov-(KPP)equation (also known as the Kolmogorov- or Fisher-equation).

Let $ig\{x_k(t):k\leq n(t)ig\}_{t\geq 0}$ be a BBM starting at 0 and $f:\mathbb{R} o [0,1].$ Then

$$u(t,x) = \mathbb{E}\left[\prod_{k=1}^{n(t)} f(x-x_k(t))\right]$$

is the solution to the F-KPP equation (1) with u(0,x) = f(x).

Idea of proof: Branching property: Let $p_t(x) = \frac{1}{\sqrt{2\pi t}}e^{-x^2/2t}$ denote the Heat kernel. Then (use that $\tau \sim \text{Exp}(1)$, i.e. $f_{\tau}(s) = 1_{\{s \ge 0\}}e^{-s}$ and $\mathbb{P}(\tau > t) = e^{-t}$)

$$u(t,x)=e^{-t}\int p_t(z)f(x-z)dz+\int_0^t e^{-s}\int p_s(z)u^2(t-s,x-z)dzds.$$

Now differentiate w.r.t. t, use integration by parts and $\frac{\partial}{\partial t}p_t(x) = \frac{\partial^2}{\partial_x\partial_x}\frac{p_t(x)}{2}$.

$$u_t = rac{1}{2}u_{xx} + u^2 - u, \quad u(0,x) = f(x) \quad \text{has as solution} \quad u(t,x) = \mathbb{E}\left[\prod_{k=1}^{n(t)} f(x - x_k(t))\right].$$

Example 1. Let $M(t) \equiv \max_{k \leq n(t)} x_k(t)$. With $f(x) = 1_{[0,\infty)}(x)$ we obtain

$$u(t,x) = \mathbb{E}\left[\prod_{k=1}^{n(t)} \mathbb{1}_{[0,\infty)}(x-x_k(t))\right]$$
$$= \mathbb{E}\left[\prod_{k=1}^{n(t)} \mathbb{1}_{\{x_k(t) \le x\}}\right] = \mathbb{P}\left(\max_{k \le n(t)} x_k(t) \le x\right) = \mathbb{P}(M(t) \le x) = F_{M(t)}(x).$$

Example 2. Let $f(x) = e^{-\phi(x)}, \phi \in \mathcal{C}_c^+$. Set $\mathcal{P}_t \equiv \sum_{k=1}^{n(t)} \delta_{x_k(t)}$. Then

$$u(t,x) = \mathbb{E}\left[\prod_{k=1}^{n(t)} e^{-\phi(x-x_k(t))}\right] = \mathbb{E}\left[e^{-\int \phi(x-z)\mathcal{P}_t(dz)}\right].$$

Sandra Kliem (Univ. Duisburg-Essen)

The F-KPP equation revisited

Consider $v(t,x) \equiv 1 - u(t,x)$ instead of u(t,x). Then v(t,x) solves

$$v_t = \frac{1}{2}v_{xx} - v^2 + v = \frac{1}{2}v_{xx} + v(1-v), \qquad v(0,x) = 1 - u(0,x).$$
 (2)

The Feynman-Kac formula yields the following representation for the linear equation

$$v_t = \frac{1}{2}v_{xx} + k(t,x)v,$$
 $v_0(x) = v(0,x).$

Namely,

$$v(t,x) = \mathbb{E}\left[\exp\left(\int_0^t k(t-s,B^{\times}(s))ds\right)v(0,B^{\times}(t))\right]$$
$$= \mathbb{E}_{x}\left[\exp\left(\int_0^t k(t-s,B(s))ds\right)v(0,B(t))\right].$$

Here, $(B^{x}(t))_{t\geq 0}$ is a BM, starting in $x \in \mathbb{R}$. Bramson [B83] sets $k(t, x) \equiv 1 - v(t, x)$ with v solving (2). Then

$$v(t,x) = \mathbb{E}_{x}\left[\exp\left(\int_{0}^{t} \left(1 - v(t-s,B(s))\right)ds\right)v(0,B(t))\right]$$

("implicit description of v"). Sandra Kliem (Univ. Duisburg-Essen)

$$\begin{aligned} v(t,x) &= \mathbb{E}_{x} \left[\exp \left(\int_{0}^{t} k(t-s,B(s)) ds \right) v(0,B(t)) \right] \\ &= \mathbb{E}_{x} \left[\exp \left(\int_{0}^{t} \left(1 - v(t-s,B(s)) \right) ds \right) v(0,B(t)) \right]. \end{aligned}$$

Observations: (recall: 1 - v(t, x) = u(t, x), $u(0, x) = 1_{[0,\infty)}(x)$)

• "v(t,x) is the weighted average of the different sample paths of BM."

•
$$0 < k(t - s, B(s)) < 1$$
,

- can show: $\lim_{y\to-\infty} k(r,y) \le \epsilon$ for $r \ge r(\epsilon)$, $\lim_{y\to\infty} k(r,y) = 1$;
- i.e., for y large, weighting of path nearly maximal, for y small, insignificant.
- Transition near $k(r, y) = 1/2 \iff u(r, y) = 1/2$ (preview: $m(t) = \sup\{x : u(t, x) \le 1/2\} + O(1)$).

Bramson [B83] distinguishes paths $x(s), 0 \le s \le t$ according to

$$\exp\left(\int_0^t k(t-s,x(s))\right) ds \sim e^t \text{ or } \exp\left(\int_0^t k(t-s,x(s))\right) ds \ll e^t.$$

Sandra Kliem (Univ. Duisburg-Essen)

How to calculate v(t, x)?

$$\begin{aligned} v(t,x) &= \mathbb{E}\left[\exp\left(\int_0^t k(t-s,B^x(s))ds\right)v(0,B^x(t))\right] \\ &= \mathbb{E}\left[\mathbb{E}\left[\exp\left(\int_0^t k(t-s,B^x(s))ds\right)v(0,B^x(t)) \mid B^x(t)\right]\right] \\ &= \int_{-\infty}^\infty v(0,y)\frac{e^{-(x-y)^2/2t}}{\sqrt{2\pi t}}\mathbb{E}\left[\exp\left(\int_0^t k(t-s,\mathfrak{z}^t_{x,y}(s))ds\right)\right]dy, \end{aligned}$$

where $\mathfrak{z}_{x,y}^t$ denotes a Brownian bridge starting at x (at time 0) and ending at y (at time t).

- A Brownian bridge has the distribution of a BM starting at x, conditional on being in y at time t.
- $\mathfrak{z}_{0,0}^t(s) \equiv B^0(s) rac{s}{t}B^0(t), \ 0 \le s \le t$ is
 - a Gaussian process (all finite-dim. distrib.s are normally distributed),
 - a.s. continuous on [0, t], a strong Markov process and indep. of B⁰(t).
- $\mathfrak{z}_{x,y}^t(s) \stackrel{\mathcal{D}}{=} \mathfrak{z}_{0,0}^t(s) + \frac{s}{t}y + \frac{t-s}{t}x, \ 0 \le s \le t.$
- $\operatorname{Var}(\mathfrak{z}_{0,0}^t(s)) = \frac{\mathfrak{s}(t-s)}{t}$ with a maximum in the middle, $\operatorname{Var}(\mathfrak{z}_{0,0}^t(t/2)) = t/4$.

Sandra Kliem (Univ. Duisburg-Essen)

(Brownian Bridge, cf. https://www.researchgate.net/figure/228766780_fig2_

Figure-Sample-path-examples-of-a-Brownian-bridge-for-different-initial-and-final-states)

Sandra Kliem (Univ. Duisburg-Essen)

Extremal Particles in BBM

3. August, 2017 14 / 36

The distribution of the maximum of BBM

Let us return to Example 1. Then $u(t,x) = \mathbb{P}(M(t) \le x) = \mathbb{P}(\max_{k \le n(t)} x_k(t) \le x)$ solves (1) with $u(0,x) = 1_{[0,\infty)}(x)$. As a result: 0 < u(t,x) < 1 for all $x \in \mathbb{R}, t > 0$. Take as centering term,

$$m(t) \equiv \sqrt{2}t - \frac{3}{2\sqrt{2}}\log(t),$$
 (in i.i.d. case $\sqrt{2}t - \frac{1}{2\sqrt{2}}\log(t) \Leftrightarrow^1$)

then $m(t) = \sup\{x : u(t,x) \le 1/2\} + O(1)$ (cf. Bramson [B83], Roberts [R13]) and

$$\mathbb{P}(M(t) - m(t) \le x) = u(t, m(t) + x) \to w(x) \quad \text{unif. in } x \text{ as } t \to \infty.$$
 (3)

Here, w(x) is the unique (up to translation) solution of the equation

$$\frac{1}{2}w_{xx} + \sqrt{2}w_x + w^2 - w = 0$$

satisfying 0 < w(x) < 1 for all $x \in \mathbb{R}$ and $w(x) \to 0$ as $x \to -\infty$, $w(x) \to 1$ as $x \to \infty$.

Sandra Kliem (Univ. Duisburg-Essen)

The derivative martingale

Lalley and Sellke [LS87] show: Let

$$Z(t) \equiv \sum_{k=1}^{n(t)} \left(\sqrt{2}t - x_k(t)\right) e^{-\sqrt{2}\left(\sqrt{2}t - x_k(t)\right)}$$

be the so-called derivative martingale, then

$$Z = \lim_{t \to \infty} Z(t) \tag{4}$$

exists and is strictly positive a.s. Moreover, for some C > 0,

$$\mathbb{P}(M(t)-m(t)\leq x)^{t\to\infty} \quad w(x) = \mathbb{E}\left[\exp\left(-C\mathbb{Z}e^{-\sqrt{2}x}\right)\right] = \mathbb{E}\left[\exp\left(-e^{-\sqrt{2}\left(x-\frac{\log(C\mathbb{Z})}{\sqrt{2}}\right)}\right)\right].$$
(5)

Note 1. The so-called Gumbel distribution has cumulative distribution function

$$F_G(x) = \mathbb{P}(G \le x) = \exp\left(-e^{-(x-\mu)/\beta}\right) = \exp\left(-e^{\mu/\beta}e^{-x/\beta}\right)$$

with parameters $\mu \in \mathbb{R}, \beta > 0$. Hence, w(x) represents a random shift of "the" Gumbel distribution with $\mu = 0$ and $\beta = 1/\sqrt{2}$.

Note 2.
$$1 - w(x) \sim Cxe^{-\sqrt{2}x}$$
 for $x \to \infty$.

Sandra Kliem (Univ. Duisburg-Essen)

(Gumbel distribution, cf. https://en.wikipedia.org/wiki/Gumbel_distribution#/media/File:Gumbel-Density.svg https://en.wikipedia.org/wiki/Gumbel_distribution#/media/File:Gumbel-Cumulative.svg)

Additionally, [LS87] showed

Theorem

Suppose two independent BBMs $(X_1^A(t), \ldots, X_{n^A(t)}^A(t))$ and $(X_1^B(t), \ldots, X_{n^B(t)}^B(t))$ are started at 0 respectively x < 0. Then, with probability 1, there exist finite random times $t_n, n \in \mathbb{N}, t_n \to \infty$ such that

 $M^A(t_n) < M^B(t_n)$

for all $n \in \mathbb{N}$.

Idea of proof. Use (3), i.e. $\lim_{t\to\infty} \mathbb{P}(M(t) - m(t) \le x) = w(x)$.

Corollary

Every particle born in a BBM has a descendant particle in the "lead" at some future time.

Sandra Kliem (Univ. Duisburg-Essen)

Extremal particles in BBM (cf. [ABK11] and [ABK12])

- ARGUIN, L.-P. and BOVIER, A. and KISTLER, N. Genealogy of extremal particles of branching Brownian motion. *Comm. Pure Appl. Math.* 64 (2011), 1647–1676.
- ARGUIN, L.-P. and BOVER, A. and KISTLER, N. Poissonian statistics in the extremal process of branching Brownian motion. Ann. Appl. Probab. 22 (2012), 1693–1711.

We are interested in the limit $(t
ightarrow \infty)$ of the extremal process

$$\mathcal{E}_t \equiv \sum_{k \leq n(t)} \delta_{x_k(t) - m(t)} \equiv \sum_{k \leq n(t)} \delta_{\overline{x_k}(t)}.$$

Recall: The centering term m(t) satisfies

$$m(t) = \sqrt{2}t - \frac{3}{2\sqrt{2}}\log(t) = \sup\{x : u(t,x) \le 1/2\} + O(1).$$

By the previous Remark on Genealogies of BBM, for a *given* realization of the branching, the genealogical distances

$$d(x_k(t), x_\ell(t)) = \inf\{0 \le s \le t : x_k(s) \ne x_\ell(s)\} = \text{ time (from 0) to MRCA }.$$

Sandra Kliem (Univ. Duisburg-Essen)

Genealogy of extremal particles of BBM Theorem (Genealogy of Extremal Particles, Theorem 2.1, [ABK11]) For any compact set $D \subset \mathbb{R}$,

$$\begin{split} &\lim_{r\to\infty}\sup_{t>3r}\mathbb{P}\big(\exists 1\leq k,\ell\leq n(t):\\ &\overline{x_k}(t),\overline{x_\ell}(t)\in D \text{ and } d(x_k(t),x_\ell(t))\in (r,t-r)\big)=0. \end{split}$$

Conclusion: The MRCA of extremal particles at time t splits/branches off with high probability at a time

- in the interval (0, r) ("very early branching") or
- 2 in the interval (t r, t) ("very late branching").

Sandra Kliem (Univ. Duisburg-Essen)

(Figure 2.4 of [ABK11])

Sandra Kliem (Univ. Duisburg-Essen)

Extremal Particles in BBM

3. August, 2017 21 / 36

Poissonian statistics in the extremal process of BBM

W.I.o.g., order the (centered) particles in decreasing order, i.e.

$$\overline{x_1}(t) \ge \overline{x_2}(t) \ge \cdots \ge \overline{x_{n(t)}}(t).$$
(6)

Let

$$\overline{D}(t) = \{\overline{D}_{k\ell}(t)\}_{k,\ell \le n(t)} \equiv \left\{\frac{d(x_k(t), x_\ell(t))}{t}\right\}_{k,\ell \le n(t)}$$

Definition

Let 0 < q < 1. The q-thinning $\mathcal{E}_t^{(q)}$ of the pair $(\mathcal{E}_t, \overline{D}(t))$ is defined as follows:

- Consider the equivalence classes of particles alive at time t with MRCA at a time later than q ⋅ t, i.e. k ~_q ℓ ⇔ D
 _{kℓ}(t) > q.
- Select the maximal (according to (6)) particle within each class.
- Then $\mathcal{E}_t^{(q)}$ is the point process of these representatives.

Note 1. This extends to $q = q(t) \in (0, 1)$.

Note 2. The thinning map $(\mathcal{E}_t, \overline{D}(t)) \mapsto \mathcal{E}^{(q)}(t)$ is continuous (on the space of pairs (X, Q), X ordered positions, Q symm. matrix with entries in [0, 1] and transitive op. $Q_{ij} \ge q$). Sandra Kliem (Univ. Duisburg-Essen) Extremal Particles in BBM 3. August, 2017 22 / 36 Theorem (Theorem 2, [ABK12]) For any 0 < q < 1, the processes $\mathcal{E}_t^{(q)}$ converge in law to the same limit, \mathcal{E}^0 . Also,

$$\lim_{r\to\infty}\lim_{t\to\infty}\mathcal{E}_t^{(1-r/t)}=\mathcal{E}^0.$$

Moreover, conditionally on Z, (the limit of the derivative martingale, cf. (4)),

 $\mathcal{E}^{0} = PPP(CZ\sqrt{2}e^{-\sqrt{2}x}dx)$ (PPP stands for "Poisson Point Process")

where C > 0 is the constant appearing in (5).

3. August, 2017 23 / 36

Conclusion:

The particles at the frontier of BBM for large times can be constructed as follows:

- set down so-called cluster extrema according to *E*⁰, that is, according to a randomly shifted PPP with "exponential" (*x* ∈ ℝ) density;
- 2 attach to each cluster extrema a cluster.

Note 1. Particles in one cluster lie to the left (in space) of its corresponding cluster extrema (Poissonian particle).

Note 2. Heuristic for PP-structure: the ancestors of the extremal particles evolve independently for the time-interval [r, t - r].

Sandra Kliem (Univ. Duisburg-Essen)

 $m(t) = \sqrt{2}t - \frac{3}{2\sqrt{2}}\log(t)$ $\mathcal{E}_t \equiv \sum_{i \le n(t)} \delta_{x_i(t) - m(t)}.$

Remark (Invariance property)

The law of the limiting extremal process $\mathcal{E} = \sum_{i \in \mathbb{N}} \delta_{e_i}$ satisfies the following invariance property: For any $s \ge 0$,

$$\mathcal{E} \stackrel{\mathcal{D}}{=} \sum_{i,k} \delta_{e_i + x_k^{(i)}(s) - \sqrt{2}s},$$

where $\{x_k^{(i)}(s) : k \le n^{(i)}(s), s \ge 0\}_{i \in \mathbb{N}}$ are i.i.d. BBMs. Indeed, use that for $t \to \infty$,

$$m(t) = m(t-s) + \sqrt{2}s + o(1).$$

Then rewrite

$$\mathcal{E}_{t} \equiv \sum_{i \le n(t)} \delta_{x_{i}(t) - m(t)} = \sum_{i \le n(t-s)} \sum_{k \le n^{(i)}(s)} \delta_{x_{i}(t-s) + x_{k}^{(i)}(s) - m(t)}$$
$$= \sum_{i \le n(t-s)} \sum_{k \le n^{(i)}(s)} \delta_{x_{i}(t-s) - m(t-s) + x_{k}^{(i)}(s) - \sqrt{2}s + o(1)}$$

and take $t \to \infty$.

Sandra Kliem (Univ. Duisburg-Essen)

Idea of proof of Theorem 2, [ABK12]

Theorem 2. [ABK12] For any 0 < q < 1, the processes $\mathcal{E}_t^{(q)}$ converge in law to the same limit, \mathcal{E}^0 . Also, $\lim_{r\to\infty} \lim_{t\to\infty} \mathcal{E}_t^{(1-r/t)} = \mathcal{E}^0$. Moreover, conditionally on Z, $\mathcal{E}^0 = PPP(CZ\sqrt{2}e^{-\sqrt{2}x}dx)$. (*) **Genealogy of Extremal Particles, Theorem 2.1, [ABK11]** For any compact set $D \subset \mathbb{R}$, $\lim_{r\to\infty} \sup_{t>3r} \mathbb{P}(\exists 1 \le k, \ell \le n(t) : \overline{x_k}(t), \overline{x_\ell}(t) \in D \text{ and } d(x_k(t), x_\ell(t)) \in (r, t - r)) = 0$. (**)

- Same limit \mathcal{E}^0 for $\frac{r}{t} < q < 1 \frac{r}{t}$ with r big enough follows from (**).
- It remains to show (*). This is done via convergence of Laplace functionals, that is, for $\phi \in C_c^+$ we claim that

$$\lim_{r \to \infty} \lim_{t \to \infty} \mathbb{E} \left[e^{-\int \phi(x) \mathcal{E}_t^{(1-r/t)}(dx)} \right] = \mathbb{E} \left[e^{-CZ \int \left(1 - e^{-\phi(x)} \right) \sqrt{2} e^{-\sqrt{2}x} dx} \right]$$

Note. If $X \sim PPP(\lambda)$, then $\mathbb{E}[e^{-\int \phi(x)X(dx)}] = e^{\int (e^{-\phi(x)}-1)\lambda(dx)}$ (cf. [B15], Appendix).

Sandra Kliem (Univ. Duisburg-Essen)

$$\mathcal{E}_t = \sum_{k \le n(t)} \delta_{x_k(t) - m(t)}$$
 with $m(t) = \sqrt{2}t - \frac{3}{2\sqrt{2}}\log(t)$

Conditional on the evolution of the BBM up to time r, we obtain

$$\mathcal{E}_t^{(1-r/t)} \stackrel{\mathcal{D}}{=} \left\{ x_j(r) + M^{(j)}(t-r) - m(t) \right\}_{j=1,\ldots,n(r)},$$

where $\{x_k^{(j)}(t)\}_{k \le n^{(j)}(t)}, j \in \mathbb{N}$ are i.i.d. BBM with $M^{(j)}(t) \equiv \max_{k \le n^{(j)}(t)} x_k^{(j)}(t)$.

(Figure 2.4 of [ABK11])

Now,

$$m(t)=\sqrt{2}r+m(t-r)+o(1) \ \ ext{for} \ \ t o\infty.$$

Sandra Kliem (Univ. Duisburg-Essen)

$$\mathbb{P}(M(t) - m(t) \le x) = u(t, m(t) + x) \to w(x) \text{ unif. in } x \text{ as } t \to \infty.$$

$$m(r) = \sqrt{2}r - \frac{3}{2\sqrt{2}}\log(r).$$

As a result,

$$\lim_{t \to \infty} \mathbb{E} \left[e^{-\int \phi(x) \mathcal{E}_t^{(1-r/t)}(dx)} \right] = \lim_{t \to \infty} \mathbb{E} \left[\prod_{j=1}^{n(r)} \mathbb{E} \left[e^{-\phi \left(x_j(r) - \sqrt{2}r + M(t-r) - m(t-r) + o(1) \right)} \right] \right]$$
$$= \mathbb{E} \left[\prod_{j=1}^{n(r)} \mathbb{E} \left[e^{-\phi \left(x_j(r) - \sqrt{2}r + \bar{M} \right)} \right] \right],$$

where \overline{M} has law w. \oplus^2

Note 1.
$$\left[\max_{j \le n(r)} (x_j(r) - \sqrt{2}r) \to -\infty \text{ a.s. as } r \to \infty. \right]$$

Note 2. Now use asymptotics for \overline{M} , i.e. $1 - w(x) \sim Cxe^{-\sqrt{2}x}$ for $x \to \infty$.

Sandra Kliem (Univ. Duisburg-Essen)

Idea of proof of Theorem 2.1, [ABK11]

Localization of Paths of Extremal Particles

Theorem (Genealogy of Extremal Particles, Theorem 2.1, [ABK11]) For any compact set $D \subset \mathbb{R}$,

 $\lim_{r\to\infty}\sup_{t>3r}\mathbb{P}\big(\exists 1\leq k,\ell\leq \textit{n}(t):\ \overline{x_k}(t),\overline{x_\ell}(t)\in \textit{D} \text{ and } \textit{d}(x_k(t),x_\ell(t))\in(\textit{r},t-\textit{r})\big)=0.$

(Figure 2.1 of [ABK11])

Sandra Kliem (Univ. Duisburg-Essen)

For
$$\gamma > 0$$
, set $f_{t,\gamma}(s) \equiv \begin{cases} s^{\gamma}, & 0 \le s \le rac{t}{2}, \\ (t-s)^{\gamma}, & rac{t}{2} \le s \le t. \end{cases}$

Then the upper envelope at time t is defined as

$$U_{t,\gamma}(s) \equiv \frac{s}{t}m(t) + f_{t,\gamma}(s).$$

Theorem (Upper Envelope, Theorem 2.2 of [ABK11]) Let $0 < \gamma < 1/2$. Let also $y \in \mathbb{R}$ and $\epsilon > 0$ be given. There exists $r_u = r_u(\gamma, y, \epsilon)$ such that for $r \ge r_u$ and for any t > 3r,

$$\mathbb{P}(\exists k \leq n(t) : x_k(s) > y + U_{t,\gamma}(s) \text{ for some } s \in [r, t - r]) < \epsilon.$$

Idea of proof. Discretize path and use $\mathbb{P}(M(t) > m(t) + x) \xrightarrow{t \to \infty} 1 - w(x) \sim Cxe^{-\sqrt{2}x}$ for $x \to \infty$.

Sandra Kliem (Univ. Duisburg-Essen)

Remark (Why is this useful?) For $\mathbb{E}[n(t)] = e^t$ i.i.d. BMs, $m(t) = \sqrt{2}t - \frac{1 \cdot \log(t)}{2\sqrt{2}}$ and

$$\mathbb{E}[\#\{k \le n(t) : B_k(t) > m(t)\}] \sim \frac{e^t}{\sqrt{2\pi t}} e^{-\frac{m(t)^2}{2t}}$$
$$= \frac{e^t}{\sqrt{2\pi t}} e^{-\frac{2t^2 - \frac{2\sqrt{2}t\log(t)}{2\sqrt{2}} + \frac{\log(t)^2}{8}}{2}} = \frac{1}{\sqrt{2\pi t}} e^{\frac{\log(t)}{2} - \frac{\log(t)^2}{16t}} = \frac{1}{\sqrt{2\pi}} e^{-\frac{\log(t)^2}{16t}} = O(1).$$

For BBM, $m(t) = \sqrt{2}t - \frac{3 \cdot \log(t)}{2\sqrt{2}}$. For e^t i.i.d. BMs we now get

$$\mathbb{E}[\#\{k \le n(t) : B_k(t) > m(t)\}] = \frac{1}{\sqrt{2\pi t}} e^{3\frac{\log(t)}{2} - \frac{9\log(t)^2}{16t}} = O(t).$$

Now, for a BM B_t starting in 0,

$$\mathbb{P}(B_s \leq U_{t,\gamma}(s), r \leq s \leq t-r|B_t = m(t)) \ = \mathbb{P}(\mathfrak{z}^t_{\mathfrak{d}_0,m(t)}(s) \leq U_{t,\gamma}(s), r \leq s \leq t-r) \sim rac{1}{t}.$$

Sandra Kliem (Univ. Duisburg-Essen)

The upper envelope can be replaced by a lower "entropic envelope" *E*: For $\alpha > 0$ let

$$E_{t,\alpha}(s) \equiv \frac{s}{t}m(t)-f_{t,\alpha}(s).$$

Theorem (Entropic Repulsion, Theorem 2.3 of [ABK11]) Let $D \subset \mathbb{R}$ be a compact set and $0 < \alpha < 1/2$. Set $\overline{D} \equiv \sup\{x \in D\}$. For any $\epsilon > 0$ there exists $r_e = r_e(\alpha, D, \epsilon)$ such that for $r \ge r_e$ and t > 3r,

$$\mathbb{P}(\exists k \leq n(t) : x_k(t) \in m(t) + D, \text{ but } \exists s \in [r, t-r] : x_k(s) \geq \bar{D} + E_{t,\alpha}(s)) < \epsilon.$$

Sandra Kliem (Univ. Duisburg-Essen)

Together with a lower envelope we get with $0 < \alpha < \frac{1}{2} < \beta < 1$,

(Figure 2.3 of [ABK11])

Sandra Kliem (Univ. Duisburg-Essen)

3. August, 2017 33 / 36

Remark (How to use this \oplus^3)

The expected number of pairs of particles of BBM whose (respective) path $(x(s))_{0 \le s \le t}$ satisfies some conditions for $s \in [r, t - r]$, say $\Sigma_t^{[r,t-r]}$, is

$$\mathbb{E}[\#\{(k,\ell): k \neq \ell, x_k(\cdot), x_\ell(\cdot) \in \Sigma_t^{[r,t-r]}\}]$$

= $C(e^t)^2 \int_0^t ds \ e^{-s} \int_{-\infty}^\infty dy \ p_s(y) \mathbb{P}(x(\cdot) \in \Sigma_t^{[r,t-r]} | x(s) = y) \mathbb{P}(x(\cdot) \in \Sigma_t^{[r \lor s,t]} | x(s) = y).$

- how many pairs at time t on average;
- condition on splitting at time s and
- at position y.
- If first particle satisfies the condition on [0, t], then the second one automatically satisfies it on [0, s].

If we include a condition on genetic distance, we get

$$\mathbb{E}[\#\{(k,\ell): k \neq \ell, x_k(\cdot), x_\ell(\cdot) \in \Sigma_t^{[r,t-r]}, d(x_k(t), x_\ell(t)) \in [r, t-r]\}]$$

$$= Ce^t \int_r^{t-r} ds \, e^{t-s} \int_{-\infty}^{\infty} dy \, p_s(y) \mathbb{P}(x \in \Sigma_t^{[r,t-r]} | x(s) = y) \mathbb{P}(x \in \Sigma_t^{[s,t-r]} | x(s) = y).$$
Sandra Kliem (Univ. Duisburg-Essen) Extremal Particles in BBM 3. August 2017 34 / 36

Bibliography

Arguin, L.-P. and Bovier, A. and Kistler, N. Genealogy of extremal particles of branching Brownian motion. *Comm. Pure Appl. Math.* **64** (2011), 1647–1676.

ARGUIN, L.-P. and BOVIER, A. and KISTLER, N. Poissonian statistics in the extremal process of branching Brownian motion. *Ann. Appl. Probab.* **22** (2012), 1693–1711.

ARGUIN, L.-P. and BOVIER, A. and KISTLER, N. The extremal process of branching Brownian motion. *Probab. Theory Related Fields* **157** *(2013)*, *535–574*.

AïDÉKON, E. and BERESTYCKI, J. and BRUNET, É. and SHI, Z. Branching Brownian motion seen from its tip. *Probab. Theory Related Fields* **157** *(2013)*, *405–451*.

BOVIER, A.

From spin glasses to branching Brownian motion—and back? *Lecture Notes in Math.* **2144** (2015), 1–64.

BRAMSON, M.

Convergence of solutions of the Kolmogorov equation to travelling waves. *Mem. Amer. Math. Soc.* **44**, *Number 285 (1983)*.

Sandra Kliem (Univ. Duisburg-Essen)

Extremal Particles in BBM

3. August, 2017 35 / 36

CHAUVIN, B. and ROUAULT, A.

KPP Equation and Supercritical Branching Brownian Motion in the Subcritical Speed Area. Application to Spatial Trees. *Probab. Theory Related Fields* **80** (1988), 299–314.

Gouéré, J.-B.

Branching Brownian motion seen from its leftmost particle (following Arguin-Bovier-Kistler and Aïdékon-Berestycki-Brunet-Shi). *Astérisque* **361** (2014), 271–298.

LALLEY, S. P. and SELLKE, T.

A conditional limit theorem for the frontier of a branching Brownian motion. Ann. Probab. 15 (1987), 1052–1061.

NEVEU, J.

Multiplicative martingales for spatial branching processes. Progr. Probab. Statist. 15 (1988), 223-242.

Roberts, M.I.

A simple path to asymptotics for the frontier of a branching Brownian motion. *Ann. Probab.* **41** (2013), 3518–3541.

The extremal process of BBM (cf. [ABBS13] and [ABK13])

- ARGUIN, L.-P. and BOVIER, A. and KISTLER, N. The extremal process of branching Brownian motion. Probab. Theory Related Fields 157 (2013), 535–574.
- AïDÉKON, E. and BERESTYCKI, J. and BRUNET, É. and SHI, Z. Branching Brownian motion seen from its tip. Probab. Theory Related Fields 157 (2013), 405–451.

Both articles give a description of the (weak w.r.t. $\phi \in C_c^+$) limit $(t \to \infty)$ of the extremal process

$$\mathcal{E}_t \equiv \sum_{k \leq n(t)} \delta_{x_k(t) - m(t)} \equiv \sum_{k \leq n(t)} \delta_{\overline{x_k}(t)}.$$

See Gouéré [G14] for a (french) review that presents and compares both approaches.

Sandra Kliem (Univ. Duisburg-Essen)

Extremal Particles in BBM

3. August, 2017 37 / 36

[ABK13] The extremal process of BBM

Remark

- Bovier [B15] discusses the following results in detail.
- There are also other representations. \mathfrak{S}^4
- The proofs rely on the consideration of the respective Laplace functionals.

Theorem (Theorem 3.1 (Existence of the limit), [ABK13]) The point process \mathcal{E}_t converges in law to a point process \mathcal{E} .

Idea of proof: Example 2 for the F-KPP equation.

Sandra Kliem (Univ. Duisburg-Essen)

Theorem 2, [ABK12]

For any 0 < q < 1, the processes $\mathcal{E}_t^{(q)}$ converge in law to the same limit, \mathcal{E}^0 . Also, $\lim_{r\to\infty} \lim_{t\to\infty} \mathcal{E}_t^{(1-r/t)} = \mathcal{E}^0$. Moreover, conditionally on Z, $\mathcal{E}^0 = PPP(CZ\sqrt{2}e^{-\sqrt{2}x}dx)$, where C > 0 is the constant appearing in (5).

$$\mathcal{E}_t \equiv \sum_{k \le n(t)} \delta_{x_k(t) - m(t)}$$
 with $m(t) = \sqrt{2}t - \frac{3}{2\sqrt{2}}\log(t)$

Definition (Cluster-extrema)

Conditionally on the limiting derivative martingale Z, consider the PPP

$$\mathcal{P}_{Z} \equiv \sum_{i \in \mathbb{N}} \delta_{\mathbf{p}_{i}} \stackrel{\mathcal{D}}{=} PPP(CZ\sqrt{2}e^{-\sqrt{2}x}dx)$$
(7)

with C as in (5).

Definition (Clusters)

Let $\bar{\mathcal{E}}_t \equiv \sum_{k \leq n(t)} \delta_{x_k(t) - \sqrt{2}t}$. Conditionally on $\{\max_{k \leq n(t)} x_k(t) - \sqrt{2}t \geq 0\}$, the process $\bar{\mathcal{E}}_t$ converges to a point process $\bar{\mathcal{E}} = \sum_j \delta_{\xi_j}$. Now define the point process of the gaps by

$$\mathcal{D} \equiv \sum_{j} \delta_{\Delta_{j}}, \quad \Delta_{j} \equiv \xi_{j} - \max_{j} \xi_{j}.$$
 (8)

Note. ${\mathcal D}$ is a point process on $(-\infty,0]$ with an atom at 0.

Sandra Kliem (Univ. Duisburg-Essen)

Theorem (Theorem 2.1 (Main Theorem), [ABK13])

Let \mathcal{P}_Z be as in (7) and let $\{\mathcal{D}^{(i)} : i \in \mathbb{N}\}\$ be a family of independent copies of the gap-process (8). Then the point process \mathcal{E}_t converges in law as $t \to \infty$ to a Poisson cluster point process \mathcal{E} given by

(Figure 1 of [ABK13])

Sandra Kliem (Univ. Duisburg-Essen)

[ABBS13] BBM seen from its tip

Remark

- The proofs use path localization and path decomposition techniques.
- J. Berestycki (Lecture Notes, "Topics on BBM",

http://www.stats.ox.ac.uk/~berestyc/Articles/EBP18_v2.pdf) gives a good introduction in the underlying concepts.

Notation (Change in Scaling)

Note that a different scaling is used and instead of rightmost particles, leftmost are considered.

- Particles now follow a BM with drift 2 and variance 2, that is, replace B_t by $\sqrt{2}(B_t \sqrt{2}t)$.
- (The exponential clocks for splitting-events still ring at rate 1 and a particle splits in two.)
- Instead of $M(t) = \max_{k \le n(t)} x_k(t)$ they consider $\min_{k \le n(t)} x_k(t)$.

$$m(t) \equiv \sqrt{2}t - \frac{3}{2\sqrt{2}}\log(t).$$

The derivative mart. $Z(t) \equiv \sum_{k=1}^{n(t)} (\sqrt{2}t - x_k(t)) e^{-\sqrt{2}(\sqrt{2}t - x_k(t))}$ satisfies $Z = \lim_{t \to \infty} Z(t)$. Particles now follow a BM with drift 2 and variance 2, that is, replace B_t by $\sqrt{2}(B_t - \sqrt{2}t)$. Consider $\min_{k \le n(t)} x_k(t)$.

Remark (Consequences of Scaling)

•
$$m(t)$$
 becomes $m'(t) = +\frac{3}{2}\log(t)$.

•
$$Z(t)$$
 becomes $\frac{1}{\sqrt{2}} \sum_{k=1}^{n(t)} x_k(t) e^{-x_k(t)}$. [ABBS13] use $Z'(t) = \sum_{k=1}^{n(t)} x_k(t) e^{-x_k(t)}$ instead and thus CZ becomes $(C/\sqrt{2})Z' = C'Z'$.

•
$$\mathbb{E}[Z'_t] = 0$$
 for all $t \ge 0$.

From now onwards, we use the notation of [ABBS13].

Definition (The additive martingale) The process $\mathcal{M}(t) \equiv \sum_{k=1}^{n(t)} e^{-x_k(t)}$ is a martingale with $\mathbb{E}[M_t] = 1$ for all $t \ge 0$, the so-called additive martingale.

Sandra Kliem (Univ. Duisburg-Essen)

$\mathcal{E}_t \equiv \sum_{k \le n(t)} \delta_{x_k(t) - m(t)}$

Cluster-extrema $\mathcal{P}_{Z} \equiv \sum_{i \in \mathbb{N}} \delta_{p_{i}} \stackrel{\mathcal{D}}{=} PPP(CZ\sqrt{2}e^{-\sqrt{2}x}dx) = PPP(e^{-\sqrt{2}x+\log(CZ)}d(\sqrt{2}x)).$ Theorem 2.1 (Main Theorem), [ABK13] Let \mathcal{P}_{Z} be as in (7) and let $\{\mathcal{D}^{(i)} : i \in \mathbb{N}\}$ be a family of independent copies of the gap-process (8). Then $\mathcal{E} \equiv \lim_{t \to \infty} \mathcal{E}_{t} \stackrel{\mathcal{D}}{=} \sum_{i,j} \delta_{p_{i} + \Delta_{j}^{(i)}}$. Let

$$\overline{\mathcal{N}}(t) \equiv \sum_{k \leq n(t)} \delta_{x_k(t) - m(t) + \log(CZ)}.$$

Theorem (Theorem 2.1, [ABBS13] \hookrightarrow ⁵)

As $t \to \infty$ the pair $\{\overline{\mathcal{N}}(t), Z(t)\}$ converges jointly in distribution to $\{\mathcal{L}, Z\}, \mathcal{L}$ and Z are independent and \mathcal{L} is obtained as follows.

- (i) Define \mathcal{P} a Poisson point measure on \mathbb{R} , with intensity measure $e^{x}dx$.
- (ii) For each atom x of P, we attach a point measure D^(x) where D^(x) are independent copies of a certain decoration point measure D.
- (iii) \mathcal{L} is then the point measure corresponding to

$$\mathcal{L} \equiv \sum_{x \in \mathcal{P}} \sum_{y \in \mathcal{D}^{(x)}} \delta_{x+y}.$$

Sandra Kliem (Univ. Duisburg-Essen)

(Figure 1 of [ABBS13])

Sandra Kliem (Univ. Duisburg-Essen)

Extremal Particles in BBM

3. August, 2017 44 / 36

Notation

- Order the particles in increasing order, i.e. $x_1(t) \le x_2(t) \le \cdots \le x_{n(t)}(t)$.
- For s ≤ t, let x_{1,t}(s) denote the position at time s of the ancestor of x₁(t), i.e. s → x_{1,t}(s) is the path of the leftmost particle up until time t.

Let

$$Y_t(s) \equiv x_{1,t}(t-s) - x_1(t), \quad s \in [0,t]$$

the time reversed path back from the final position $x_1(t)$.

- Denote by ··· < τ₂(t) < τ₁(t) ≤ t the successive splitting times along the path of the leftmost particle (enumerated backwards).
- The time at which $x_i(t)$ and $x_j(t)$ share their MRCA is denoted by $\tau_{i,j}(t)$.
- Let $\mathcal{N}_i(t) \equiv \sum_{1 \leq j \leq n(t): \tau_{1,j}(t) = \tau_i(t)} \delta_{x_j(t) x_1(t)}$.
- Finally, let for $0 < \eta < t$,

$$\mathcal{D}(t,\eta) \equiv \delta_0 + \sum_{i:\tau_i(t)>t-\eta} \mathcal{N}_i(t).$$

Sandra Kliem (Univ. Duisburg-Essen)

Theorem (Theorem 2.3, [ABBS13])

The following convergence holds jointly in distribution:

 $\lim_{\eta\to\infty}\lim_{t\to\infty}\left((Y_t(s),s\in[0,t]),\ \mathcal{D}(t,\eta),\ x_1(t)-m(t)\right)=\left((Y(s),s\geq 0),\ \mathcal{D},\ W\right),$

where the r.v. W is independent of the pair $((Y(s), s \ge 0), D)$, and D is the point measure which appears in Theorem 2.1.

Note. $\mathbb{P}(W(x) \le x) = 1 - w(-x/\sqrt{2}) \sim C'|x|e^x$ for $x \to -\infty$ (cf. (5) and below).

Sandra Kliem (Univ. Duisburg-Essen)

Extremal Particles in BBM

3. August, 2017 46 / 36

Construction of the decoration point measure $\ensuremath{\mathcal{D}}$

We will construct \mathcal{D} conditional on Y.

Notation

Let b > 0, $(B_t, t \ge 0)$ a BM and $(R_t, t \ge 0)$ a three-dimensional Bessel process started from $R_0 = 0$ and independent of B. Let $T_b \equiv \inf\{t \ge 0 : B_t = b\}$. Set

$${\sf \Gamma}^{(b)}_{s}\equiv egin{cases} B_{s}, & s\in [0,\,T_{b}],\ b-R_{s-T_{b}}, & s\geq T_{b}. \end{cases}$$

(Figure 1 and 2 of [ABBS13])

Construction of $\ensuremath{\mathcal{D}}$

(1) Construction of Y. For $A \subset C(\mathbb{R}_+, \mathbb{R})$ measurable,

$$\mathbb{P}(Y \in A, -\inf_{s \ge 0} Y(s) \in db) = \frac{1}{c} \mathbb{E} \bigg[e^{-2 \int_0^\infty \mathbb{P} \big(x_1(v) \le \sqrt{2} \Gamma_v^{(b)} \big) dv} \mathbb{1}_{\{-\sqrt{2} \Gamma^{(b)} \in A\}} \bigg]$$

with normalizing constant c.

(2) Construction of \mathcal{D} conditional on Y.

Conditionally on the path Y, let π be a PPP on $[0,\infty)$ with intensity $2 \cdot \mathbb{P}(Y(\tau) + x_1(\tau) > 0) d\tau$. For each point $\tau \in \pi$ start an independent BBM $(\mathcal{N}^*_{Y(\tau)}(u), u \ge 0)$ at position $Y(\tau)$ conditioned to have min $\mathcal{N}^*_{Y(\tau)}(\tau) > 0$. Then

$$\mathcal{D} \equiv \delta_0 + \sum_{\tau \in \pi} \mathcal{N}^*_{\mathbf{Y}(\tau)}(\tau).$$

(Recall that Y(0) = 0 and that the path Y moves backwards in time, whereas the BBMs move forward in time.)

Sandra Kliem (Univ. Duisburg-Essen)

Spinal decomposition

The process $\mathcal{M}(t) \equiv \sum_{k=1}^{n(t)} e^{-x_k(t)}$ is a martingale with $\mathbb{E}[M_t] = 1$ for all $t \ge 0$, the so-called additive martingale.

Let \mathbb{Q} be the probability measure s.t.

$$\mathbb{Q}|_{\mathcal{F}_t} = \mathcal{M}(t) \cdot \mathbb{P}|_{\mathcal{F}_t},$$

where \mathbb{P} refers to the distribution of BBM and \mathcal{F}_t is the filtration of the BBM (under \mathbb{P}) up to time *t*.

Theorem (Theorem 5 of Chauvin and Rouault [CR88])

 ${\mathbb Q}$ is the law of the following branching diffusion.

(1) Let $\Xi_s \in \{1, ..., n(s)\}$ denote the label of a distinguished particle at time $s \ge 0$ with $\mathbb{Q}(\Xi_t = i | \mathcal{F}_t) = \frac{e^{-x_i(t)}}{\mathcal{M}_*}.$

The process $(\Xi_s, s \in [0, t])$ is called the spine.

- (2) The position of the spine $(x_{\Xi_s}(s), s \in [0, t])$ is a driftless BM of variance 2.
- (3) The particle with label Ξ_s at time s branches at (accelerated) rate 2 and gives birth to BBMs (with distribution P).

Sandra Kliem (Univ. Duisburg-Essen)

Lemma (Many-to-one-principle)

Let $\Psi_i, i = 1, \dots, n(t)$ be \mathcal{F}_t -measurable r.v.s. Then

$$\mathbb{E}_{\mathbb{P}}\left[\sum_{i\leq n(t)}\Psi_i\right] = \mathbb{E}_{\mathbb{Q}}\left[\frac{1}{\mathcal{M}(t)}\sum_{i\leq n(t)}\Psi_i\right] = \mathbb{E}_{\mathbb{Q}}[e^{\mathsf{x}_{\Xi_t(t)}}\Psi_{\Xi_t}].$$

Example

We obtain

$$\begin{split} \mathbb{P}\big(\exists i \le n(t) : (x_{i,t}(s), s \in [0, t]) \in A\big) \le \mathbb{E}\big[\sum_{i \le n(t)} \mathbb{1}_{\{\{x_{i,t}(s), s \in [0, t]\} \in A\}}\big] \\ &= \mathbb{E}\big[e^{x_{\Xi_t(t)}} \mathbb{1}_{\{(x_{\Xi_s}, s \in [0, t]) \in A\}}\big] \\ &= \mathbb{E}\big[e^{\sqrt{2}B_t} \mathbb{1}_{\{(\sqrt{2}B_s, s \in [0, t]) \in A\}}\big]. \end{split}$$

Sandra Kliem (Univ. Duisburg-Essen)

\mathfrak{P}_1 A note on the i.i.d. case

(cf. A. Bovier, Lecture Notes, "Extreme values of random processes",

https://wt.iam.uni-bonn.de/fileadmin/WT/Inhalt/people/Anton_Bovier/lecture-notes/extreme.pdf, Lemma 1.2.1)

Let $X_1(t), \ldots, X_n(t)$ be $n \in \mathbb{N}$ i.i.d. normal r.v.s. Let

$$b_n \equiv \sqrt{2\log(n)} - rac{\log(\log(n)) + \log(4\pi)}{2\sqrt{2\log(n)}}$$
 and $a_n \equiv \sqrt{2\log(n)}$

Then, for all $x \in \mathbb{R}$,

$$\lim_{n\to\infty}\mathbb{P}(\max_{k\leq n}X_k(t)\leq b_n+x/a_n)=e^{-e^{-x}}$$

For a BBM, $\mathbb{E}[n(t)] = e^t$. Set $n = e^t$ and consider $B_i, i \in \mathbb{N}$ independent standard BMs. Then, for $y \equiv x/\sqrt{2}$,

$$\lim_{n \to \infty} \mathbb{P}\left(\max_{k \le e^t} \frac{B_k(t)}{\sqrt{t}} \le \sqrt{2t} - \frac{\log(t)}{2\sqrt{2t}} + \frac{\log(4\pi) + 2x}{2\sqrt{2t}}\right)$$
$$= \lim_{t \to \infty} \mathbb{P}\left(\max_{k \le e^t} B_k(t) \le \sqrt{2t} - \frac{1 \cdot \log(t)}{2\sqrt{2}} + O(1) + y\right) = e^{-e^{-\sqrt{2y}}}$$

Recall, that for BBM,

$$m(t) = \sqrt{2}t - \frac{3}{2\sqrt{2}}\log(t) \text{ and } \mathbb{P}(M(t) - m(t) \le x) \stackrel{t \to \infty}{\to} \mathbb{E}\left[e^{-CZe^{-\sqrt{2}x}}\right].$$
Sandra Kliem (Univ. Duisburg-Essen) Extremal Particles in BBM 3. August, 2017 51 / 36

\hookrightarrow_2 Idea of proof of Theorem 2, [ABK12] - Heuristic

$$\begin{split} 1 - w(x) &\sim C x e^{-\sqrt{2}x} \text{ for } x \to \infty. \text{ Suppose heuristically } w'(x) \sim C \sqrt{2} x e^{-\sqrt{2}x}. \\ Z(t) &= \sum_{k=1}^{n(t)} \left(\sqrt{2}t - x_k(t)\right) e^{-\sqrt{2}\left(\sqrt{2}t - x_k(t)\right)} \to Z \text{ for } t \to \infty. \end{split}$$

$$\lim_{t\to\infty}\mathbb{E}\Big[e^{-\int\phi(x)\mathcal{E}_t^{(1-r/t)}(dx)}\Big]=\mathbb{E}\left[\prod_{j=1}^{n(r)}\mathbb{E}\Big[e^{-\phi\left(x_j(r)-\sqrt{2}r+\overline{M}\right)}\Big]\right],$$

where \overline{M} has law w and $\max_{j \le n(r)} (x_j(r) - \sqrt{2}r) \to -\infty$ a.s. as $r \to \infty$.

Rewrite the above to $(\log(ab) = \log(a) + \log(b), \log(x) \sim -(1 - x)$ for 0 < x < 1)

$$\begin{split} & \mathbb{E}\left[e^{\sum_{j=1}^{n(r)}\log\left(\mathbb{E}\left[e^{-\phi\left(x_{j}(r)-\sqrt{2}r+\bar{M}\right)}\right]\right)}\right] \sim \mathbb{E}\left[e^{-\sum_{j=1}^{n(r)}\mathbb{E}\left[1-e^{-\phi\left(x_{j}(r)-\sqrt{2}r+\bar{M}\right)}\right]}\right] \\ & \sim \mathbb{E}\left[e^{-\sum_{j=1}^{n(r)}\int\left(1-e^{-\phi(x)}\right)\mathbb{P}(\bar{M}=-x_{j}(r)+\sqrt{2}r+dx)}\right] \\ & \sim \mathbb{E}\left[e^{-\int\left(1-e^{-\phi(x)}\right)\sum_{j=1}^{n(r)}C\sqrt{2}\left(-x_{j}(r)+\sqrt{2}r+x\right)e^{-\sqrt{2}\left(-x_{j}(r)+\sqrt{2}r+x\right)}dx}\right] \\ & \stackrel{r\to\infty}{\to} \mathbb{E}\left[e^{-\int C\sqrt{2}\left(1-e^{-\phi(x)}\right)Ze^{-\sqrt{2}x}dx}\right]. \end{split}$$

Sandra Kliem (Univ. Duisburg-Essen)

Extremal Particles in BBM

3. August, 2017 52 / 36

 \hookrightarrow_3 Idea of proof of Theorem 2.1, [ABK11] - Heuristic

• Let k, ℓ be such that $d(x_k(t), x_\ell(t)) = s \in [r, t - r]$. Consider the case $s \le t/2$ and to simplify calculations s = O(t)

in what follows.

Due to entropic repulsion: w.l.o.g.

$$x_k(t), x_\ell(t) \in m(t) + D$$

and

$$egin{aligned} & x_k(s)(=x_\ell(s)) < ar{D} + E_{t,lpha}(s) = ar{D} + \sqrt{2}s - rac{s}{t}rac{3}{2\sqrt{2}}\log(t) - s^lpha \ & \sim \sqrt{2}s - s^lpha \end{aligned}$$

for some fixed $0 < \alpha < 1/2$ and for all $s \in [r, t - r]$.

For particles k and l to reach m(t) + D, the MRCA of k and l (at time s) must itself produce a BBM that after a time-interval of length t − s has height at least

$$(m(t)-\min(D))-(\sqrt{2}s-s^{\alpha})\sim\sqrt{2}(t-s)+s^{\alpha}.$$

Sandra Kliem (Univ. Duisburg-Essen)

• Number of possible choices for ancestor: At time s, there are on average e^s particles. The chance of one particle (= BM) to reach $(x_k(s) =)\sqrt{2s} - s^{\alpha}$ is of order $\frac{1}{\sqrt{2\pi s}}e^{-\frac{2s^2 - 2\sqrt{2s}s^{\alpha} + s^{2\alpha}}{2s}} = \frac{1}{\sqrt{2\pi s}}e^{-s}e^{\sqrt{2}s^{\alpha}}e^{-\frac{s^{2\alpha-1}}{2}},$

where $2\alpha - 1 < 0$. In the product (more particles at this height as if we consider BBM) at time *s* we have on average at most of order $e^{\sqrt{2}s^{\alpha}}$ choices.

• Chance for ancestor (at time s) to have a child at height $\sqrt{2}(t-s) + s^{\alpha}$ (at time t): Starting with a single particle, the probability that BBM jumps this high in the time-interval t-s is (use that $t-s \ge r \gg$ and s = O(t) and $\mathbb{P}(M(t) - m(t) > x) = 1 - w(x) \sim Cxe^{-\sqrt{2}x}$ for $x \to \infty$)

$$\mathbb{P}(M(t-s) \ge \sqrt{2}(t-s)+s^{lpha})
onumber \ = \mathbb{P}igg(M(t-s)-m(t-s) \ge rac{3}{2\sqrt{2}}\log(t-s)+s^{lpha}igg)
onumber \ \sim 1-wigg(rac{3}{2\sqrt{2}}\log(t-s)+s^{lpha}igg) \sim C(s^{lpha}+\delta)e^{-\sqrt{2}(s^{lpha}+\delta)}\sim e^{-\sqrt{2}s^{lpha}}.$$

• Chance to have two (that split immediately): of order $(e^{-\sqrt{2}s^{\alpha}})^2$.

• Overall chance: of order
$$e^{-\sqrt{2}s^{\alpha}}$$
, so negligible
Sandra Kliem (Univ. Duisburg-Essen) Extremal Particles in BBM

3. August, 2017 54 / 36

\bigoplus_{4} Other Representations for the extremal process of BBM, (cf. [ABK13])

Theorem 2, [ABK12]

For any 0 < q < 1, the processes $\mathcal{E}_t^{(q)}$ converge in law to the same limit, \mathcal{E}^0 . Also, $\lim_{r \to \infty} \lim_{t \to \infty} \mathcal{E}_t^{(1-r/t)} = \mathcal{E}^0$. Moreover, conditionally on Z, $\mathcal{E}^0 = PPP(CZ\sqrt{2}e^{-\sqrt{2}x}dx)$.

Proposition (Proposition 3.2, [ABK13]) For $\phi \in C_c^+(\mathbb{R})$ and any $x \in \mathbb{R}$, $\lim_{t \to \infty} \mathbb{E} \left[e^{-\int \phi(y+x)\mathcal{E}_t(dy)} \right] = \mathbb{E} \left[e^{-C(\phi)Ze^{-\sqrt{2}x}} \right]$

where, for v(t, y) the solution of F-KPP with initial condition $v(0, y) = e^{-\phi(y)}$,

$$\mathcal{C}(\phi) = \lim_{t \to \infty} \sqrt{\frac{2}{\pi}} \int_0^\infty (1 - v(t, y + \sqrt{2}t)) y e^{\sqrt{2}y} dy$$

is a strictly positive constant depending on ϕ only.

Sandra Kliem (Univ. Duisburg-Essen)

$$\mathcal{P}_{\mathsf{Z}} \equiv \sum_{i \in \mathbb{N}} \delta_{\mathbf{p}_i} \stackrel{\mathcal{D}}{=} \mathsf{PPP}\big(\mathsf{C}\mathsf{Z}\sqrt{2}e^{-\sqrt{2}\mathsf{x}}\mathsf{d}\mathsf{x}\big)$$

Let $\bar{\mathcal{E}}_t \equiv \sum_{k \leq n(t)} \delta_{x_k(t) - \sqrt{2}t}$. Conditionally on $\{\max_{k \leq n(t)} x_k(t) - \sqrt{2}t \geq 0\}$, the process $\bar{\mathcal{E}}_t$ converges to a point process $\bar{\mathcal{E}} = \sum_j \delta_{\xi_j}$. Now define the point process of the gaps by $\mathcal{D} \equiv \sum_j \delta_{\Delta_j}, \quad \Delta_j \equiv \xi_j - \max_j \xi_j$. Note. \mathcal{D} is a point process on $(-\infty, 0]$ with an atom at 0. Theorem 2.1 (Main Theorem), [ABK13] Let \mathcal{P}_Z be as in (7) and let $\{\mathcal{D}^{(i)} : i \in \mathbb{N}\}$ be a family

of independent copies of the gap-process (8). Then $\mathcal{E} \equiv \lim_{t \to \infty} \mathcal{E}_t \stackrel{\mathcal{D}}{=} \sum_{i,j} \delta_{\rho_i + \Delta_j^{(i)}}$.

Let $(\eta_i : i \in \mathbb{N})$ be the atoms of a PPP on $(-\infty, 0)$ with intensity measure

$$\sqrt{\frac{2}{\pi}}(-x)e^{-\sqrt{2}x}dx.$$

For each $i \in \mathbb{N}$ consider independent BBMs with drift $-\sqrt{2}$, i.e. $\{x_k^{(i)}(t) - \sqrt{2}t : k \le n^{(i)}(t)\}$. The auxiliary point process is defined as

$$\Pi_t \equiv \sum_{i,k} \delta_{\frac{1}{\sqrt{2}} \log(\mathbb{Z}) + \eta_i + x_k^{(i)}(t) - \sqrt{2}t}$$

Theorem (Theorem 3.6 (The auxiliary point process), [ABK13])

$$\mathcal{E} \stackrel{\mathcal{D}}{=} \lim_{t \to \infty} \Pi_t.$$

Sandra Kliem (Univ. Duisburg-Essen)

Extremal Particles in BBM

3. August, 2017 56 / 36

${\hookrightarrow}_5$ Heuristic for appearance of the Poisson point measure

(Proposition 10.1 in [ABBS13])

Fix $k \geq 1$.

• Let \mathcal{H}_k be the set of particles (at position k) that hit the spatial position k first in their line of descent.

Note: Conditionally on \mathcal{H}_k , the subtrees rooted at the points of \mathcal{H}_k are independent BBMs started at position k and at a random time (i.e. when the particle of \mathcal{H}_k hit k).

- Define H_k ≡ #H_k. Note: finite a.s. (use m(t) = +³/₂ log(t) and that we consider the minimum of BBM)
- Now let

$$Z_k \equiv k e^{-k} H_k.$$

 $Z = \lim_{t \to \infty} Z(t) = \lim_{t \to \infty} \sum_{k=1}^{n(t)} x_k(t) e^{-x_k(t)}.$

Neveu ([N88], (5.4)) shows that

$$\lim_{k\to\infty}Z_k=Z, \text{ a.s.}$$

Sandra Kliem (Univ. Duisburg-Essen)

- Let $\mathcal{H}_{k,t} \subset \mathcal{H}_k$ be the set of all particles that hit k before time t.
- For u ∈ H_{k,t}, write x₁^u(t) for the minimal position at time t of the particles which are descendants of u.
 If u ∈ H_k\H_{k,t}, let x₁^u(t) = 0.

Now define the point measures

$$\mathcal{P}_{k,t}^* \equiv \sum_{u \in \mathcal{H}_k} \delta_{x_1^u(t) - m(t) + \log(CZ_k)}$$

and $(Z_k \equiv ke^{-k}H_k \text{ and } m(t) = \frac{3}{2}\log(t), \text{ i.e. } m(t+c) - m(t) \to 0 \text{ for } t \to \infty)$ $\mathcal{P}_{k,\infty}^* \equiv \sum_{u \in \mathcal{H}_k} \delta_{k+W^{(u)}+\log(CZ_k)},$

where, conditionally on $\mathcal{F}_{\mathcal{H}_k}$ (sigma-algebra generated by the BBM when the particles are stopped upon hitting the position k), the $W^{(u)}$ are independent copies of the r.v. W.

Proposition (Proposition 10.1 of [ABBS13])

The following convergences hold in distribution.

$$\lim_{t\to\infty}\mathcal{P}^*_{k,t}=\mathcal{P}^*_{k,\infty} \quad \text{and} \quad \lim_{k\to\infty}(\mathcal{P}^*_{k,\infty},Z_k)=(\mathcal{P},Z)$$

where \mathcal{P} is as in Theorem 2.1 and \mathcal{P} and Z are independent. Sandra Kliem (Univ. Duisburg-Essen) Extremal Particles in BBM

3. August, 2017 58 / 36