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Overview:
Part 1: Extremal Particles in Branching Brownian Motion.
Part 2: Branching Brownian Motion under Selection.
Part 1
e Branching Brownian motion (BBM) - Definition and basic properties.
e The F-KPP equation and its connection to BBM.
e The distribution of the maximum of BBM.

e Extremal particles in BBM
x Genealogy of extremal particles of BBM (cf. Arguin, Bovier and Kistler,

[ABK11]);
« Poissonian statistics in the extremal process of BBM (cf. [ABK12]).

Remark:
Following the bibliography, further slides are given relating to
e The extremal process of BBM (cf. [ABK13]);
e BBM seen from its tip (cf. Aidékon, Berestycki, Brunet and Shi, [ABBS13]);

e Additional details, with pointers given by 3-.
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Branching Brownian Motion

Definition (Branching Brownian Motion (BBM))

t = 0: single particle x1(0) starts at origin;

e moves as a Brownian motion (BM) in R until

e after (at) time T ~ Exp(1) it splits into

e two identical particles that start (both) at x;(7) and
e move as two independent BMs each.

e Repeat.

The resulting process is a collection of a (random) number n(t) of particles

(xl(t),xz(t)7 .. t))t>0 {Xk tk < n( )}QO.

Note 1. n(7) = 2.
Note 2. Here we use w.l.o.g. binary branching.
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Position x

4

S

Time

(see homepage of Matt Roberts, Univ. of Bath)
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(see homepage of Matt Roberts, Univ. of Bath)
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FPosttion x

5]

e

12

Time#

(see J. Berestycki (Lecture Notes, " Topics on BBM”,

http://www.stats.ox.ac.uk/~berestyc/Articles/EBP18_v2.pdf), Image by Matt Roberts)

Sandra Kliem (Univ. Duisburg-Essen) Extremal Particles in BBM 3. August, 2017 6 /36


http://www.stats.ox.ac.uk/~berestyc/Articles/EBP18_v2.pdf)

Remark (see Bovier, [B15] for more respectively for references to literature)

@ There are connections to spin glass theory; in particular, Generalised
Random Energy models (GREM).

@ Many results can be extended to branching random walk.
© Connection to extremes of the free Gaussian random field in d = 2.
© Can be extended to variable speed BBM.

Remark (Genealogies of BBM)

Let
d(xk(t), xe(t)) =inf{0 <s < t: xx(s) # xe(s)} = time (from 0) to MRCA

= unique time where the most recent common ancestor split

= time of death of longest surviving ancestor of both particles.

A BBM can then also be constructed as follows. Construct first a continuous
time Galton-Watson tree with binary branching. Let Z(t) be the set of its leaves
at time t. Then, conditional on the GW-process, BBM is a Gaussian process
xk(t), k € Z(t) with

E[xk(t)] =0 and Cov(xk(t), x¢(t)) = d(xk(t), xe(t))-
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First Properties

o [EOl =+

@ e n(t) is a martingale that converges, a.s. and in L1, to an exponential r.v.
of parameter 1.
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The F-KPP equation

Consider the partial differential equation
1
Up = 7 Uxe +u?—u, u=u(t,x)€[0,1],t>0,x € R, wu(0,x)=f(x). (1)

Set v =1 — u. Then this is a special case of the Kolmogorov-Petrovskii-Piskunov-(KPP)-

equation (also known as the Kolmogorov- or Fisher-equation).

Let {xk(t) : k < n(t)},., be a BBM starting at 0 and f : R — [0,1]. Then

n(t)
u(t,x) =E| [ f(x = x(t))

is the solution to the F-KPP equation (1) with u(0, x) = f(x).
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The F-KPP equation

Consider the partial differential equation

1
utziuxx+u2fu, u=u(t,x) €[0,1,t >0,x € R, u(0,x)="7(x). (1)

Set v =1 — u. Then this is a special case of the Kolmogorov-Petrovskii-Piskunov-(KPP)-

equation (also known as the Kolmogorov- or Fisher-equation).

Let {xk(t) : k < n(t)},., be a BBM starting at 0 and f : R — [0,1]. Then

n(t)
u(t,x) =E| [ f(x = x(t))

is the solution to the F-KPP equation (1) with u(0, x) = f(x).

Idea of proof: Branching property: Let p:(x) = \/ﬁefxz/m denote the Heat kernel. Then (use

that 7 ~ Exp(1), i.e. fr(s) = 1{s>oye° and P(7 > t) = e~ F)

u(t, x) = eff/pt(z)f(x_z)dqu/ot efs/ps(z)uz(t—s,x—z)dzds.

. . . . F) 82
Now differentiate w.r.t. t, use integration by parts and mpt(x) = m#. O
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ur = %uxx +u? —u, u(0,x)=f(x) hasassolution u(t,x)=RE {i(_r[) f(x— xk(t))} .

Example 1. Let M(t) = maxy<n(s) Xk(t). With f(x) = 1jg oc)(x) we obtain

[n(t)

u(t,x) =B | [ 1o.00)(x — x(1))
_k:l

[ n(t)

=E|[[1wwea | = P(knggé) X (t) < x) = P(M(t) < x) = Fuyey(x)-
k=1 -

Example 2. Let f(x) = e %) ¢ € CF. Set P, = ZZ(:t)l Ox(t)- Then
n(t)

u(t,x) =E H e dx—x(1) | — ]E[efM(xfz)R(dz)].
k=1
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The F-KPP equation revisited
Consider v(t,x) =1 — u(t, x) instead of u(t,x). Then v(t, x) solves
Ve = %VXX V4= %VXX +v(1-v), v(0,x) =1 — u(0, x). (2)

The Feynman-Kac formula yields the following representation for the linear

equation

1
vy = EVXX + k(t,x)v, vo(x) = v(0, x).

Namely,

V(t,x) = E[exp (/Ot K(t —s, Bx(s))ds) (0, Bx(t))}
_E, {exp (/Ot K(t — s, B(s))ds) v(0, B(t))} .

Here, (B*(t))¢>0 is a BM, starting in x € R.
Bramson [B83] sets k(t,x) =1 — v(t, x) with v solving (2). Then

v(t,x) = E, {exp </Ot (1—v(t—s, B(s)))ds) v(0, B(t))}

("implicit description of v").
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V(t,x) = By {exp(l/o‘t K(t—s, B(s))ds) v(0, B(t))}
—E, {exp(/{j (1-v(t—s, B(s)))ds) v(0, B(t))} .

Observations: (recall: 1 — v(t,x) = u(t,x), u(0,x) = 1jg o0)(x))
e "v(t,x) is the weighted average of the different sample paths of BM.”
e 0 < k(t—s,B(s)) <1,
o can show: limy_,_ k(r,y) <efor r > r(e), limy_ o k(r,y) =1,
e i.e., for y large, weighting of path nearly maximal, for y small, insignificant.

e Transition near k(r,y) =1/2 < u(r,y) =1/2
(preview: m(t) = sup{x: u(t,x) <1/2} + O(1)).

Bramson [B83] distinguishes paths x(s),0 < s < t according to

exp</0t k(t — s,x(s))) ds ~ e or exp(/ot K(t — s,x(s))) ds < e.
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How to calculate v(t,x)?

v(t,x) = E [exp (/Ot K(t —s, Bx(s))ds) v(0, Bx(t))}

_ E[E {exp(/ot K(t—s, Bx(s))ds) v(0, BX()) | BX(t)H
_ /: v(O,y)e(XQ\/yT)z/mE[exp (/Ot K(t — s,3i,y(5))ds)} dy,

where 3 , denotes a Brownian bridge starting at x (at time 0) and ending at y
(at time t).

e A Brownian bridge has the distribution of a BM starting at x, conditional on
being in y at time t.

® 360(s)=B%s) —2B%(t), 0<s<tis
e a Gaussian process (all finite-dim. distrib.s are normally distributed),
e a.s. continuous on [0, t], a strong Markov process and indep. of BY(t).

o 5L,(5) Zabols) + 5y + E5x, 0<s < t.
o Var(350(s)) = (t <) with a maximum in the middle, Var(36,0(t/2)) = t/4.
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(Brownian Bridge, cf. https://www.researchgate.net/figure/228766780_fig2_

Figure-Sample-path-examples-of-a-Brownian-bridge-for-different-initial-and-final-states)
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The distribution of the maximum of BBM
Let us return to Example 1. Then u(t,x) = P(M(t) < x) = P( max,. n(t) Xk (t) < x) solves
(1) with u(0, x) = 1[g 00)(x)-
As a result: 0 < u(t,x) <1 forall x e R,t > 0.
Take as centering term,

m(t) = V2t - log(t), (ini.id. case V2t — log(t) =)

\f 22

then ‘ m(t) = sup{x : u(t,x) <1/2} + O(1) ‘ (cf. Bramson [B83], Roberts [R13]) and

‘]P(M(t) — m(t) < x) = u(t,m(t) + x) — W(X)‘ unif. in x as t - oo.  (3)

Here, w(x) is the unique (up to translation) solution of the equation

1
EWXX+\/§WX+W2—W:0

satisfying 0 < w(x) < 1 for all x € R and w(x) — 0 as x = —o0, w(x) — 1 as
X — OQ.
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The derivative martingale
Lalley and Sellke [LS87] show: Let

n(t)
)= (V3 — (1)) e V2 (VER(0)

k=1

be the so-called derivative martingale, then

Z = tl_l)ngo Z(t) (4)
exists and is strictly positive a.s. Moreover, for some C > 0,
o —\/EX . —\/E X_Iog(CZ)
e e W00 = e (— CZeY®)] | = E[exp (— e V)],

Note 1. The so-called Gumbel distribution has cumulative distribution function
Fo(x) =P(G < x) =exp (— e M/%) = exp (— et/Pe /)

with parameters 1 € R, 8 > 0. Hence, w(x) represents a random shift of "the”
Gumbel distribution with =0 and g = 1/\@

Note 2. |1 — w(x) ~ Cxe™V2* for x — co.
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(Gumbel distribution, cf. https://en.wikipedia.org/wiki/Gumbel_distribution#/media/File:Gumbel-Density.svg

https://en.wikipedia.org/wiki/Gumbel_distribution#/media/File:Gumbel-Cumulative.svg)
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Additionally, [LS87] showed

Theorem

Suppose two independent BBMs (X{(t), ... ,X:L(t)(t)) and

(XlB(t), e ,Xlﬁg(t)(t)) are started at 0 respectively x < 0. Then, with probability
1, there exist finite random times t,, n € N, t, — 0o such that

MA(t,) < MB(t,)
for all n € N.
Idea of proof. Use (3), i.e. limi_soo P(M(t) — m(t) < x) = w(x). O

Corollary

Every particle born in a BBM has a descendant particle in the "lead” at some
future time.
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Extremal particles in BBM (cf. (aBKk11] and [ABK12])

e ARGUIN, L.-P. and BOVIER, A. and KISTLER, N.
Genealogy of extremal particles of branching Brownian motion.
Comm. Pure Appl. Math. 64 (2011), 1647-1676.

e ARGUIN, L.-P. and BOVIER, A. and KISTLER, N.
Poissonian statistics in the extremal process of branching Brownian motion.
Ann. Appl. Probab. 22 (2012), 1693-1711.

We are interested in the limit (t — o) of the extremal process

5tE Z 6xk(t)—m(t) = Z 5><7(t)~

k<n(t) k<n(t)

Recall: The centering term m(t) satisfies

m(t) = V2t — %ﬁ log(t) = sup{x : u(t,x) < 1/2} + O(L).

By the previous Remark on Genealogies of BBM, for a given realization of the
branching, the genealogical distances

d(xk(t), xe(t)) = inf{0 <s < t: xk(s) # xe(s)} = time (from 0) to MRCA .
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Genealogy of extremal particles of BBM

Theorem (Genealogy of Extremal Particles, Theorem 2.1, [ABK11])
For any compact set D C R,

lim sup P(31 < k, £ < n(t) :

=00 t>3r
xc(t),%(t) € D and d(x(t),xe(t)) € (r,t—r)) =0.
Conclusion: The MRCA of extremal particles at time t splits/branches off with
high probability at a time
@ in the interval (0, r) ("very early branching”) or
@ in the interval (t — r,t) ("very late branching”).

- m(r)

] | extremal particles

s> Sm(n)

free evolution

10 branching
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space

s > fm(t)

free evolution

e
T
1e

mm(t)

extremal particles

no branching

(Figure 2.4 of [ABK11])
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Poissonian statistics in the extremal process of BBM
W.l.o.g., order the (centered) particles in decreasing order, i.e.

x(t) 2 3(t) = -+ = Xy (2)- (6)

Let

D(t) = {Die(t)heos<nie) = {W}

o k,<n(t) .
Definition B
Let 0 < g < 1. The g-thinning Et(q) of the pair (€:, D(t)) is defined as follows:
e Consider the equivalence classes of particles alive at time t with MRCA at a

time later than q - t, i.e. k ~og Eké(t) > q.
e Select the maximal (according to (6)) particle within each class.

e Then 5§") is the point process of these representatives.

Note 1. This extends to g = q(t) € (0,1).

Note 2. The thinning map (&;, D(t)) — £(9)(t) is continuous (on the space of pairs
(X, @), X ordered positions, @ symm. matrix with entries in [0, 1] and transitive op. Q; > q).
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Theorem (Theorem 2, [ABK12])

For any 0 < g < 1, the processes Et(q) converge in law to the same limit, £°. Also,

lim lim &89 = 0.

r—00 t—00

Moreover, conditionally on Z, (the limit of the derivative martingale, cf. (4)),

&0 = PPP(CZ\/Ee_ﬁXdX) (PPP stands for " Poisson Point Process”)
where C > 0 is the constant appearing in (5).

(Figure 2 in [ABK12])

space

cluster-extrema -eee ] m(t)

extremal particles

time
t—ry t
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(Figure 1 of [ABK13]) .
S ~— initial branching
&
recent ancestors
cluster (W
Addod r AN /<< ></ 55\
R Space
Conclusion: o A = cluster extrema =Py

The particles at the frontier of BBM for large times can be constructed as follows:

@ set down so-called cluster extrema according to EC that is, according to a
randomly shifted PPP with "exponential” (x € R) density;

@ attach to each cluster extrema a cluster.

Note 1. Particles in one cluster lie to the left (in space) of its corresponding
cluster extrema (Poissonian particle).
Note 2. Heuristic for PP-structure: the ancestors of the extremal particles evolve

independently for the time-interval [r, t — r].
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m() = V3t — -3 log(t)
gt = Z,:n([) dx,(t) m(t)-

Remark (Invariance property)

The law of the limiting extremal process £ = ) . 0, satisfies the following
invariance property: For any s > 0,

D
€= Z 6e;+x£i)(s)7\@s’
ik

where {x{)(s) : k < n()(s),s > O};cn are i.id. BBMs. Indeed, use that for
t — oo,

m(t) = m(t —s) + v/2s + o(1).
Then rewrite

&EZ% o= D Z Os(e=s) 50 (5)-m(t)

i<n(t i<n(t—s) k<n()(s)

- Z Z xj(t—s)—m(t— s)+x()(5) V2s+o(1)

i<n(t—s) k<n()(s)
and take t — oo.
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Idea of proof of Theorem 2, [aBkiz

Theorem 2, [ABK12]

For any 0 < g < 1, the processes qu) converge in law to the same limit, E0. Also,
. ; c(l—r/t) _ c0

limy oo lime o0 &; =&

Moreover, conditionally on Z, £2 = PPP(CZv/2e~V?*dx). (x)
Genealogy of Extremal Particles, Theorem 2.1, [ABK11]
For any compact set D C R,
limr o0 supss3, P(31 < k, € < n(t) : Xk (t),%¢(t) € D and d(xk(t),x¢(t)) € (r,t —r)) = 0. (xx)
. . 0 . .
e Same limit £° for £ < g <1 — £ with r big enough follows from (xx).
e It remains to show (). This is done via convergence of Laplace functionals,
that is, for ¢ € C we claim that

i lim E[e—f¢(x)€§1_'/t)(dx):| _ E|:e—CZf(1—e¢(x))ﬁeﬁxdx

r—o0 t—00

Note. If X ~ PPP()), then E[e~ / ¢CIX(d)] = g/ (™" =1)A(dx)
(cf. [B15], Appendix).
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&= Z:k‘\/ﬂ(t) 6xk(tj m(t) with m(t) - \/Et - 2\% |Og(t)

Conditional on the evolution of the BBM up to time r, we obtain

(1-r/)D [ Dt —r)—
& {Xj(r)—i—M (t—=r) m(t)}jzl,...,n(r)’

where {x(£)} <0y, j € N are i.i.d. BBM with MU)(t) = max,< o5y X0 (£)-

space

m(t)

s> gm(t)
extremal particles

free evolution

time

no branching

(Figure 2.4 of [ABK11])

Now, m(t) = V2r + m(t—r)+o(1) for t— cc.
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P(M(t) — m(t) < x) = u(t, m(t) + x) = w(x) unif. in x as t — co.
m(r) =+2r — 2\% log(r).

As a result,
n(r)
im E e7f¢(x)g£1—r/t)(dx:| — lim E |: xj(r —\2rM(t r)—m(t—r)+o(1))
t—o0 t—o00
j=1
n(r) .
=B |[] n[e-etstn-vam] |
=1

where M has law w. 32

Note 1. | maxj<n(r)(x;(r) — V2r) = —00 a.s. as r — 0.

Note 2. Now use asymptotics for M, i.e. 1 — w(x) ~ Cxe™V?* for x — c.
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Idea of proof of Theorem 2.1, [aBk11]
Localization of Paths of Extremal Particles

Theorem (Genealogy of Extremal Particles, Theorem 2.1, [ABK11]) For any compact set
D C R,

lim sup P(31 < k, £ < n(t): Xk(t),xe(t) € D and d(xk(t), xc(t)) € (r,t —r)) =0.

r—00 53,

space

Uty (s) = $m(6) + O(s¥, (1 — )7) 7 m(t) = /2t — %= logt

Fm(1)

time

ru t—ry

N~

(Figure 2.1 of [ABK11])
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For ~ t s7 0<s<i?
ory >0, se o (s) = ) = < 35
’ (t—s), 5<s<t

Then the upper envelope at time t is defined as

Ue~(s) =

~ | W0

m(t) + e (s).

Theorem (Upper Envelope, Theorem 2.2 of [ABK11])

Let 0 <~ < 1/2. Let also y € R and € > 0 be given. There exists r, = ry(7,y,€)
such that for r > r, and for any t > 3r,

P(3k < n(t) : xk(s) > y + Ur~(s) for some s € [r,t —r]) < e.
Idea of proof. Discretize path and use P(M(t) > m(t) + x) "=5° 1 — w(x) ~ Cxe™ V2 for
X — 00. O
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Remark (Why is this useful?)
For E[n(t)] = e' i.id. BMs, m(t) = V2t — “°49 and

et m(t)2
E k < n(t): Be(t) > m(t)}] ~ e T
[#{k < n(t) : Be(t) > m(t)}] NezT
et M 1 log(t) __ log(t)? 1 log(t)?
= e 2t = e 2 1t = ——g@ 16t — O(]_)
V2t V2t V21
For BBM, m(t) = V2t — “°8{). For e* j.i.d. BMs we now get
1 log(t) 9 log(t)?
E k < n(t): Be(t) > m(t =~ &3 e = O(t).
[l < n(0): B(0) > m(0))] = —— 0

Now, for a BM B, starting in 0,
P(Bs < Ut y(s),r <s <t—r|B = m(t))

1
= P(30,m()(S) < Ury(s),r<s<t—r)~ .
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The upper envelope can be replaced by a lower "entropic envelope” E:
For a > 0 let s
EL(V(S) = Em(t) ft, (S)

Theorem (Entropic Repulsion, Theorem 2.3 of [aBK11])

Let D C R be a compact set and 0 < oo < 1/2. Set D = sup{x € D}. For any
€ > 0 there exists ro = re(a, D, €) such that for r > r, and t > 3r,

P(3k < n(t) : x(t) € m(t) + D, but Is € [r,t —r] : xk(s) > D+ E¢ o(s)) < e

space

Uy (s) = %m(f)+0(sy~(f*5)y) m(]):ﬁtfﬁlgg]
e

Era(s) = $m(1) — O(s*, (t — 5)%)

time

(Figure 2.2 of [ABK11])
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Together with a lower envelope we get with 0 < a < % <p <1,

space

Eta(s)

admissible region

2 m(t)

Ep(s)

(Figure 2.3 of [ABK11])
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Remark (How to use this %)
The expected number of pairs of particles of BBM whose (respective) path
(x(s))o<s<t satisfies some conditions for s € [r,t — r|, say Z[tr’tfr], is

B0k # () () € zl“*”}]
/ Fe dy Ps(VB(x() € T x(s) = y)B(x() € B Ix(s) = ).
e how many pairs at time t on average;
e condition on splitting at time s and
e at position y.

o If first particle satisfies the condition on [0, t], then the second one
automatically satisfies it on [0, s].

If we include a condition on genetic distance, we get
E[#{(k.£) - k # 6 )oxe(-) € 0 d(xe (), xe(8)) € [rot — r]}]
t—r o0
- cet / ds et~ / dy pa(y)B(x € TV x(s) = y)P(x € S5 |x(s) = y).

r — o0
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The extremal process of BBM (cf. [aBBs13] and [ABK13])

e ARGUIN, L.-P. and BOVIER, A. and KISTLER, N.
The extremal process of branching Brownian motion.
Probab. Theory Related Fields 157 (2013), 535-574.

e AIDEKON, E. and BERESTYCKI, J. and BRUNET, E. and SH1, Z.
Branching Brownian motion seen from its tip.
Probab. Theory Related Fields 157 (2013), 405-451.

Both articles give a description of the (weak w.r.t. ¢ € CI) limit (t — c0) of the

extremal process

5,_»5 Z 6xk(t)fm(t) = Z 6><7(t)

k<n(t) k<n(t)

See Gouéré [G14] for a (french) review that presents and compares both
approaches.
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[ABK13] The extremal process of BBM

Remark

e Bovier [B15] discusses the following results in detail.
o There are also other representations. 4%

e The proofs rely on the consideration of the respective Laplace functionals.

Theorem (Theorem 3.1 (Existence of the limit), [aBK13])
The point process E; converges in law to a point process .

Idea of proof: Example 2 for the F-KPP equation. O
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Theorem 2, [ABK12]

For any 0 < g < 1, the processes Et(q) converge in law to the same limit, £2. Also,
o(l=r/t)

lim oo lime oo & = &0, Moreover, conditionally on Z, £0 = PPP(CZﬂe*VEXdX>,
where C > 0 is the constant appearing in (5).

Z ()xk(t —m(t) with m(t) = ft

log(t).
k<n(t) \/§
Definition (Cluster-extrema)

Conditionally on the limiting derivative martingale Z, consider the PPP

Pz =6, 2 PPP(CZV2e V¥ dx) (7)
with C as in (5). e
Definition (Clusters)
Let & = Y 4cn(e) Ot var- Conditionally on {maxy< () xk(t) — V2t > 0}, the
process & converges to a point process £ = Z d¢;. Now define the point process
of the gaps by

D=) da, A =& — maxg). (8)
j

Note. D is a point process on (—o0, 0] with an atom at 0.
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Theorem (Theorem 2.1 (Main Theorem), [ABK13])

Let Pz be as in (7) and let {D) : i € N} be a family of independent copies of
the gap-process (8). Then the point process &; converges in law as t — oo to a

Poisson cluster point process £ given by

. D
E=lim & = E 0 0.
t— 00 t — Pi+Aj(-)
i

§ <— initial branching
=
recent ancestors
cluster (W n u)
-— Space
- A = cluster extrema =Py
(Figure 1 of [ABK13])
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[ABBS13] BBM seen from its tip

Remark
e The proofs use path localization and path decomposition techniques.

[ ] J Berestycki (Lecture Notes, " Topics on BBM”,
http: //www. stats. ox. ac. uk/ ~berestyc/Articles/EBP18_v2. pdf) giVeS a gOOd introduction in

the underlying concepts.

Notation (Change in Scaling)
Note that a different scaling is used and instead of rightmost particles, leftmost
are considered.

e Particles now follow a BM with drift 2 and variance 2, that is, replace B;
by V2(B;: — V/2t).

e (The exponential clocks for splitting-events still ring at rate 1 and a particle
splits in two.)

e Instead of M(t) = maxy<n(t) Xk (t) they consider minj< () xk(t).
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m(t)z\ftfﬁlog()

The derivative mart. Z(t) Zﬂ(ﬂ (V2t — xi(t))e v2(Vae—x () satisfies Z = limt— o0 Z(t).

Particles now follow a BM with drift 2 and variance 2, that is, replace B; by \/E(Bt — \/it)
Consider miny<p(s) xk(t)-

Remark (Consequences of Scaling)
o m(t) becomes m'(t) = +3 log(t).
Z(t) becomes \[ S x(£)e=+(1). [ABBS13] use

Z'(t) = Zk:l xk(t)e (1) instead and thus CZ becomes
(C/V2)Z =C'Z'.

o E[Z]] =0 forall t > 0.

‘From now onwards, we use the notation of [ABBSB].‘

Definition (The additive martingale)

The process M(t) = Zzg e () js a martingale with E[M,] = 1 for all t > 0,
the so-called additive martingale.
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€t = X k<n(t) Oxu(t)—mit)-
Cluster-extrema Pz = >y Sp = PPP(CZﬁe 2de) = PPP(e*ﬂX"Og(Cad(ﬁx)).
Theorem 2.1 (Main Theorem), [ABK13] Let Pz be as in (7) and let {D() : j € N} be a family

of independent copies of the gap-process (8). Then | £ = lim¢—o0 &t L Z[-‘j (Sp, INGE
i '

Let
N = D Su()=mle)r tog(c2)-

k<n(t)

Theorem (Theorem 2.1, [ABBS13] &°)
As t — oo the pair {N(t), Z(t)} converges jointly in distribution to {L,Z}, L
and Z are independent and L is obtained as follows.

(i) Define P a Poisson point measure on R, with intensity measure e*dx.

(i) For each atom x of P, we attach a point measure D) where D) are
independent copies of a certain decoration point measure D.

(iii) L is then the point measure corresponding to

=% T d

XEP yeDX
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(Figure 1 of [ABBS13])
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Notation

e Order the particles in increasing order, i.e. xi(t) < xo(t) < -+ < Xp(e)(t).

o Fors <t, let x; (s) denote the position at time s of the ancestor of x1(t),
i.e. s — xi () is the path of the leftmost particle up until time t.

o et
Yi(s) = x¢(t —s) — xi(t), se€l0,t]

the time reversed path back from the final position x(t).

e Denote by --- < 12(t) < 11(t) < t the successive splitting times along the
path of the leftmost particle (enumerated backwards).

e The time at which x;(t) and x;(t) share their MRCA is denoted by 7; j(t).

o Let Ni(t) = Xo1<jcn(e)im,(t)=r(0) Ox(—x(0)- att=9)
73(t)

e Finally, let for 0 < n < t,

a(t)

D(ta 7]) = 60 + Zi:T,(t)>t7nN”.(t)' n®)

Xie(t) —b  Xi(t) M) 15(t) A5(t)
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Theorem (Theorem 2.3, [aBBS13])

The following convergence holds jointly in distribution:

lim lim ((Ye(s),s € [0,£]), D(t,1), xa(t) — m(t)) = ((Y(s),s > 0), D, W),

N—00 t—00

where the r.v. W is independent of the pair ((Y(s),s > 0),D), and D is the
point measure which appears in Theorem 2.1.

Note. P(W(x) < x) =1 — w(—x/v/2) ~ C’|x|e* for x — —00 (cf. (5) and below).
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Construction of the decoration point measure D
We will construct D conditional on Y.

Notation

Let b >0, (B, t > 0) a BM and (R;,t > 0) a three-dimensional Bessel process
started from Ry = 0 and independent of B. Let T, = inf{t > 0: B, = b}. Set

r(b) — BS; s e [0, Tb], .
s b—RS,Tb, s> Tb.

®
(Figure 1 and 2 of [ABBS13]) Is

7

Brownian m;

A pA

vwvvé T )

73(t)

72(t)

(=}

X1:(t) —b  Xa(t)  A(t) s (t) A5(t)
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Construction of D

(1) Construction of Y.
For A C C(R4,R) measurable,

. 1 =2 [ P(xi(v ®)) gy
P(Y € A, —slgi; Y(s) € db) = EE e 2k Pa(msvarl)d L sarveay

with normalizing constant c.

(2) Construction of D conditional on Y.

Conditionally on the path Y, let 7 be a PPP on [0, 00) with intensity
2-P(Y(7)+ x1(7) > 0)dT. For each point 7 € 7 start an independent BBM
(NVy(ry(u), u = 0) at position Y(7) conditioned to have min Ny (7) > 0.

Then

TET

(Recall that Y(0) = 0 and that the path Y moves backwards in time,
whereas the BBMs move forward in time.)
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Spinal decomposition
The process M(t) = Zﬂg e() is a martingale with E[M,] = 1 for all t > 0, the so-called
additive martingale.

Let Q be the probability measure s.t.
Qlr, = M(t) - P,

where P refers to the distribution of BBM and F; is the filtration of the BBM
(under P) up to time t.

Theorem (Theorem 5 of Chauvin and Rouault [creg])
Q is the law of the following branching diffusion.

(1) Let=s € {1,...,n(s)} denote the label of a distinguished particle at time
s > 0 with —x(t)
QE=ilF) =S
M
The process (=s,s € [0, t]) is called the spine.
(2) The position of the spine (xz,(s),s € [0, t]) is a driftless BM of variance 2.

(3) The particle with label =, at time s branches at (accelerated) rate 2 and
gives birth to BBMs (with distribution P).
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Lemma (Many-to-one-principle)
Let W;,i=1,...,n(t) be Fy-measurable r.v.s. Then

Z Vi| =Eo | iy Z V| =Egle=0vz].

i<n(t 1<n (t)
Example
We obtain
P(HI < n(t) : (X,'7t(5),$ S [0, t]) S A) < E[ Z 1({x,-,t(s),s€[0,t])EA}]

i<n(t)

E[e t(t)l{(x—s,se[o t])eA}]
V2B,

E[ 1{(\/§Bs,se[o,t])eA}]'
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31 A note on the i.i.d. case

(cf. A. Bovier, Lecture Notes, " Extreme values of random processes”,

https://wt.iam.uni-bonn.de/fileadmin/WT/Inhalt/people/Anton_Bovier/lecture-notes/extreme.pdf, Lemma 1.2.1)
Let Xi(t),...,Xs(t) be n € Ni.id. normal r.v.s. Let
log(l log(4
b, = +/2log(n) — og(log(n)) + log(47) and a, = +/2log(n).
2y/2log(n)
Then, for all x € R, —x
lim P(rpaxXk( ) < by +x/a,) =e"¢

n—o0o

For a BBM, E[n(t)] = ef. Set n = e’ and consider B;,i € N independent
standard BMs. Then, for y = x/v/2,

. (1)  log(t ) log(4m) + 2x
tim (e 27 < o - SO0 )
_e—V2y
+y) =e ¢ .

= lim P(max Bi(t) < V2t — log()
—Vax
]

+o(1

~—

t—oo \ k<et 24/2
Recall, that for BBM,

m(t) = V2t = 5 log(t) and B(M(t) = m(r) < x) = E[e”
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3, ldea of proof of Theorem 2, (aski2 - Heuristic

1— w(x) ~ Cxe~V?* for x — co. Suppose heuristically w'(x) ~ C\V/2xe=V2x,

Z(t) = Zg(ﬂ (V2t — Xk(t))67‘//§(V//§t7“<f)) — Z for t — 0.

n(r)

lim e~/ e @] - HE{ (s0=r+11)]

t—o00

where M has law w and max;<,()(x;(r) — \@r) — —00 a.s. as r — o0.

Rewrite the above to (log(ab) = log(a) + log(b), log(x) ~ —(1 — x) for 0 < x < 1)

Zjnirl) Iog<E|:e—¢(xj(r)—\/§r+l\7l)] ) - Zji’l) E[lfe_d’(xf(')_ﬁ”’w)] ‘|

Ele ~Ele

~E {e— PO f(l—e*W)P(M=—xj-(r)+ﬁr+dx)}

st
ri>°°]E e~ fC\/E(l—ef‘ﬁ(X))Ze*ﬁxdx ) 0
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%3 Idea of proof of Theorem 2.1, (ki1 - Heuristic

e Let k, ¢ be such that d(xk(t),x¢(t)) =s € [r,t — r]. Consider the case
s < t/2 and to simplify calculations s = O(t)
in what follows.
Due to entropic repulsion: w.l.o.g.
xi(t), xe(t) € m(t) + D

and

xi(s)(= xe(s)) < D + Evals) = D+ V25 - flog( ) -

~ /25 — s°
for some fixed 0 < o < 1/2 and for all s € [r, t — r].

e For particles k and ¢ to reach m(t) + D, the MRCA of k and / (at time s)
must itself produce a BBM that after a time-interval of length t — s has
height at least

(m(t) — min(D)) — (V25 — s%) ~ V2(t — 5) + s°.
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e Number of possible choices for ancestor: At time s, there are on average e®
particles. The chance of one particle (= BM) to reach (x(s) =)v/2s5 — s is

of order 2 2 2a—1
1 6725 —2\/§zsa+s . _ 1 oS fs -

27s V2rs 7
where 2o — 1 < 0. In the product (more particles at this height as if we
consider BBM) at time s we have on average at most of order eV%" choices.

e Chance for ancestor (at time s) to have a child at height \/2(t — s) + s® (at
time t): Starting with a single particle, the probability that BBM jumps this
high in the time-interval t — s is (use that t —s > r > and s = O(t) and
P(M(t) — m(t) > x) = 1 — w(x) ~ Cxe~V2* for x — 00)

P(M(t — s) > V2(t — 5) + %)

= IF’(/\/I(t—s) —m(t—s)> % log(t — s) —l—so‘)

~1-— W( log(t —s)+s ) ~ C(s* + 6)6_‘6(5(””5) ~e V"

2V2
e Chance to have two (that split immediately): of order (e‘ﬁsa)z.

e Overall chance: of order e=V25"  so negligible.
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%4 Other Representations for the extremal process of
BBM, (cf. (aeki3)

Theorem 2, [ABK12]
For any 0 < g < 1, the processes & "<q) converge in law to the same limit, E0. Also,

g/ _ = &0 Moreover, conditionally on Z, €0 = PPP(CZ+/2e~V?dx).

lim, oo lime oo &;

Proposition (Proposition 3.2, [ABK13])
For ¢ € C}(R) and any x € R,

lim E [ef f¢(}’+x)gt(dy):| _ E[efc((mze,ﬁx}

t—o0

where, for v(t,y) the solution of F-KPP with initial condition v(0,y) = e~®),

—tlrgo\/i/ (1 v(t,y +V2t))yeV¥dy

is a strictly positive constant depending on ¢ only.
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Pz=Y 8 2 PPP(CZV2eV¥dx)
ieN
Let & = Zk<n Oy (t)—/3t" Conditionally on {max<n(s) xk(t) — V2t > 0}, the process &;
converges to a pomt process £ = Z ()5 Now define the point process of the gaps by

DEZjdAj, AjEEjfmanfj.

Theorem 2.1 (Main Theorem), [ABK13] Let P be as in (7) and let {D() : j € N} be a family

Note. D is a point process on (—oo, 0] with an atom at 0.

of independent copies of the gap-process (8). Then | £ = lim¢—o0 &t L Z,j 1) A
J U pitA;

Let (1 : i € N) be the atoms of a PPP on (—oc, 0) with intensity measure

2
—(—X)e_ﬁxdx.
7r

For.each i € N consider independent BBMs with drift -2, ie.
x(t) — V2t - k < n)(t)}. The auxiliary point process is defined as
() = 2t : k < n)(t)}. The auxil defined
e = Zk(S% log(2)+mi+x(t)—V/2t"
1y

Theorem (Theorem 3.6 (The auxiliary point process), [ABK13])
g2 lim M.
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%5 Heuristic for appearance of the Poisson point measure
(Proposition 10.1 in [ABBS13])
Fix kK > 1.

e Let H, be the set of particles (at position k) that hit the spatial position k
first in their line of descent.

Note: Conditionally on Hy, the subtrees rooted at the points of Hy are
independent BBMs started at position k and at a random time (i.e. when
the particle of Hy hit k).

o Define Hy, = #H. Note: finite a.s. (use m(t) = +% log(t) and that we consider
the minimum of BBM)

o Now let
7, = ke *H,.

Z = limimoo Z(t) = limesy oo S0 x(t)e (D),
Neveu ([N88], (5.4)) shows that
lim Zy =27, as.

k— 00
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o Let Hy  C Hy be the set of all particles that hit k before time t.

e For u € Hy ¢, write x{'(t) for the minimal position at time t of the particles
which are descendants of u.

If u€ Hi\Hg,, let x{'(t) = 0.
Now define the point measures

7)k t = Z 5x1 t)+log(CZy)
ueHy

and (Z, = ke ¥Hy and m(t) = %Iog(t), i.e. m(t+ c)— m(t) — 0 for t — 00)

Piroo = Z Ok W 1log(CZ,)»
uEH
where, conditionally on F3;, (sigma-algebra generated by the BBM when the
particles are stopped upon hitting the position k), the W) are independent
copies of the r.v. W.
Proposition (Proposition 10.1 of [aBBSs13])

The following convergences hold in distribution.
lim P, =P and lim (P}, Zk)=(P,2)
t— 00 ’ ? k— 00 ’

where P is as in Theorem 2.1 and P and Z are independent.
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