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Two basic models of population under selection

For us, population under selection means it can not grow too
fast (motivated from limited resources..).

Start with N individuals on R+.

Position of an individual on R+ measures his/her fitness.

Due to mutation fitness of an individual evolves randomly
around that of the parent.



BRW under selection

Start with N individuals on R+.

Time is discrete and at each step each individual produces
k ≥ 2 offspring.

The position (i.e., fitness) of an individual is given by position
of its parent plus an i.i.d. displacement distribution µ.

(Selection step:) At each step, keep only the N rightmost
(fittest) particles.
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BBM under selection (N-BBM)

Figure: Different colors represent
descendants of different parents
except that the Pink shaded
particles are not selected by nature

Start N independent branching
Brownian motions starting from
N locations on R+.

(Selection step:) At each
transition, i.e., at each
branching event keep the N
rightmost Brownian particles
only.



Brunet, Derrida conjecture

At any time t ≥ 0, the position of the N fittest particles are
given as

X1(t) ≤ · · · ≤ XN (t).

The limit limt→∞(XN (t)/t) = vN exists a.s. with vN ≤ vN+1.

The question is at what rate vN ↑ v∞?

Conjecture (BDMM06, BDMM07)

(v∞ − vN ) ∼ C

(logN)2
.
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At any time t ≥ 0, the position of the N fittest particles are
given as

X1(t) ≤ · · · ≤ XN (t).

The limit limt→∞(XN (t)/t) = vN exists a.s. with vN ≤ vN+1.
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(logN)2
.

Under certain assumptions on displacement distribution µ,
Bérard and Gouéré proved this (2010).



Brunet, Derrida conjecture

Conjecture (BDMM06,BDMM07)

If two individuals are selected from the population at
random in some generation, then the number of
generations that we need to look back to find their most
recent common ancestor is of the order of (logN)3.

Conjecture (BDMM06,BDMM07)

If n individuals are sampled from the population at
random (after large time), and their ancestral lines are
traced backwards in time, the coalescence of these lineages
(in proper time scaling) can be described by the
Bolthausen-Sznitman coalescent.

This shows the remarkable effect of selection, as for population
model without selection (under some general assumptions), the
genealogy is given by Kingman’s coalescent.
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BBM with absorption

Take f(t) = ct and start BBM
from x(> 0). Particles are
killed as soon as they hit the
linear barrier.
Equivalent to study BBM with
drift −c and particles are killed
as soon as they hit 0.
From selection perspective, it
can be viewed as threshold is
moving with a linear speed
and this does not allow the
population to grow too much.

Theorem (Kesten (78))

For c ≥
√

2 this process dies a.s. and for c <
√

2 the process
survives with positive probability.
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BBM with absorption: (BBS13) setup

We want to study a sequence of BBM’s XN : N ∈ N indexed by
N near criticality.

It is intuitive to take µN ↑
√

2 where µN denotes the drift of
BBM XN . Take

µN :=

√
2− 2π2 logN

(logN + 3 log logN)
.
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Further predictions in [BDMM06] and [BDM07]

For BBM under selection the authors of [BDMM06] and
[BDMM07] provided further heuristic predictions of the
evolving particle system

Meta-stable state:

cloud of particles moves at speed vdetN =
√

1− π2/(logN)2

diameter of the cloud remains of the order of logN .

Empirical measure seen from the leftmost particle is
approximately proportional to
sin(πx/ logN)e−x1(0,logN)(x)

This state is perturbed by particles moving far to the
right. A particle moving up to the point logN + x causes,
a shift by ∆ = log(1 + Cex/ log3N). Hence a particle
reaching logN + 3 log logN after a relaxation time log2N
gives rise to O(N) descendants and causes a detectable
shift.
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Figure: Figure 1 of [M13]

So, particles reaching distance
LN is special as they are
causing shift.

Question: Can we chose µN so that for a BBM with drift
−µN with absorbing barrier at 0 and LN , the number of
particles do not fluctuate much?



BBM with absorption: [BBS13] set up

Figure: Figure 1 of [M13]

So, particles reaching distance
LN is special as they are
causing shift.

Question: Can we chose µN so that for a BBM with drift
−µN with absorbing barrier at 0 and LN , the number of
particles do not fluctuate much?



BBM with absorption: [BBS13] set up

For a branching Brownian motion with drift −µ starting from a
single particle at x ∈ (0, L), and particles killed upon reaching 0
or L, the expected number of particles in a set B ⊂ [0, L] at a
sufficiently large time t is approximately given by

∫
B pt(x, y)dy,

where

pt(x, y) =
2

L
e(1−µ

2/2−π2/(2L2))t.eµx sin(
πx

L
)e−µy sin(

πy

L
).

This explains the choice of µN :=
√

2− 2π2 logN
(logN+3 log logN) .

This illustrates the connection with population under selection
model.
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Notation

We start N -th process with multiple particles, rather than just
one, satisfying two technical assumptions.

For N -th BBM (or collection of BBM’s) with absorbtion

MN (t) = population size at time t

X1,N (t) ≤ X2,N (t) ≤ · · · ≤ XMN ,N (t) position of particles

Let

ZN (t) =

MN (t)∑
i=1

eµXi,N (t) sin(
πXi,N (t)

L
)1Xi,N (t)≤L and

YN (t) =

MN (t)∑
i=1

eµXi,N (t).



Initial conditions

Couple of technical conditions (which ensures that the system
starts from ‘stable’ configuration and stays of the order of N)

ZN (0)

N(log2N)
converges in distribution to ν where ν is a

probability distribution over [0,∞) as N →∞ and(∑MN (0)
i=1 eµXi,N (0)

)
/(N(log3N)) converges to 0 in

probability as N →∞.



Convergence to CSBP

Theorem (Berestycki, Berestycki, Schweinsberg)

As N →∞, the finite-dimensional distributions of the process
{MN ((log3N)t)/(2πN) : t > 0} converge to the
finite-dimensional distributions of the continuous-state
branching process (CSBP) with branching mechanism
ψ(u) = au+ 2πu log u started with distribution ν at time zero,
where a and ν comes from the initial conditions.



Convergence to CSBP

This result proves that the size of the population remains of
order N at log3N time scaling.

Convergence does not hold for MN (0), as the assumptions
about initial configurations do not tell anything about initial
population size.

Because of fluctuations, one can not have process convergence
w.r.t. the usual Skorohod topology. It might be of interest to
see whether it is possible to achieve process convergence w.r.t.
some other topology (e.g., Skorohod M1 topology).



Convergence to Bolthausen-Sznitman coalescent

Choose n particles uniformly at random from the
MN ((log3N)t) particles at time (log3N)t.

Fix t > 0 and choose n individuals at random from the
population. For 0 ≤ s ≤ 2πt, let ΠN (s) to be the partition of
{1, · · · , n} such that i and j are in the same block of ΠN (s) if
both the particles have the same ancestor at time
(t− s/(2π))(log3N).

Theorem

As N →∞, the finite-dimensional distributions of of the
process (ΠN (s), 0 ≤ s ≤ 2πt) converge to Bolthausen-Sznitman
n coalescent running for time 2πt.
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Contribution of the special points

Figure: Figure 1 of [M13]

Divide the population into two
parts

those that have stayed
inside the interval (0, LN )
throughout,

those that have hit the
point LN before hitting 0

We need to understand the contribution of the special
points.



Contribution of the special points

Figure: Figure 1 of [M13]

Divide the population into two
parts

those that have stayed
inside the interval (0, LN )
throughout,

those that have hit the
point LN before hitting 0

We need to understand the contribution of the special
points.



Contribution of the special points

The contribution of a special point is of the order of WN , where
W is a random variable with tail P(W > x) ∼ 1/x as x→∞.

For a BBM with drift
√

2 starting with a single particle at 0 we
kill particles as soon as they reach y. Then Zy denote the
number of particles that reach y, which is finite a.s.

Proposition (Neveu 1988)

There exists a random variable W such that a.s.

lim
y→∞

ye
√
2yZy = W.

This together with good estimate on the number of times
particles hitting LN proves Theorem 2.
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How to obtain genealogy for a CSBP

Definition

CSBP is a Markov process with RCLL paths with values in
[0,∞] whose transition kernels (Pt)t≥0 satisfy the branching
property

Pt(x, ·) ∗ Pt(y, ·) = Pt(x+ y, ·) for all t, x, y ≥ 0. (1)

In words, if Zx and Zy are two independent copies of CSBP Z
started respectively at x and y, then Zx + Zy has the same law
of Z started at x+ y.

For every λ > 0 and a ∈ [0,∞), let

E(e−λXt |X0 = a) = e(−aut(λ)).



How to obtain genealogy for a CSBP

Let Z(t, a) denote that the CSBP (Zt : t ≥ 0) starts from
Z0 = a ∈ R.

On some probability space, the CSBP’s, Z(·, a) and Z(·, a+ b),
are defined such that Z(·, a+ b)− Z(·, a) is independent of
Z(·, a) and has the same law as Z(·, b).

By Kolmogorov’s theorem, we can construct a process
(Z(t, a) : t ≥ 0 and a ≥ 0) such that

Z(·, 0) = 0,

for every a, b ≥ 0, Z(·, a+ b)− Z(·, a) has law Z(·, b) and

for every a, b ≥ 0, Z(·, a+ b)− Z(·, a) is independent of the
family of the processes {Z(·, c) : 0 ≤ c ≤ a}.
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Genealogies for a CSBP

Definition

Subordinator is a non-decreasing Lévy process taking values in
R.

The process Z(t, ·) is a ‘subordinator’.



Genealogy for a CSBP

Proposition (Bertoin and Le Gall (2000))

On some probability space, there exists a process

(S(s,t)(a), 0 ≤ s ≤ t and a ≥ 0) such that:

(i) For every 0 ≤ s ≤ t, (S(s,t) = S(s,t)(a), a ≥ 0) is a
subordinator with Laplace exponent ut−s(·).

(ii) For every integer p ≥ 2 and 0 ≤ t1 ≤ · · · ≤ tp, the
subordinators S(t1,t2), · · · , S(tp−1,tp) are independent and

S(t1,tp)(a) = S(tp−1,tp) ◦ · · · ◦ S(t1,t2)(a) for all a ≥ 0 a.s.

Finally, the processes (S(0,t)(a), t ≥ 0 and a ≥ 0) and
(Z(t, a) : t ≥ 0 and a ≥ 0) have the same finite-dimensional
marginals.



Genealogy for a CSBP

Definition (Bertoin and Le Gall (2000))

For every b, c ≥ 0 and 0 ≤ s < t, we say that the individual c in
the population at time t has ancestor (or is a descendant of)
the individual b in the population at time s if b is a jump time
of S(s,t) and

S(s,t)(b) < c < S(s,t)(b).

Under the assumption that S(s,t) has zero drift, the individuals
in the population at time t having no ancestor at time s are of
Lebesgue measure zero a.s.



Genealogy for a CSBP

Suppose 0 ≤ r < s < t. The individual d in the population at
time t has ancestor c at time s, and c has ancestor b at time r.
Then,

S(s,t)(c−) < d < S(s,t)(c) and S(s,t)(b−) < c < S(s,t)(b).

Since S(r,t) = S(s,t) ◦ S(r,s), by monotonicity we have

S(r,t)(b−) < d < S(r,t)(b),

i.e., the individual d at time t has ancestor b at time r.



Flow of bridges for a CSBP

Fix an integer p ≥ 1 and choose finitely many ordered time
points 0 ≤ t0 < t1 < · · · < tp ≤ t. For 0 ≤ k ≤ p, take

ak = Z(tk, a) = S(0,tk)(a) .

For 0 ≤ k ≤ p− 1, define

Bk(s) =
(
S(tk,tk+1)(sak)

)
/
(
S(tk,tk+1)(ak)

)
for s ∈ [0, 1].

Clearly, Bk(0) = 0 and Bk(1) = 1 and Bk has non-decreasing
RCLL paths.

Motivation: Here population size varies and we have to
normalize appropriately.



Flow of bridges for a CSBP

Definition

B = (Bs,t(x), 0 ≤ s ≤ t, 0 ≤ x ≤ 1) is a flow of bridges, which is
a collection (Bs,t, 0 ≤ s ≤ t) of bridges such that:

For every s < t < u, we have Bs,u = Bt,u ◦Bs,t .

The law of Bs,t only depends on t− s.
If s1 < s2 < · · · < sn, then the bridges Bs1,s2 , ..., Bsn−1,sn

are independent.

B0,0 = Id and B0,t → Id as t→ 0 in probability, in the
sense of Skorohod topology.



Bolthausen-Sznitman coalescent for the CSBP Z

Theorem (Bertoin, Le Gall (2003))

Fix a, t > 0. Let V1, V2, · · · be a sequence of random variables
such that conditionally on Ft, Vi’s are independently and
uniformly distributed over [0, Z(t, a)]. For any 0 ≤ s ≤ t the
equivalence relation Π̃s on N is given by declaring m and n
belong to the same class of Π̃s if Vm and Vn has the same
ancestor at time t− s. Then

(Π̃s : 0 ≤ s ≤ t)and (Πs : 0 ≤ s ≤ t) has the same f.d.d.’s.,

where (Πs : 0 ≤ s ≤ t) is the Bolthausen-Sznitman coalescent
running for time t.



Convergence of flow of bridges

Let D([0, 1],R+) be the metric space of RCLL non-decreasing
paths defined over [0, 1] such that f(0) = 0 and f(1) = 1 with
the usual Skorohod metric.

Proposition

Consider a sequence of bridges {Bn : n ∈ N}. The following are
equivalent.

(i) The exchangeable partition Π(Bn)⇒ Π(B∞).

(ii) Bn ⇒ B∞ in D([0, 1],R+) endowed with the Skorohod
topology.

So, we have to come up with a flow of bridges
(BN

s1,s2 : 0 ≤ s1 ≤ s2 ≤ t) for N -th family of BBM with
absorption.
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Convergence of flow of bridges

A natural choice for flow of bridges are as follows:

Select an ordering of the individuals which respects
ancestry.

For 0 ≤ j ≤ k and 1 ≤ i ≤MN (tj log3N) we take

w(i, j) =
1

MN (tj log3N)
.

Let

Ai(j, k) = {l : xl,k (at time (tk log3N)) is a descendant of xi,j

at time (tj log3N)}

represents the set of descendants of xi,j (i-th individual
w.r.t. ordering at time (tj log3N)).

Lj(y) = max{l ∈ N :

l∑
i=1

w(i,j) ≤ y},

with the condition that maximum of the empty set is 0.
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Convergence of the flow of bridges

Finally construct the bridges as follows: for 0 ≤ y ≤ 1 and
0 ≤ j < k ≤ K, let

BN
tj ,tk

(y) =

Lj(y)∑
i=1

∑
m∈Ai(j,k)

w(m, k).

But this choice does not work.

For 0 ≤ j ≤ k and 1 ≤ i ≤MN (tj log3N) we take

w(i, j) =


1

ZN (tj log
3N)

eµxi,j sin(πxi,j/L)1xi,j≤L if 0 ≤ j ≤ k − 1

1
MN (tk log3N)

if j = k.

(2)

i.e., the particles are weighted according to their contribution
to ZN (tj log3N).



Convergence of the flow of bridges

Finally construct the bridges as follows: for 0 ≤ y ≤ 1 and
0 ≤ j < k ≤ K, let

BN
tj ,tk

(y) =

Lj(y)∑
i=1

∑
m∈Ai(j,k)

w(m, k).

But this choice does not work.

For 0 ≤ j ≤ k and 1 ≤ i ≤MN (tj log3N) we take

w(i, j) =


1

ZN (tj log
3N)

eµxi,j sin(πxi,j/L)1xi,j≤L if 0 ≤ j ≤ k − 1

1
MN (tk log3N)

if j = k.

(2)

i.e., the particles are weighted according to their contribution
to ZN (tj log3N).



Convergence of the flow of bridges

Finally construct the bridges as follows: for 0 ≤ y ≤ 1 and
0 ≤ j < k ≤ K, let

BN
tj ,tk

(y) =

Lj(y)∑
i=1

∑
m∈Ai(j,k)

w(m, k).

But this choice does not work.

For 0 ≤ j ≤ k and 1 ≤ i ≤MN (tj log3N) we take

w(i, j) =


1

ZN (tj log
3N)

eµxi,j sin(πxi,j/L)1xi,j≤L if 0 ≤ j ≤ k − 1

1
MN (tk log3N)

if j = k.

(2)

i.e., the particles are weighted according to their contribution
to ZN (tj log3N).



Convergence of the flow of bridges

The brides BN
s1,s2 do not have exchangeable increments.

Proposition (Berestycki, Berestycki and Schweinsberg (2013))

Suppose b, b1, b2, · · · are functions from [0, 1] to [0, 1] that are
non-decreasing and right continuous and have left limits at
every point other than 0. Suppose limn→∞ ρ(bN , b) = 0, where ρ
denotes the Skorohod metric. Suppose (xn)∞n=1 and (yn)∞n=1 are
sequences in [0, 1] such that xn → x and yn → y as n→∞.
Suppose x and y are not in the closure of the range of b.
Then for sufficiently large n we have b−1n (xn) = b−1n (yn) if and
only if b−1(x) = b−1(y). Furthermore,

lim
n→∞

b−1n (xn) = b−1(x).



Convergence of the flow of bridges

The proof uses the following interpretation of convergence with
respect to Skorohod metric.

Let Λ : [0, 1] 7→ [0, 1] denote the class of strictly increasing
continuous onto functions.

For a collection of RCLL paths f, f1, f2, . . ., we have
limn→∞ ρ(fn, f) = 0 if and only if there exists a sequence of
functions (λn)∞n=1 in Λ such that

lim
n→∞

sup{|fn(λn(t))− f(t)| : 0 ≤ t ≤ 1}

= lim
n→∞

sup{|λn(t)− λ(t)| : 0 ≤ t ≤ 1} = 0.



Maillard’s result on N-BBM

Figure: Figure 2 of [M13]

Question: Can we work with BBM with random absorbing
barrier where the absorbing process is taking jumps at
‘breakout’ events?



Maillard’s result on N-BBm

Theorem (Maillard)

Suppose at time 0, there are N particles distributed
independently in (0, LN ) according to density proportional to
sin(πx/LN )e−x. Then, for every α ∈ (0, 1),

(XbαNc,N (t log3N)− vN t log3N)t≥0 ⇒fdd (Yt)t≥0.

Here, (Yt)t≥0 is a Lévy process with certain drift and Lévy
measure (the image of π2x−21x>0dx by the map
x 7→ log(1 + x)).

The proof idea is to couple both the processes, N-BBM and
B-BBM (BBM with random absorbing barrier).

But the dependencies between the particles are too difficult to
handle.
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independently in (0, LN ) according to density proportional to
sin(πx/LN )e−x. Then, for every α ∈ (0, 1),

(XbαNc,N (t log3N)− vN t log3N)t≥0 ⇒fdd (Yt)t≥0.

Here, (Yt)t≥0 is a Lévy process with certain drift and Lévy
measure (the image of π2x−21x>0dx by the map
x 7→ log(1 + x)).

The proof idea is to couple both the processes, N-BBM and
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But the dependencies between the particles are too difficult to
handle.



Bb-BBM

Kill a particle

whenever it hits 0 or

whenever it has N particles
to its right (particles in the
figure).

⇒ More particles are being
killed than in N-BBM.

Figure: Figure 2 of [M13]



B#-BBM

Kill a particle

whenever it hits 0 and
at the same time

it has N particles to its
right (particles in the
figure).

⇒ Less particles are being
killed than in N-BBM.

Figure: Figure 2 of [M13]



Thank you


