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Introduction
PopGen Motivation: Phylogenetic pathogen patterns within one host and within
the host population.
Goal: model pathogen phylogenies and their evolution in time.

1 high mutation and replication rates cause viral variability;

2 the genetic variation is further affected by

the strength of cross-immunity (= the ability of a host’s immune
system to fight a certain strain or related strains of a virus),
transmission (susceptibility-infection-recovery-times),
the size of the ”risk group” in the population which can be infected,
effects of migration etc.

Resulting Model:
1 a Branching model with Selection, Mutation and Competition.

2 Consider virus which evolves very fast, i.e. regime of

large population sizes,
high mutation rates and
short generation times.

References: [GPGWDMH04] and [LoH07].
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First attempt at a Classification
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Branch lengths are according to the expected number of substitutions.

(a) one dominating strain,
Influenza A on population level; HIV over time on host level

(b) a bounded number of coexisting strains,
Serotypes of Dengue-virus on population level

(c) an unbounded number of coexisting strains with proper frequencies,
Measles on population level

(d) an unbounded number of coexisting strains without proper frequencies.
HIV or HCV on population level
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Goal

Universal Model to

1 model pathogen phylogenies and their evolution in time;

2 in particular, model mechanisms such as transmission
(susceptibility-infection-recovery-times), influence of cross-immunity and
effects of migration by means of evolution rates.

3 give conditions on the evolution rates to decide which class a given
phylogeny belongs to

4 and thereby establish a link between the above mentioned mechanisms and
classes;

5 present statistics (functions of sample / set of data) which allow for a
classification.
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Approximating (discrete) Particle Systems

In the N th-approximation step:

Initial population:

• Each individual has mass 1
N ,

• the overall population has mass mN
0 ∼ m0

• ⇒ the overall number of individuals alive at time 0 is thus N ·mN
0 ∼ N ·m0.

• Assumption: The initial population, encoded as a marked metric measure
space XN

0 ∈MK , converges weakly to X0 in MK with E[(m0)3] <∞.
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Evolution over time:

consider an asexual population;

At time t, traits/types and mutual genealogical distances of individuals
are recorded.

They remain constant during an individual’s life.

Individuals die or give birth to one new individual at a random point in time.

Death- and birth-rates depend on the traits of the parent as well as the
traits of and genealogical distances to other individuals.
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• At birth, mutation occurs with constant probability p > 0 independent of
N.

. no mutation with probability 1− p:

1 child has trait of its parent,
2 genealogical distance to parent is 0,
3 genealogical distance to other individuals as for parent (⇒ they are

”clones” and are part of one ”clan”).

. mutation with probability p:

1 child has trait according to a transition matrix (average distance to
trait of its parent is of order 1/N),

2 genealogical distance to parent is 1/N,
3 genealogical distance to other individuals is: as for parent +1/N (⇒

the child constitutes a new clan).
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Types of Branching
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Previous work: [MT12] (Méléard and Tran (2012)) consider historical branching
processes, where rates depend on time and the whole history of the traits over
time.

instead of full history up to time t, use genealogical distances and traits at
time t,

generalize trait space and mutation generator,

add competition in birth-term.
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Marked metric measure spaces
State space for evolving genealogies: marked metric measure spaces
(References: [DGP11] (Depperschmidt, Greven and Pfaffelhuber (2011)), [GPW13] (Greven,

Pfaffelhuber and Winter (2013)))

Definition
1 Let K denote the type/trait space.

We assume that K is a complete and separable metric space.

2 A K -marked metric measure space, or mmm-space, can be written (X , r , µ),
where

(X , r) is a complete and separable metric space, (clans and mutual
distances)
µ ∈Mf (X × K ),
m := µ(X × K ) ∈ R+ is the mass of the population
(each individual has a certain biomass) and hence

µ̄ :=

{
µ/m, m 6= 0,

arbitrary in M1(X × K ), m = 0

samples elements of X and their traits.
MK := {x = (X , r , µ) : (X , r , µ) K-marked metric measure space}.
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X = set of clans = {x1, x2, x3, x4}

Nm = # individuals = 10

traits of clans = {κ1, κ2, κ3, κ4}

r23

r24

r12

µ̄ = 3
10 · δ(x1,κ1) + 1

10 · δ(x2,κ2) + 1
10 · δ(x3,κ3) + 5

10 · δ(x4,κ4)
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Equivalence of mmm-spaces

Definition
(X , rX , µX ), (Y , rY , µY ) ∈MK are equivalent if
they are measure- and mark-preserving isometric, i.e.
there is a measurable ϕ : supp((πX )∗µX )→ supp((πY )∗µY ) such that

rX (x , x ′) = rY (ϕ(x), ϕ(x ′)) for all x , x ′ ∈ supp((πX )∗µX )

and ϕ̃∗µX = µY for ϕ̃(x , u) = (ϕ(x), u).

We denote the equivalence class of (X , r , µ) by (X , r , µ).

Remark (Nice consequences)
1 If a particle z of type κz and weight 1/N dies at time t:

keep Xt ≡ Xt−, r t ≡ r
t− but change µt ≡ µt− − 1

N δ(z,κz ).

2 If particle x of type κx gives birth to a particle z of type κz :

. mutation: Xt ≡ Xt− ] {z} and µt ≡ µt− + 1
N δ(z,κz ),

. no mutation: Xt ≡ Xt− ] {z} and µt ≡ µt− + 1
N δ(x,κx ).
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Reproduction and Death:
At time t an individual of clan x and trait κ(x) gives birth at rate

Nβ(κ(x)) +
∑
z∈X

µ̄({z} × K ) · γbirth(m, r(z , x), κ(z), κ(x))

β(·) branching rate of an individual of a clan

is a function of the trait of its clan x

γbirth(·, ·, ·, ·) a function of the overall mass, the genetic distance of clan z

and x , the trait of clan z and the trait of clan x∑
z∈X

µ̄({z} × K ) weighted average over all clans; weights according to

number of individuals per clan; (µ̄(X × K ) = 1)

and at time t an individual of clan x and trait κ(x) dies at rate

Nβ(κ(x)) +
∑
z∈X

µ̄({z} × K ) · γdeath(m, r(z , x), κ(z), κ(x)).

Assumptions include: 0 < β ≤ β(κ) ≤ β,

0 ≤ γbirth(m, r , κ1, κ2) ≤ γb, ∃n ∈ N : 0 ≤ γdeath(m, r , κ1, κ2) ≤ (1 ∨m)γd .
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At time t an individual of clan x and trait κ(x) gives birth at rate

Nβ(κ(x)) +
∑
z∈X

µ̄({z} × K) · γbirth(m, r(z, x), κ(z), κ(x)),

where 0 < β ≤ infκ β(κ) ≤ supκ β(κ) ≤ β̄ <∞ and supm,r,κ,κ′ γ
(birth)(m, r , κ, κ′) ≤ γ̄b <∞.

Remark (A coupling)
For later purposes (compact containment), we need a statement of the
form: Couple for each N ∈ N, XN with birth-enhancement rate γbirth, to a
process YN with

γbirth(m, r(z , x), κ(z), κ(x)) ≤ Cβ(κ(x)) ≡ γbirth,Y (κ(x)) (∗)

such that

XN
t ⊆ Y N

t , r
N
t = rN,Yt |XN

t
and µN

t ≤ µN,Y
t . (1)

Idea: supm,r ,κ γ
birth(m, r , κ, κ′)

β(κ′)
≤ γ̄b

β
= C .

Note: It is important, that the quantity (∗) is independent of the weights

µ̄({z} × K ). E.g., γbirth(m, r(z , x), κ(z), κ(x)) ≤ γbirth,Y (m, r(z , x), κ(z), κ(x))

does not ensure (1).
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Result

Theorem
The family (x N

· )N∈N of approximating particle systems
(+ assumptions on initial masses, branching rates, competition rates, mutation operator) is
tight. Any limit process x satisfies ”the” (Ω,D(Ω))-martingale problem.

Proof includes:

apply test-functions F to x N
t ,

⇒ x N
t solves martingale problem characterized by generator ΩN ,

convergence of ΩNF to a generator ΩF ,

existence limit: use Jakubowski’s criterion for tightness.

. this includes: show compact containment condition:
∃N0 ∈ N such that ∀T , ε0 > 0 ∃KT ,ε0 ⊂MK compact such that

inf
N≥N0

P({x N
t ∈ KT ,ε0 for all t ∈ [0,T ]}) > 1− ε0

Remark
Work in progress: Uniqueness of solutions to the martingale problem. The latter
would imply that x N converges to x in law in D(R+,MK ).
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Relative compactness in mmm-spaces

(see [DGP11] and [GPW09] (Greven, Pfaffelhuber and Winter (2009)) in case µ(X × K) = 1)

Proposition
A family Γ ⊂MK is relatively compact iff
for all ε > 0 there exists Nε ∈ N and a compact subset Kε ⊂ K such that for all
x = (X , r , µ) ∈ Γ:

(i) m ≤ Nε,

(ii) µ(X × K c
ε ) ≤ ε, (i.e., distribution of traits tight)

(iii) there exists a subset Xε ⊂ X with

(iii − a) µ(Xε
c × K ) ≤ ε,

(iii − b) Xε has diameter at most Nε,
(iii − c) Xε can be covered by at most Nε balls of radius ε.
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(iii − a) µ(Xε
c × K ) ≤ ε,

(iii − b) Xε has diameter at most Nε
Example where relative compactness fails:
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(iii − c) Xε can be covered by at most Nε balls of radius ε
Example where relative compactness fails:
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1 The mass.
(i) m ≤ Nε
Assumption on initial condition: supN∈N E[(mN

0 )3] <∞ implies
supN∈N E[supt∈[0,T ] m

N
t ] <∞. Now use Chebyshev’s inequality.

2 The trait and the diameter.

(ii) µ(X × K c
ε ) ≤ ε,

(iii) ∃Xε ⊂ X with

(iii − a) µ(Xε
c × K ) ≤ ε,

(iii − b) Xε has diameter at most Nε.

Apply results of [MT12] (Méléard and Tran (2012), [K14] (Kliem (2014)). For
(iii-b), add age to trait-space.
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[MT12], [K14] - historical particle systems
The population is represented by a point measure as follows:

XN
t :=

1

N

NmN
t∑

i=1

δy i
·∧t
∈MN

P (DRd ),

where NmN
t is the number of individuals alive at time t.

b

b

b

b

t

Rd

s
b

b
b
ys

b

b

Relative compactness in DRd (cf. [EK05]) (Ethier and Kurtz (2005)): for each finite

time-interval, traits stay in a compact set and there exists a uniform modulus of

continuity.
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1

2

3 Coverage by ε-balls.
(iii − c) Xε can be covered by at most Nε balls of radius ε.
Idea in the ultrametric case: ([GPW13] applied it to tree-valued Moran dynamics)

1 ultrametric ⇒ time = genetic distance/2 = time to MRCA
2 1. Case: t ≤ ε/2, then Nε = 1,
3 2. Case: t > ε/2, then Nε = # ancestors at time t − ε/2.

*

* *

*
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*

*

*

b

b

t

t − ǫ/2 ⇒ Nǫ = 2

* *

*

*
*
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∃Xε ⊂ X with (iii − a) µ(Xε
c × K ) ≤ ε,

(iii − c) Xε can be covered by at most Nε balls of radius ε.
Idea in the non-ultrametric case:

On a small enough time-intervall [0, t0(ε)], the genetic distances of a large
enough proportion of particles alive at time t ∈ [0, t0] to their ancestors at
time 0 are at most ε/2 with high probability. Combine this with
tightness-assumption at time t = 0.

For the remaining time-interval [t0,T ]: ∃0 < s0 < t0/2 such that

. the # of ancestors at time t − s0 can be uniformly bounded in
t ∈ [t0,T ] and N ≥ N0 and

. the ”main part” of the progeny at time t has genealogical distance less
than ε from its respective ancestor at time t − s0.
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Simulations with

Different mutation speed:

p=0.5 p=0.9 p=1.0

β = 1., γbirth = 10., γdeath = e−20·r , T = .35
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Different birth- and death-rates:

T = 2.7, γbirth = 1. T = 10., γbirth = 1.

γdeath(r) = e−200·r γdeath(r) = e−200·r + e−200·|r−1|

T = .27, γbirth(r) = 1.+ 2e−200·|r−0.5| T = .2, γbirth(r) = 2e−200·|r−0.5|

γdeath(r) = e−200·r + e−200·|r−1| γdeath(r) = e−200·r + e−200·|r−1|
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