Singular Yang-Mills connections on asymptotically cylindrical Kähler manifolds.

Adam Jacob
University of California at Davis

May 15, 2017

Joint work with T. Walpuski and Henrique Sá Earp

Motivation

A G_{2} manifold is a seven dimensional Riemannian manifold whose holonomy group is contained in the exceptional Lie group G_{2}.

- G_{2} manifolds are Einstein.
- They have natural classes of calibrated submanifolds.
- G_{2} manifolds play an important role in M-theory
- They admit natural classes of Yang-Mills bundles, called G_{2} instantons. Donaldson and Thomas conjecture counting G_{2} instantons can lead to a Casson-type invariant.

Motivation

A G_{2} manifold is a seven dimensional Riemannian manifold whose holonomy group is contained in the exceptional Lie group G_{2}.

- G_{2} manifolds are Einstein.
- They have natural classes of calibrated submanifolds.
- G_{2} manifolds play an important role in M-theory
- They admit natural classes of Yang-Mills bundles, called G_{2} instantons. Donaldson and Thomas conjecture counting G_{2} instantons can lead to a Casson-type invariant.

Motivation

A G_{2} manifold is a seven dimensional Riemannian manifold whose holonomy group is contained in the exceptional Lie group G_{2}.

- G_{2} manifolds are Einstein.
- They have natural classes of calibrated submanifolds.
- G_{2} manifolds play an important role in M-theory
- They admit natural classes of Yang-Mills bundles, called G_{2} instantons. Donaldson and Thomas conjecture counting G_{2} instantons can lead to a Casson-type invariant.

Motivation

A G_{2} manifold is a seven dimensional Riemannian manifold whose holonomy group is contained in the exceptional Lie group G_{2}.

- G_{2} manifolds are Einstein.
- They have natural classes of calibrated submanifolds.
- G_{2} manifolds play an important role in M-theory
- They admit natural classes of Yang-Mills bundles, called G_{2} instantons. Donaldson and Thomas conjecture counting G_{2} instantons can lead to a Casson-type invariant.

Motivation

A G_{2} manifold is a seven dimensional Riemannian manifold whose holonomy group is contained in the exceptional Lie group G_{2}.

- G_{2} manifolds are Einstein.
- They have natural classes of calibrated submanifolds.
- G_{2} manifolds play an important role in M-theory
- They admit natural classes of Yang-Mills bundles, called G_{2} instantons. Donaldson and Thomas conjecture counting G_{2} instantons can lead to a Casson-type invariant.

Motivation

A G_{2} manifold is a seven dimensional Riemannian manifold whose holonomy group is contained in the exceptional Lie group G_{2}.

- G_{2} manifolds are Einstein.
- They have natural classes of calibrated submanifolds.
- G_{2} manifolds play an important role in M-theory
- They admit natural classes of Yang-Mills bundles, called G_{2} instantons. Donaldson and Thomas conjecture counting G_{2} instantons can lead to a Casson-type invariant.

Motivation

- The main motivation for this project is the construction of G_{2} instantons.

- Idea is based off of the twisted connected sum construction, pioneered by Kovalev and later extended by Corti-Haskins-Nordström-Pacini.

- In short, one begins with two asymptotically cylindrical Calabi-Yau 3-folds, each equipped with a trivial S^{1} bundle and then glues the two pieces together in a prescribed fashion

Motivation

- The main motivation for this project is the construction of G_{2} instantons.
- Idea is based off of the twisted connected sum construction, pioneered by Kovalev and later extended by Corti-Haskins-Nordström-Pacini.
- In short, one begins with two asymptotically cylindrical Calabi-Yau 3-folds, each equipped with a trivial S^{1} bundle, and then glues the two pieces together in a prescribed fashion

Motivation

This construction yields many millions of examples of G_{2} manifolds. Can it be used to construct G_{2} instantons?

The starting point for our work is the result of Sá Earp:
Theorem (Sá Earp)
Let $(E, \bar{\partial})$ be a holomorphic bundle over an asymptotically cylindrical Calabi-Yau 3-fold. If E is asymptotic to a degree zero stable bundle along the cylindrical end, then there exists a metric H on E satisfying the Hermitian Yang-Mills equations.

Motivation

This construction yields many millions of examples of G_{2} manifolds. Can it be used to construct G_{2} instantons?

The starting point for our work is the result of Sá Earp:
Theorem (Sá Earp)
Let $(E, \bar{\partial})$ be a holomorphic bundle over an asymptotically cylindrical Calabi-Yau 3-fold. If E is asymptotic to a degree zero stable bundle along the cylindrical end, then there exists a metric H on E satisfying the Hermitian Yang-Mills equations.

Motivation

From here, Sá Earp-Walpuski outlined a program and developed the perturbation theory needed to construct a G_{2} instanton from the twisted connected sum.

Exponential asymptotic decay of the connection on each
building block needed.
The perturbation theory places restrictions on the cohomology
of the bundle.

As of yet no new example of G_{2} instantons created by this method. However, reflexive sheaves are more abundant. Can they be used to construct singular G_{2} instantons?

Motivation

From here, Sá Earp-Walpuski outlined a program and developed the perturbation theory needed to construct a G_{2} instanton from the twisted connected sum.

Exponential asymptotic decay of the connection on each
building block needed.
The perturbation theory places restrictions on the cohomology
of the bundle.

As of yet no new example of G_{2} instantons created by this method. However, reflexive sheaves are more abundant. Can they be used to construct singular G_{2} instantons?

Motivation

From here, Sá Earp-Walpuski outlined a program and developed the perturbation theory needed to construct a G_{2} instanton from the twisted connected sum.

- Exponential asymptotic decay of the connection on each building block needed.
- The perturbation theory places restrictions on the cohomology of the bundle.

As of yet no new example of G_{2} instantons created by this method. However, reflexive sheaves are more abundant. Can they be used to construct singular G_{2} instantons?

Motivation

From here, Sá Earp-Walpuski outlined a program and developed the perturbation theory needed to construct a G_{2} instanton from the twisted connected sum.

- Exponential asymptotic decay of the connection on each building block needed.
- The perturbation theory places restrictions on the cohomology of the bundle.

As of yet no new example of G_{2} instantons created by this method. However, reflexive sheaves are more abundant. Can they be used
to construct singular G_{2} instantons?

Motivation

From here, Sá Earp-Walpuski outlined a program and developed the perturbation theory needed to construct a G_{2} instanton from the twisted connected sum.

- Exponential asymptotic decay of the connection on each building block needed.
- The perturbation theory places restrictions on the cohomology of the bundle.

As of yet no new example of G_{2} instantons created by this method. However, reflexive sheaves are more abundant. Can they be used to construct singular G_{2} instantons?

Background

Let X be a complex manifold.
For a Kähler metric g on $T^{1,0} X$, we have the corresponding Kähler form

$$
\omega=\frac{i}{2} g_{j \bar{k}} d z^{j} \wedge d \bar{z}^{k}
$$

Let $(E, \bar{\partial})$ be a holomorphic vector bundle over X.

Given a Hermitian metric H on E, one can define the associated Chern connection d_{H}, compatible with H and the holomorphic structure $\bar{\partial}$. We write $d_{H}=\partial_{H}+\bar{\partial}$.

Background

Let X be a complex manifold.
For a Kähler metric g on $T^{1,0} X$, we have the corresponding Kähler form

$$
\omega=\frac{i}{2} g_{j \bar{k}} d z^{j} \wedge d \bar{z}^{k}
$$

Let $(E, \bar{\partial})$ be a holomorphic vector bundle over X.

Given a Hermitian metric H on E, one can define the associated Chern connection d_{H}, compatible with H and the holomorphic structure $\bar{\partial}$. We write $d_{H}=\partial_{H}+\bar{\partial}$.

Background

Let X be a complex manifold.
For a Kähler metric g on $T^{1,0} X$, we have the corresponding Kähler form

$$
\omega=\frac{i}{2} g_{j \bar{k}} d z^{j} \wedge d \bar{z}^{k}
$$

Let $(E, \bar{\partial})$ be a holomorphic vector bundle over X.

Given a Hermitian metric H on E, one can define the associated Chern connection d_{H}, compatible with H and the holomorphic structure $\bar{\partial}$. We write $d_{H}=\partial_{H}+\bar{\partial}$.

Background

The assumption that $\bar{\partial}$ is a holomorphic structure $\left(\bar{\partial}^{2}=0\right)$ and metric compatibility imply the curvature F_{H} of d_{H} is a $(1,1)$ form.

- Locally, in a holomoprhic frame:

$$
F_{H}=\bar{\partial}\left(H^{-1} \partial H\right) .
$$

Let Λ denote the adjoint in g of wedging with the Kähler form ω. For any $(1,1)$ form α, $i \Lambda \alpha=g^{j k} \alpha_{j \bar{k}}$.

Definition
A metric H satisfying

$$
i \wedge F_{H}=\mu l d
$$

is called a Hermitian-Yang-Mills metric (Hermitian-Einstein).

Background

The assumption that $\bar{\partial}$ is a holomorphic structure $\left(\bar{\partial}^{2}=0\right)$ and metric compatibility imply the curvature F_{H} of d_{H} is a $(1,1)$ form.

- Locally, in a holomoprhic frame:

$$
F_{H}=\bar{\partial}\left(H^{-1} \partial H\right)
$$

Let Λ denote the adjoint in g of wedging with the Kähler form ω. For any $(1,1)$ form $\alpha, i \Lambda \alpha=g^{j k} \alpha_{j \bar{k}}$.

Definition
A metric H satisfying
$i \wedge F_{H}=\mu l d$
is called a Hermitian-Yang-Mills metric (Hermitian-Einstein).

Background

The assumption that $\bar{\partial}$ is a holomorphic structure $\left(\bar{\partial}^{2}=0\right)$ and metric compatibility imply the curvature F_{H} of d_{H} is a $(1,1)$ form.

- Locally, in a holomoprhic frame:

$$
F_{H}=\bar{\partial}\left(H^{-1} \partial H\right)
$$

Let Λ denote the adjoint in g of wedging with the Kähler form ω. For any $(1,1)$ form α, $i \Lambda \alpha=g^{j \bar{k}} \alpha_{j \bar{k}}$.

Definition
A metric H satisfying
$i \wedge F_{H}=\mu l d$
is called a Hermitian-Yang-Mills metric (Hermitian-Einstein).

Background

The assumption that $\bar{\partial}$ is a holomorphic structure $\left(\bar{\partial}^{2}=0\right)$ and metric compatibility imply the curvature F_{H} of d_{H} is a $(1,1)$ form.

- Locally, in a holomoprhic frame:

$$
F_{H}=\bar{\partial}\left(H^{-1} \partial H\right)
$$

Let Λ denote the adjoint in g of wedging with the Kähler form ω. For any $(1,1)$ form α, $i \Lambda \alpha=g^{j \bar{k}} \alpha_{j \bar{k}}$.

Definition

A metric H satisfying

$$
i \wedge F_{H}=\mu l d
$$

is called a Hermitian-Yang-Mills metric (Hermitian-Einstein).

Background

If H solves the Hermitian-Yang-Mills equations, then d_{H} solves the Yang-Mills equations.

The Kähler identities imply

$$
d_{H}^{*} F_{H}=-\partial_{H}\left(i \wedge F_{H}\right)+\bar{\partial}\left(i \wedge F_{H}\right)=0 .
$$

d_{H} is a critical point of the Yang-Mills functional

$$
Y M\left(d_{A}\right)=\left\|F_{A}\right\|_{L^{2}(X)}^{2}
$$

Question: When does $(E, \bar{\partial})$ admit a Hermitian-Yang-Mills
metric?

Background

If H solves the Hermitian-Yang-Mills equations, then d_{H} solves the Yang-Mills equations.

The Kähler identities imply

$$
d_{H}^{*} F_{H}=-\partial_{H}\left(i \wedge F_{H}\right)+\bar{\partial}\left(i \wedge F_{H}\right)=0 .
$$

d_{H} is a critical point of the Yang-Mills functional

$$
Y M\left(d_{A}\right)=\left\|F_{A}\right\|_{L^{2}(X)}^{2}
$$

Question: When does ($E, \bar{\partial}$) admit a Hermitian-Yang-Mills metric?

Background

If H solves the Hermitian-Yang-Mills equations, then d_{H} solves the Yang-Mills equations.

The Kähler identities imply

$$
d_{H}^{*} F_{H}=-\partial_{H}\left(i \wedge F_{H}\right)+\bar{\partial}\left(i \Lambda F_{H}\right)=0
$$

d_{H} is a critical point of the Yang-Mills functional

$$
Y M\left(d_{A}\right)=\left\|F_{A}\right\|_{L^{2}(X)}^{2}
$$

Question: When does ($E, \bar{\partial}$) admit a Hermitian-Yang-Mills metric?

Background

If H solves the Hermitian-Yang-Mills equations, then d_{H} solves the Yang-Mills equations.

The Kähler identities imply

$$
d_{H}^{*} F_{H}=-\partial_{H}\left(i \Lambda F_{H}\right)+\bar{\partial}\left(i \Lambda F_{H}\right)=0
$$

d_{H} is a critical point of the Yang-Mills functional

$$
Y M\left(d_{A}\right)=\left\|F_{A}\right\|_{L^{2}(X)}^{2}
$$

Question: When does $(E, \bar{\partial})$ admit a Hermitian-Yang-Mills metric?

Previous results

If X is compact, solution is given by the following beautiful result:
Theorem (Donaldson, Uhlenbeck-Yau)
E admits a Hermitian-Yang-Mills metric if and only if it is stable in the sense of Mumford-Takemoto:

$$
\frac{\operatorname{deg}(\mathcal{F})}{r k(\mathcal{F})}<\frac{\operatorname{deg}(E)}{r k(E)}
$$

for all proper, reflexive subsheaves $\mathcal{F} \subset E$.

The degree is given by

and is independent of a choice of metric.

Previous results

If X is compact, solution is given by the following beautiful result:
Theorem (Donaldson, Uhlenbeck-Yau)
E admits a Hermitian-Yang-Mills metric if and only if it is stable in the sense of Mumford-Takemoto:

$$
\frac{\operatorname{deg}(\mathcal{F})}{r k(\mathcal{F})}<\frac{\operatorname{deg}(E)}{r k(E)}
$$

for all proper, reflexive subsheaves $\mathcal{F} \subset E$.

The degree is given by

$$
\operatorname{deg}(E)=i \int_{X} \operatorname{tr}\left(F_{H}\right) \wedge \omega^{n-1}
$$

and is independent of a choice of metric.

Previous results

Many interesting generalizations of the above Theorem. Most notably for us, the result was extended to the case where E is a reflexive sheaf by Bando-Siu.

Here, metrics are only defined away from the singular set (of complex codimension at least 3), where E is a holomorphic bundle.

The solution satisfies

$$
\left\|i \wedge F_{H}\right\|_{L^{\infty}(X)} \leq C \quad \text { and } \quad\left\|F_{H}\right\|_{L^{2}(X)} \leq C
$$

Such metrics are called admissible.

Previous results

Many interesting generalizations of the above Theorem. Most notably for us, the result was extended to the case where E is a reflexive sheaf by Bando-Siu.

Here, metrics are only defined away from the singular set (of complex codimension at least 3), where E is a holomorphic bundle.

The solution satisfies

$$
\left\|i \wedge F_{H}\right\|_{L^{\infty}(x)} \leq C
$$

and

Such metrics are called admissible.

Previous results

Many interesting generalizations of the above Theorem. Most notably for us, the result was extended to the case where E is a reflexive sheaf by Bando-Siu.

Here, metrics are only defined away from the singular set (of complex codimension at least 3), where E is a holomorphic bundle.

The solution satisfies

$$
\left\|i \Lambda F_{H}\right\|_{L^{\infty}(X)} \leq C \quad \text { and } \quad\left\|F_{H}\right\|_{L^{2}(X)} \leq C
$$

Such metrics are called admissible.

Previous results

Donaldson uses the Yang-Mills flow (and later Simpson and Bando-Siu), while Uhlenbeck-Yau employ the method of continuity.

Let H_{0} be a fixed metric and H a metric along either method. Right away one sees $\left|i \wedge F_{H}\right|$ is controlled.

The key estimate is a uniform C^{0} bound for $e^{s}=H_{0}^{-1} \mathrm{H}$. This is where stability comes into play in the compact setting.

Previous results

Donaldson uses the Yang-Mills flow (and later Simpson and Bando-Siu), while Uhlenbeck-Yau employ the method of continuity.

Let H_{0} be a fixed metric and H a metric along either method. Right away one sees $\left|i \wedge F_{H}\right|$ is controlled.

The key estimate is a uniform C^{0} bound for $e^{s}=H_{0}^{-1} \mathrm{H}$. This is where stability comes into play in the compact setting.

Previous results

Donaldson uses the Yang-Mills flow (and later Simpson and Bando-Siu), while Uhlenbeck-Yau employ the method of continuity.

Let H_{0} be a fixed metric and H a metric along either method. Right away one sees $\left|i \Lambda F_{H}\right|$ is controlled.

The key estimate is a uniform C^{0} bound for $e^{s}=H_{0}^{-1} H$. This is where stability comes into play in the compact setting.

Previous results

Question: What happens if X is complete, non-compact?
In some cases you can make the structure of X work for you.
Theorem (Ni-Ren)
If X admits a spectral gap $\left(\lambda_{1}(X)>0\right)$, and E admits a metric H_{0} such that $\left|i \wedge F_{H_{0}}-\mu / d\right| \in L^{p}(X)$ for some $p>1$, then there exists a metric H such that

$$
i \wedge F_{H}=\mu l d
$$

This uses an argument similar to Donaldson's solution of the Dirichlet problem, since we have along the flow

$$
\left(\frac{d}{d t}+\Delta\right)\left|i \Lambda F_{H}-\mu I d\right|^{2} \leq 0 .
$$

Previous results

Question: What happens if X is complete, non-compact?
In some cases you can make the structure of X work for you.
Theorem (Ni-Ren)
If X admits a spectral gap $\left(\lambda_{1}(X)>0\right)$, and E admits a metric H_{0} such that $\left|i \Lambda F_{H_{0}}-\mu / d\right| \in L^{p}(X)$ for some $p>1$, then there exists a metric H such that

$$
i \wedge F_{H}=\mu I d
$$

This uses an argument similar to Donaldson's solution of the Dirichlet problem, since we have along the flow

Previous results

Question: What happens if X is complete, non-compact?
In some cases you can make the structure of X work for you.
Theorem (Ni-Ren)
If X admits a spectral gap $\left(\lambda_{1}(X)>0\right)$, and E admits a metric H_{0} such that $\left|i \wedge F_{H_{0}}-\mu I d\right| \in L^{p}(X)$ for some $p>1$, then there exists a metric H such that

$$
i \Lambda F_{H}=\mu l d
$$

This uses an argument similar to Donaldson's solution of the Dirichlet problem, since we have along the flow

$$
\left(\frac{d}{d t}+\Delta\right)\left|i \Lambda F_{H}-\mu I d\right|^{2} \leq 0
$$

Previous results

(In this talk I use the Geometer's Laplacian, $\Delta=d^{*} d$ on functions)
Ni also showed that the same conclusion holds, for example, if X satisfies a L^{2} Sobolev inequality and $p \in\left[1, \frac{n}{2}\right)$, or if it is non-parabolic (i.e., admits a positive Greens function) and $\mathrm{p}=1$.

In this case, for a fixed initial metric H_{0}, one can solve

$$
\Delta u=\left|i \wedge F_{H_{0}}\right|,
$$

and use u as a barrier to control s, since

$$
\Delta \log \operatorname{tr}\left(e^{5}\right) \leq 4\left|i \wedge F_{H_{0}}\right|
$$

For asymptotically cylindrical manifolds we have linear volume growth, so the above results can not be used.

Previous results

(In this talk I use the Geometer's Laplacian, $\Delta=d^{*} d$ on functions)
Ni also showed that the same conclusion holds, for example, if X satisfies a L^{2} Sobolev inequality and $p \in\left[1, \frac{n}{2}\right)$, or if it is non-parabolic (i.e., admits a positive Greens function) and $\mathrm{p}=1$.

In this case, for a fixed initial metric H_{0}, one can solve

and use u as a barrier to control s, since

$$
\Delta \log \operatorname{tr}\left(e^{5}\right) \leq 4\left|i \wedge F_{H_{0}}\right|
$$

For asymptotically cylindrical manifolds we have linear volume growth, so the above results can not be used.

Previous results

(In this talk I use the Geometer's Laplacian, $\Delta=d^{*} d$ on functions)
Ni also showed that the same conclusion holds, for example, if X satisfies a L^{2} Sobolev inequality and $p \in\left[1, \frac{n}{2}\right)$, or if it is non-parabolic (i.e., admits a positive Greens function) and $\mathrm{p}=1$.

In this case, for a fixed initial metric H_{0}, one can solve

$$
\Delta u=\left|i \wedge F_{H_{0}}\right|
$$

and use u as a barrier to control s, since

$$
\Delta \log \operatorname{tr}\left(e^{s}\right) \leq 4\left|i \Lambda F_{H_{0}}\right|
$$

For asymptotically cylindrical manifolds we have linear volume growth, so the above results can not be used.

Previous results

(In this talk I use the Geometer's Laplacian, $\Delta=d^{*} d$ on functions)
Ni also showed that the same conclusion holds, for example, if X satisfies a L^{2} Sobolev inequality and $p \in\left[1, \frac{n}{2}\right)$, or if it is non-parabolic (i.e., admits a positive Greens function) and $\mathrm{p}=1$.

In this case, for a fixed initial metric H_{0}, one can solve

$$
\Delta u=\left|i \wedge F_{H_{0}}\right|
$$

and use u as a barrier to control s, since

$$
\Delta \log \operatorname{tr}\left(e^{s}\right) \leq 4\left|i \wedge F_{H_{0}}\right|
$$

For asymptotically cylindrical manifolds we have linear volume growth, so the above results can not be used.

Main result

Building off of Sá Earp's result, we prove the following
Theorem (J. - Walpuski)
Let V be an asymptotically cylindrical Kähler manifold with asymptotic cross-section D. Let E_{D} be a stable vector bundle over D, and E a reflexive sheaf asymptotic to E_{D}. There exists an asymptotically translation-invariant Hermitian metric H on E which satisfies the projective Hermitian Yang-Mills (PHYM) equation

$$
K_{H}:=i \Lambda F_{H}-\frac{\operatorname{tr}\left(i \wedge F_{H}\right)}{r k(E)} l d=0
$$

Furthermore $\left|F_{H}\right| \in L_{\text {loc }}^{2}(V)$.
a conformal change. However, this metric will typically not be asymptotically translation invariant.

Main result

Building off of Sá Earp's result, we prove the following
Theorem (J. - Walpuski)
Let V be an asymptotically cylindrical Kähler manifold with asymptotic cross-section D. Let E_{D} be a stable vector bundle over D, and E a reflexive sheaf asymptotic to E_{D}. There exists an asymptotically translation-invariant Hermitian metric H on E which satisfies the projective Hermitian Yang-Mills (PHYM) equation

$$
K_{H}:=i \Lambda F_{H}-\frac{\operatorname{tr}\left(i \wedge F_{H}\right)}{r k(E)} l d=0
$$

Furthermore $\left|F_{H}\right| \in L_{\text {loc }}^{2}(V)$.
Rmk: Every PHYM metric can be converted to a HYM metric via a conformal change. However, this metric will typically not be asymptotically translation invariant.

ACyl Kähler manifolds

Definition: Let $\left(D, g_{D}, I_{D}\right)$ be a compact Kähler manifold. A Kähler manifold (V, g, I) is called asymptotically cylindrical (ACyl) with asymptotic cross-section $\left(D, I_{g}, I_{D}\right)$ if there exists a constant $\delta_{V}>0$, a compact subset $K \subset V$, and a diffeomorphism $\pi: V \backslash K \rightarrow(0, \infty) \times S^{1} \times D$, such that

$$
\left|\nabla^{k}\left(\pi_{*} g-g_{\infty}\right)\right|+\left|\nabla^{k}\left(\pi_{*} I-I_{\infty}\right)\right|=O\left(e^{-\delta_{v} \ell}\right)
$$

for all $k \geq 0$. Here (ℓ, θ) are the canonical coordinates on $(0, \infty) \times S^{1}$ and

$$
g_{\infty}:=d \ell^{2} \oplus d \theta^{2} \oplus g_{D} \quad \quad I_{\infty}=\left(\begin{array}{cc}
0 & -1 \\
1 & 0
\end{array}\right) \oplus I_{D}
$$

ACyl Kähler manifolds

By a slight abuse of notation denote $\ell: V \rightarrow[0, \infty)$. Given $L>0$, define the truncated manifold

$$
V_{L}:=\ell^{-1}([0, L])
$$

Let E be a reflexive sheaf over V. Let S be the singular set of E and assume $S \subset V_{L_{0}}$ for some L_{0}. Then we have the following:

Definition: Let $\left(E_{D}, \bar{\partial}_{D}\right)$ be a holomorphic vector bundle over D. Let $\left(E_{\infty}, \bar{\partial}_{\infty}\right)$ denote the pulback to $\left(L_{0}, \infty\right) \times S^{1} \times D$. We say E is asymptotic to E_{D} if there exists a bundle isomorphism $\bar{\pi}:\left.E\right|_{V \backslash V_{L_{0}}} \rightarrow E_{\infty}$ and a constant δ_{E} such that

$$
\left|\nabla^{k}\left(\pi_{*} \bar{\partial}-\bar{\partial}_{\infty}\right)\right|=O\left(e^{-\delta_{E} \ell}\right) .
$$

Finally, a metric H on E is asymptotically translation-invariant if it is asymptotic to a metric H_{D} on E_{D}.

ACyl Kähler manifolds

By a slight abuse of notation denote $\ell: V \rightarrow[0, \infty)$. Given $L>0$, define the truncated manifold

$$
V_{L}:=\ell^{-1}([0, L])
$$

Let E be a reflexive sheaf over V. Let S be the singular set of E and assume $S \subset V_{L_{0}}$ for some L_{0}. Then we have the following:

Definition: Let $\left(E_{D}, \bar{\partial}_{D}\right)$ be a holomorphic vector bundle over D.
Let $\left(E_{\infty}, \bar{\partial}_{\infty}\right)$ denote the pullback to $\left(L_{0}, \infty\right) \times S^{1} \times D$. We say E
is asymptotic to E_{D} if there exists a bundle isomorphism
$\bar{\pi}:\left.E\right|_{V \backslash V_{L_{0}}} \rightarrow E_{\infty}$ and a constant δ_{E} such that
$\left|\nabla^{k}\left(\pi_{*} \bar{\partial}-\bar{\partial}_{\infty}\right)\right|=O\left(e^{-\delta_{E} \ell}\right)$.
Finally, a metric H on E is asymptotically translation-invariant if it is asymptotic to a metric H_{D} on E_{D}.

ACyl Kähler manifolds

By a slight abuse of notation denote $\ell: V \rightarrow[0, \infty)$. Given $L>0$, define the truncated manifold

$$
V_{L}:=\ell^{-1}([0, L])
$$

Let E be a reflexive sheaf over V. Let S be the singular set of E and assume $S \subset V_{L_{0}}$ for some L_{0}. Then we have the following:

Definition: Let $\left(E_{D}, \bar{\partial}_{D}\right)$ be a holomorphic vector bundle over D. Let $\left(E_{\infty}, \bar{\partial}_{\infty}\right)$ denote the pullback to $\left(L_{0}, \infty\right) \times S^{1} \times D$. We say E is asymptotic to E_{D} if there exists a bundle isomorphism $\bar{\pi}:\left.E\right|_{V \backslash V_{L_{0}}} \rightarrow E_{\infty}$ and a constant δ_{E} such that

$$
\left|\nabla^{k}\left(\pi_{*} \bar{\partial}-\bar{\partial}_{\infty}\right)\right|=O\left(e^{-\delta_{E} \ell}\right)
$$

Finally, a metric H on E is asymptotically translation-invariant if it
is asymptotic to a metric H_{D} on E_{D}.

ACyl Kähler manifolds

By a slight abuse of notation denote $\ell: V \rightarrow[0, \infty)$. Given $L>0$, define the truncated manifold

$$
V_{L}:=\ell^{-1}([0, L])
$$

Let E be a reflexive sheaf over V. Let S be the singular set of E and assume $S \subset V_{L_{0}}$ for some L_{0}. Then we have the following:

Definition: Let $\left(E_{D}, \bar{\partial}_{D}\right)$ be a holomorphic vector bundle over D. Let $\left(E_{\infty}, \bar{\partial}_{\infty}\right)$ denote the pullback to $\left(L_{0}, \infty\right) \times S^{1} \times D$. We say E is asymptotic to E_{D} if there exists a bundle isomorphism $\bar{\pi}:\left.E\right|_{V \backslash V_{L_{0}}} \rightarrow E_{\infty}$ and a constant δ_{E} such that

$$
\left|\nabla^{k}\left(\pi_{*} \bar{\partial}-\bar{\partial}_{\infty}\right)\right|=O\left(e^{-\delta_{E} \ell}\right)
$$

Finally, a metric H on E is asymptotically translation-invariant if it is asymptotic to a metric H_{D} on E_{D}.

Linear analysis

We define the following weighted Hölder spaces. For $k \in \mathbb{N}$, $\alpha \in(0,1)$, and $\delta \in \mathbb{R}$, define:

$$
C_{\delta}^{k, \alpha}(V):=\left\{f \in C^{k, \alpha}(V) \mid\|f\|_{C_{\delta}^{k, \alpha}}<\infty\right\}
$$

with

$$
\|\cdot\|_{C_{\delta}^{k, \alpha}}:=\left\|e^{\delta \ell} \cdot\right\|_{C^{k, \alpha}}
$$

Proposition
For $0<\delta \ll 1$, the linear map $C_{\delta}^{k+2, \alpha}(V) \oplus \mathbb{R} \rightarrow C_{\delta}^{k, \alpha}(V)$ defined by

$$
(f, A) \mapsto \Delta f-A \Delta \ell
$$

is an isomorphism.

Linear analysis

We define the following weighted Hölder spaces. For $k \in \mathbb{N}$, $\alpha \in(0,1)$, and $\delta \in \mathbb{R}$, define:

$$
C_{\delta}^{k, \alpha}(V):=\left\{f \in C^{k, \alpha}(V) \mid\|f\|_{C_{\delta}^{k, \alpha}}<\infty\right\}
$$

with

$$
\|\cdot\|_{C_{\delta}^{k, \alpha}}:=\left\|e^{\delta \ell} \cdot\right\|_{C^{k, \alpha}}
$$

Proposition

For $0<\delta \ll 1$, the linear map $C_{\delta}^{k+2, \alpha}(V) \oplus \mathbb{R} \rightarrow C_{\delta}^{k, \alpha}(V)$ defined by

$$
(f, A) \mapsto \Delta f-A \Delta \ell
$$

is an isomorphism.

Proof

As a first step, we prove the result when E is smooth.
Construct a background Hermitian metric H_{0} on E which is asymptotically translation-invariant and satisfies

$$
K_{H_{0}} \in C_{\delta}^{\infty}\left(V, i s u\left(E, H_{0}\right)\right)
$$

Given such an H_{0}, we define a map

$$
\mathcal{L}: C_{\delta}^{\infty}\left(V, \operatorname{isu}\left(E, H_{0}\right)\right) \times[0,1] \rightarrow C_{\delta}^{\infty}\left(V, i s u\left(E, H_{0}\right)\right)
$$

$$
\mathcal{L}(s, t): \operatorname{Ad}\left(e^{s / 2}\right) K_{H_{0} e^{s}}+t \cdot s .
$$

A solution s to the equation $\mathcal{L}(s, 0)=0$ proves the theorem.

Proof

As a first step, we prove the result when E is smooth.
Construct a background Hermitian metric H_{0} on E which is asymptotically translation-invariant and satisfies

$$
K_{H_{0}} \in C_{\delta}^{\infty}\left(V, i s u\left(E, H_{0}\right)\right)
$$

Given such an H_{0}, we define a map

$\mathcal{L}(s, t): A d\left(e^{s / 2}\right) K_{H_{0} e^{s}}+t \cdot s$.

Proof

As a first step, we prove the result when E is smooth.
Construct a background Hermitian metric H_{0} on E which is asymptotically translation-invariant and satisfies

$$
K_{H_{0}} \in C_{\delta}^{\infty}\left(V, i s u\left(E, H_{0}\right)\right)
$$

Given such an H_{0}, we define a map

$$
\mathcal{L}: C_{\delta}^{\infty}\left(V, i s u\left(E, H_{0}\right)\right) \times[0,1] \rightarrow C_{\delta}^{\infty}\left(V, i s u\left(E, H_{0}\right)\right)
$$

by

$$
\mathcal{L}(s, t): A d\left(e^{s / 2}\right) K_{H_{0} e^{s}}+t \cdot s
$$

A solution s to the equation $\mathcal{L}(s, 0)=0$ proves the theorem.

Proof

As a first step, we prove the result when E is smooth.
Construct a background Hermitian metric H_{0} on E which is asymptotically translation-invariant and satisfies

$$
K_{H_{0}} \in C_{\delta}^{\infty}\left(V, i s u\left(E, H_{0}\right)\right)
$$

Given such an H_{0}, we define a map

$$
\mathcal{L}: C_{\delta}^{\infty}\left(V, i s u\left(E, H_{0}\right)\right) \times[0,1] \rightarrow C_{\delta}^{\infty}\left(V, i s u\left(E, H_{0}\right)\right)
$$

by

$$
\mathcal{L}(s, t): \operatorname{Ad}\left(e^{s / 2}\right) K_{H_{0} e^{s}}+t \cdot s
$$

A solution s to the equation $\mathcal{L}(s, 0)=0$ proves the theorem.

Proof

For estimates, it is helpful to think of the equation $\mathcal{L}(s, t)=0$ as

$$
\left(\frac{1}{2} \nabla_{H_{0}}^{*} \nabla_{H_{0}}+t\right) s+B\left(\nabla_{H_{0}} s \otimes \nabla_{H_{0}} s\right)=C\left(K_{H_{0}}\right),
$$

where B and C are linear with coefficients depending on s, but not on its derivatives.

We now follow the method of continuity. Set

$$
1:=\{t \in[0,1]: \mathcal{L}(s, t)=0 \text { for some } s\} .
$$

Proof

For estimates, it is helpful to think of the the equation $\mathcal{L}(s, t)=0$ as

$$
\left(\frac{1}{2} \nabla_{H_{0}}^{*} \nabla_{H_{0}}+t\right) s+B\left(\nabla_{H_{0}} s \otimes \nabla_{H_{0}} s\right)=C\left(K_{H_{0}}\right),
$$

where B and C are linear with coefficients depending on s, but not on its derivatives.

We now follow the method of continuity. Set

$$
I:=\{t \in[0,1]: \mathcal{L}(s, t)=0 \text { for some } s\} .
$$

We prove I is open, closed, and nonempty.

Proof

- First, to show $1 \in I$, we use a trick discovered by Lübke-Teleman.
- To show I is open, we demonstrate that the Linearization of \mathcal{L} is invertible.
- Key step is to show that $|s|$ is bounded uniformly, from which all other estimates follow.
- Use barriers to show that if $|s|$ is large, it must be large far down the tube, where we can take advantage of the stability assumption.

Proof

- First, to show $1 \in I$, we use a trick discovered by Lübke-Teleman.
- To show I is open, we demonstrate that the Linearization of \mathcal{L} is invertible.
- Key step is to show that $|s|$ is bounded uniformly, from which all other estimates follow.
- Use barriers to show that if $|s|$ is large, it must be large far down the tube, where we can take advantage of the stability assumption.

Proof

- First, to show $1 \in I$, we use a trick discovered by Lübke-Teleman.
- To show I is open, we demonstrate that the Linearization of \mathcal{L} is invertible.
- Key step is to show that $|s|$ is bounded uniformly, from which all other estimates follow.
- Use barriers to show that if $|s|$ is large, it must be large far down the tube, where we can take advantage of the stability assumption.

Proof

- First, to show $1 \in I$, we use a trick discovered by Lübke-Teleman.
- To show I is open, we demonstrate that the Linearization of \mathcal{L} is invertible.
- Key step is to show that $|s|$ is bounded uniformly, from which all other estimates follow.
- Use barriers to show that if $|s|$ is large, it must be large far down the tube, where we can take advantage of the stability assumption.

C^{0} bound

Fix L_{0} large, and denote $N:=\|s\|_{L^{\infty}(V)}$ and $M:=\|s\|_{L^{\infty}\left(V \backslash V_{L_{0}}\right)}$.
Using the equation $\mathcal{L}(s, t)=0$, derive the inequality

$$
\Delta|s|^{2} \leq 4 N\left|K_{H_{0}}\right| .
$$

Let $f \in C_{\delta}^{\infty}(V)$ and $A>0$ be the unique solution to

$$
\Delta(f-A C)=4\left|K_{H_{0}}\right| .
$$

Apply the maximum principle to $|s|^{2}-N(f-A \ell)$ on $V_{L_{0}}$ to conclude

$$
N^{2} \leq M^{2}+N\left(A L_{0}+2\|f\|_{L \infty}\right)
$$

SO

$$
N \leq M+C\left(L_{0}+1\right) .
$$

C^{0} bound

Fix L_{0} large, and denote $N:=\|s\|_{L^{\infty}(V)}$ and $M:=\|s\|_{L^{\infty}\left(V \backslash V_{L_{0}}\right)}$. Using the equation $\mathcal{L}(s, t)=0$, derive the inequality

$$
\Delta|s|^{2} \leq 4 N\left|K_{H_{0}}\right|
$$

Let $f \in C_{\delta}^{\infty}(V)$ and $A>0$ be the unique solution to

$$
\triangle(f-A C)=4\left|K_{H_{0}}\right| .
$$

Apply the maximum principle to $|s|^{2}-N(f-A \ell)$ on $V_{L_{0}}$ to conclude

$$
N^{2} \leq M^{2}+N\left(A L_{0}+2\|f\|_{L \infty}\right)
$$

so

$$
N \leq M+C\left(L_{0}+1\right) .
$$

C^{0} bound

Fix L_{0} large, and denote $N:=\|s\|_{L^{\infty}(V)}$ and $M:=\|s\|_{L^{\infty}\left(V \backslash V_{L_{0}}\right)}$.
Using the equation $\mathcal{L}(s, t)=0$, derive the inequality

$$
\Delta|s|^{2} \leq 4 N\left|K_{H_{0}}\right| .
$$

Let $f \in C_{\delta}^{\infty}(V)$ and $A>0$ be the unique solution to

$$
\Delta(f-A \ell)=4\left|K_{H_{0}}\right| .
$$

Apply the maximum principle to $|s|^{2}-N(f-A \ell)$ on $V_{L_{0}}$ to conclude

$$
N^{2} \leq M^{2}+N\left(A L_{0}+2\|f\|_{L \infty}\right)
$$

so

$$
N \leq M+C\left(L_{0}+1\right) .
$$

C^{0} bound

Fix L_{0} large, and denote $N:=\|s\|_{L^{\infty}(V)}$ and $M:=\|s\|_{L^{\infty}\left(V \backslash V_{L_{0}}\right)}$. Using the equation $\mathcal{L}(s, t)=0$, derive the inequality

$$
\Delta|s|^{2} \leq 4 N\left|K_{H_{0}}\right| .
$$

Let $f \in C_{\delta}^{\infty}(V)$ and $A>0$ be the unique solution to

$$
\Delta(f-A \ell)=4\left|K_{H_{0}}\right| .
$$

Apply the maximum principle to $|s|^{2}-N(f-A \ell)$ on $V_{L_{0}}$ to conclude

$$
N^{2} \leq M^{2}+N\left(A L_{0}+2\|f\|_{L^{\infty}}\right)
$$

SO

$$
N \leq M+C\left(L_{0}+1\right)
$$

C^{0} bound

Thus if N approaches infinity so does M. As a result it suffices to bound the supremum of $|s|$ on the tubular end.

Using the barrier function, we show that if $|s|$ gets large at some point down the tube, it must be large on a portion of the tube with length proportional to M. Integrating along this portion of tube and applying bounds from stability yields the result.

C^{0} bound

Thus if N approaches infinity so does M. As a result it suffices to bound the supremum of $|s|$ on the tubular end.

Using the barrier function, we show that if $|s|$ gets large at some point down the tube, it must be large on a portion of the tube with length proportional to M. Integrating along this portion of tube and applying bounds from stability yields the result.

C^{0} bound

A few more details. Let $x_{0} \in \overline{V \backslash V_{L_{0}}}$ be such that $|s|\left(x_{0}\right)=M$. Apply maximum principle to

$$
|s|^{2}-N(f-A \ell)
$$

on V_{L}, for $L \geq \ell\left(x_{0}\right)$, to see

$$
M \leq C\left(\|s\|_{L \infty}\left(\partial v_{L}\right)+L-\ell\left(x_{0}\right)\right) .
$$

Thus, for a length of tube $L-\ell\left(x_{0}\right)=M / 2 C$, we have $\|s\|_{L^{\infty}}$ is larger than $M / 2 C$ on transverse slices.

Now we use our stability assumption.

C^{0} bound

A few more details. Let $x_{0} \in \overline{V \backslash V_{L_{0}}}$ be such that $|s|\left(x_{0}\right)=M$. Apply maximum principle to

$$
|s|^{2}-N(f-A \ell)
$$

on V_{L}, for $L \geq \ell\left(x_{0}\right)$, to see

$$
M \leq C\left(\|s\|_{L^{\infty}\left(\partial V_{L}\right)}+L-\ell\left(x_{0}\right)\right) .
$$

Thus, for a length of tube $L-\ell\left(x_{0}\right)=M / 2 C$, we have $\|s\|_{L^{\infty}}$ is larger than $M / 2 C$ on transverse slices.

Now we use our stability assumption.

C^{0} bound

A few more details. Let $x_{0} \in \overline{V \backslash V_{L_{0}}}$ be such that $|s|\left(x_{0}\right)=M$. Apply maximum principle to

$$
|s|^{2}-N(f-A \ell)
$$

on V_{L}, for $L \geq \ell\left(x_{0}\right)$, to see

$$
M \leq C\left(\|s\|_{L^{\infty}\left(\partial V_{L}\right)}+L-\ell\left(x_{0}\right)\right)
$$

Thus, for a length of tube $L-\ell\left(x_{0}\right)=M / 2 C$, we have $\|s\|_{L^{\infty}}$ is larger than $M / 2 C$ on transverse slices.

C^{0} bound

A few more details. Let $x_{0} \in \overline{V \backslash V_{L_{0}}}$ be such that $|s|\left(x_{0}\right)=M$.
Apply maximum principle to

$$
|s|^{2}-N(f-A \ell)
$$

on V_{L}, for $L \geq \ell\left(x_{0}\right)$, to see

$$
M \leq C\left(\|s\|_{L^{\infty}\left(\partial V_{L}\right)}+L-\ell\left(x_{0}\right)\right)
$$

Thus, for a length of tube $L-\ell\left(x_{0}\right)=M / 2 C$, we have $\|s\|_{L^{\infty}}$ is larger than $M / 2 C$ on transverse slices.

Now we use our stability assumption.

C^{0} bound

On a transversal slice D_{z}, by a Theorem of Donaldson

$$
\|s\|_{L^{\infty}\left(D_{z}\right)} \leq C\left(\mathcal{M}\left(H_{0},\left.H_{0} e^{s}\right|_{D_{z}}\right)-1\right)
$$

This relays on stability
In fact, one can argue further that

$$
\|s\|_{L^{\infty}\left(D_{z}\right)} \leq C\left(M \int_{D_{z}}\left|K_{H_{0} e^{s} \mid D_{z}}\right|-1\right) .
$$

An energy bound shows we can control the curvature term, even when integrated along the tube of length $L-\ell\left(x_{0}\right)$. Thus integrating we achieve our desired bound:

C^{0} bound

On a transversal slice D_{z}, by a Theorem of Donaldson

$$
\|s\|_{L^{\infty}\left(D_{z}\right)} \leq C\left(\mathcal{M}\left(H_{0},\left.H_{0} e^{s}\right|_{D_{z}}\right)-1\right) .
$$

This relays on stability
In fact, one can argue further that

$$
\|s\|_{L^{\infty}\left(D_{z}\right)} \leq C\left(M \int_{D_{z}}\left|K_{H_{0} e^{s} \mid D_{z}}\right|-1\right) .
$$

An energy bound shows we can control the curvature term, even when integrated along the tube of length $L-\ell\left(x_{0}\right)$. Thus integrating we achieve our desired bound:

C^{0} bound

On a transversal slice D_{z}, by a Theorem of Donaldson

$$
\|s\|_{L^{\infty}\left(D_{z}\right)} \leq C\left(\mathcal{M}\left(H_{0},\left.H_{0} e^{s}\right|_{D_{z}}\right)-1\right) .
$$

This relays on stability
In fact, one can argue further that

$$
\|s\|_{L^{\infty}\left(D_{z}\right)} \leq C\left(M \int_{D_{z}}\left|K_{H_{0} e^{s} \mid D_{z}}\right|-1\right)
$$

An energy bound shows we can control the curvature term, even when integrated along the tube of length $L-\ell\left(x_{0}\right)$. Thus integrating we achieve our desired bound:

$$
M^{2} \leq C M
$$

Asymptotic decay

This establishes uniform C^{0} control of $|s|$. By openess along the method of continuity, it follows that $|s| \in C_{\delta}^{\infty}$ for each time t, although this bound may depend on t.

We need a uniform bound of the form

To accomplish this, we use the following inequality derived from $\mathcal{L}(s, t)=0$ and our C^{0} bound:

$$
\left|\nabla^{H_{0}} s\right|^{2} \leq C\left(\left|K_{H_{0}}\right|-\Delta|s|^{2}\right) .
$$

Asymptotic decay

This establishes uniform C^{0} control of $|s|$. By openess along the method of continuity, it follows that $|s| \in C_{\delta}^{\infty}$ for each time t, although this bound may depend on t.

We need a uniform bound of the form

$$
|s| \leq C e^{-\delta \ell}
$$

To accomplish this, we use the following inequality derived from $\mathcal{L}(s, t)=0$ and our C^{0} bound:

$$
\left|\nabla^{H_{0}} s\right|^{2} \leq C\left(\left|K_{H_{0}}\right|-\Delta|s|^{2}\right)
$$

Asymptotic decay

This establishes uniform C^{0} control of $|s|$. By openess along the method of continuity, it follows that $|s| \in C_{\delta}^{\infty}$ for each time t, although this bound may depend on t.

We need a uniform bound of the form

$$
|s| \leq C e^{-\delta \ell}
$$

To accomplish this, we use the following inequality derived from $\mathcal{L}(s, t)=0$ and our C^{0} bound:

$$
\left|\nabla^{H_{0}} s\right|^{2} \leq C\left(\left|K_{H_{0}}\right|-\Delta|s|^{2}\right)
$$

Asymptotic decay

Integrating the above inequality over V gives:

$$
\int_{V}\left|\nabla^{H_{0}} s\right|^{2} \leq C
$$

This is not good enough to give us decay. Instead we integrate over $V \backslash V_{L}$ to see

Because the bundle E_{D} is stable, it follows that $\nabla^{H_{0}}$ has trivial kernel on trace free endomorphisms. This yields

Asymptotic decay

Integrating the above inequality over V gives:

$$
\int_{V}\left|\nabla^{H_{0}} s\right|^{2} \leq C
$$

This is not good enough to give us decay. Instead we integrate over $V \backslash V_{L}$ to see

$$
\int_{V \backslash V_{L}}\left|\nabla^{H_{0}} s\right|^{2} \leq C\left(e^{-\delta L}+\int_{\partial V_{L}}\left|\nabla^{H_{0}} s\right||s|\right)
$$

Because the bundle E_{D} is stable, it follows that $\nabla^{H_{0}}$ has trivial kernel on trace free endomorphisms. This yields

Asymptotic decay

Integrating the above inequality over V gives:

$$
\int_{V}\left|\nabla^{H_{0}} s\right|^{2} \leq C
$$

This is not good enough to give us decay. Instead we integrate over $V \backslash V_{L}$ to see

$$
\int_{V \backslash V_{L}}\left|\nabla^{H_{0}} s\right|^{2} \leq C\left(e^{-\delta L}+\int_{\partial V_{L}}\left|\nabla^{H_{0}} s\right||s|\right)
$$

Because the bundle E_{D} is stable, it follows that $\nabla^{H_{0}}$ has trivial kernel on trace free endomorphisms. This yields

$$
\int_{\partial V_{L}}|s|^{2} \leq C \int_{\partial V_{L}}\left|\nabla^{H_{0}} s\right|^{2}
$$

Asymptotic decay

As a result we conclude

$$
g(L):=\int_{V \backslash V_{L}}\left|\nabla^{H_{0}} s\right|^{2} \leq C\left(e^{-\delta L}+\int_{\partial V_{L}}\left|\nabla^{H_{0}} s\right|^{2}\right)
$$

We can now follow an ODE argument.

Proposition
If $g:[0, \infty) \rightarrow[0, \infty)$ satisfies $g(L) \leq A e^{-\delta L}-B g^{\prime}(L)$, with $A, B>0$, then

$$
g(L) \leq(2 A+g(0)) e^{-\epsilon L}
$$

with $\epsilon:=\min \left\{\delta, \frac{1}{B}\right\}$.
This gives the correct clecay for g, and by elliptic regularity we can bootstrap this up to exponential control of $|s|$ and all its derivatives.

Asymptotic decay

As a result we conclude

$$
g(L):=\int_{V \backslash V_{L}}\left|\nabla^{H_{0}} s\right|^{2} \leq C\left(e^{-\delta L}+\int_{\partial V_{L}}\left|\nabla^{H_{0}} s\right|^{2}\right)
$$

We can now follow an ODE argument.
Proposition
If $g:[0, \infty) \rightarrow[0, \infty)$ satisfies $g(L) \leq A e^{-\delta L}-B g^{\prime}(L)$, with
$A, B>0$, then

$$
g(L) \leq(2 A+g(0)) e^{-\epsilon L}
$$

with $\epsilon:=\min \left\{\delta, \frac{1}{B}\right\}$.
This gives the correct decay for g, and by elliptic regularity we can
bootstrap this up to exponential control of $|s|$ and all its
derivatives.

Asymptotic decay

As a result we conclude

$$
g(L):=\int_{V \backslash V_{L}}\left|\nabla^{H_{0}} s\right|^{2} \leq C\left(e^{-\delta L}+\int_{\partial V_{L}}\left|\nabla^{H_{0}} s\right|^{2}\right)
$$

We can now follow an ODE argument.
Proposition
If $g:[0, \infty) \rightarrow[0, \infty)$ satisfies $g(L) \leq A e^{-\delta L}-B g^{\prime}(L)$, with
$A, B>0$, then

$$
g(L) \leq(2 A+g(0)) e^{-\epsilon L}
$$

with $\epsilon:=\min \left\{\delta, \frac{1}{B}\right\}$.
This gives the correct decay for g, and by elliptic regularity we can bootstrap this up to exponential control of $|s|$ and all its derivatives.

The singular case

To prove our main Theorem for reflexive sheaves E we use a regularization scheme based on ideas of Bando and Siu.

Blow up V along $S:=\operatorname{sing}(E)$
and equip \tilde{V} with a family of Kähler metrics ω_{ϵ} that degenerate to $\pi^{*} \omega$ as $\epsilon \rightarrow 0$.
\tilde{V} carries a holomorphic vector bundle \tilde{E}, which agrees with the reflexive sheaf E outside S, and to which the smooth case can be applied to construct a PHYM metric H_{ϵ}

The singular case

To prove our main Theorem for reflexive sheaves E we use a regularization scheme based on ideas of Bando and Siu.

Blow up V along $S:=\operatorname{sing}(E)$

$$
\pi: \tilde{V} \rightarrow V
$$

and equip \tilde{V} with a family of Kähler metrics ω_{ϵ} that degenerate to $\pi^{*} \omega$ as $\epsilon \rightarrow 0$.
\tilde{V} carries a holomorphic vector bundle \tilde{E}, which agrees with the reflexive sheaf E outside S, and to which the smooth case can be applied to construct a PHYM metric H_{ϵ}

The singular case

To prove our main Theorem for reflexive sheaves E we use a regularization scheme based on ideas of Bando and Siu.

Blow up V along $S:=\operatorname{sing}(E)$

$$
\pi: \tilde{V} \rightarrow V
$$

and equip \tilde{V} with a family of Kähler metrics ω_{ϵ} that degenerate to $\pi^{*} \omega$ as $\epsilon \rightarrow 0$.
\tilde{V} carries a holomorphic vector bundle \tilde{E}, which agrees with the reflexive sheaf E outside S, and to which the smooth case can be applied to construct a PHYM metric H_{ϵ}.

The singular case

Proposition

There is a complex manifold \tilde{V}, a holomorphic map $\pi: \tilde{V} \rightarrow V$ which induces a biholomorphic map to $V \backslash S$, and a holomorphic vector bundle \tilde{E} over \tilde{V} such that

$$
\left.\tilde{E}\right|_{\tilde{V} \backslash \pi^{-1}(S)} \cong \pi^{*}\left(\left.E\right|_{V \backslash S}\right)
$$

Moreover, there exists a one-parameter family of Kähler metrics ω_{ϵ} on \tilde{V} such that

- on $\pi^{-1}\left(V \backslash B_{\epsilon}(S)\right)$, we have $\omega_{\epsilon}=\pi^{*} \omega$.
- for $L \geq L_{0}$, the Neumann-Poincaré constant of $\left(\pi^{-1}\left(V_{L}\right), g_{\epsilon}\right)$ is bounded above by a constant independent of ϵ.
- $\pi^{-1}\left(V_{L_{0}}\right)$ is contained in a geodesic ball whose radius does not depend on ϵ.

The singular case

Proposition

There is a complex manifold \tilde{V}, a holomorphic map $\pi: \tilde{V} \rightarrow V$ which induces a biholomorphic map to $V \backslash S$, and a holomorphic vector bundle \tilde{E} over \tilde{V} such that

$$
\left.\tilde{E}\right|_{\tilde{V} \backslash \pi^{-1}(S)} \cong \pi^{*}\left(\left.E\right|_{V \backslash S}\right)
$$

Moreover, there exists a one-parameter family of Kähler metrics ω_{ϵ} on \tilde{V} such that

- on $\pi^{-1}\left(V \backslash B_{\epsilon}(S)\right)$, we have $\omega_{\epsilon}=\pi^{*} \omega$.
- for $L \geq L_{0}$, the Neumann-Poincaré constant of $\left(\pi^{-1}\left(V_{L}\right), g_{\epsilon}\right)$ is bounded above by a constant independent of ϵ.
= $\pi^{-1}\left(V_{L_{0}}\right)$ is contained in a geodesic ball whose radius does not depend on ϵ.

The singular case

Proposition

There is a complex manifold \tilde{V}, a holomorphic map $\pi: \tilde{V} \rightarrow V$ which induces a biholomorphic map to $V \backslash S$, and a holomorphic vector bundle \tilde{E} over \tilde{V} such that

$$
\left.\tilde{E}\right|_{\tilde{V} \backslash \pi^{-1}(S)} \cong \pi^{*}\left(\left.E\right|_{V \backslash S}\right)
$$

Moreover, there exists a one-parameter family of Kähler metrics ω_{ϵ} on \tilde{V} such that

- on $\pi^{-1}\left(V \backslash B_{\epsilon}(S)\right)$, we have $\omega_{\epsilon}=\pi^{*} \omega$.
- for $L \geq L_{0}$, the Neumann-Poincaré constant of $\left(\pi^{-1}\left(V_{L}\right), g_{\epsilon}\right)$ is bounded above by a constant independent of ϵ.
- $\pi^{-1}\left(V_{L_{0}}\right)$ is contained in a geodesic ball whose radius does not depend on ϵ.

The singular case

Proposition

There is a complex manifold \tilde{V}, a holomorphic map $\pi: \tilde{V} \rightarrow V$ which induces a biholomorphic map to $V \backslash S$, and a holomorphic vector bundle \tilde{E} over \tilde{V} such that

$$
\left.\tilde{E}\right|_{\tilde{V} \backslash \pi^{-1}(S)} \cong \pi^{*}\left(\left.E\right|_{V \backslash S}\right)
$$

Moreover, there exists a one-parameter family of Kähler metrics ω_{ϵ} on \tilde{V} such that

- on $\pi^{-1}\left(V \backslash B_{\epsilon}(S)\right)$, we have $\omega_{\epsilon}=\pi^{*} \omega$.
- for $L \geq L_{0}$, the Neumann-Poincaré constant of $\left(\pi^{-1}\left(V_{L}\right), g_{\epsilon}\right)$ is bounded above by a constant independent of ϵ.
- $\pi^{-1}\left(V_{L_{0}}\right)$ is contained in a geodesic ball whose radius does not depend on ϵ.

The singular case

We can not solve the equation with the metric $\pi^{*} \omega$ on \tilde{V} directly, since this metric is singular and the associated operators fail to be uniformly elliptic.

Instead, for each $\epsilon \in(0,1]$, we can construct a PHYM metric \tilde{H}_{ϵ} on \tilde{E}. Define

$$
\tilde{s}_{\epsilon}:=\log \tilde{H}_{1}^{-1} \tilde{H}_{\epsilon} .
$$

The desired PHYM metric on E will be constructed by taking the limit as ϵ tends to zero.

Fix and arbitrary neighborhood U of $S \subset V$. Need estimates independent of ϵ, specifically

$$
\left\|\tilde{S}_{\epsilon}\right\|_{C_{\delta}^{k}\left(\tilde{V}_{\epsilon} \backslash \tilde{U}\right)} \leq C_{k, U} .
$$

The singular case

We can not solve the equation with the metric $\pi^{*} \omega$ on \tilde{V} directly, since this metric is singular and the associated operators fail to be uniformly elliptic.

Instead, for each $\epsilon \in(0,1]$, we can construct a PHYM metric \tilde{H}_{ϵ} on \tilde{E}. Define

$$
\tilde{s}_{\epsilon}:=\log \tilde{H}_{1}^{-1} \tilde{H}_{\epsilon} .
$$

The desired PHYM metric on E will be constructed by taking the limit as ϵ tends to zero.

Fix and arbitrary neighborhood U of $S \subset V$. Need estimates independent of ϵ, specifically

$$
\left\|\tilde{S}_{\epsilon}\right\|_{C_{\delta}^{k}\left(\tilde{V}_{\epsilon} \backslash \tilde{U}\right)} \leq C_{k, U}
$$

The singular case

We can not solve the equation with the metric $\pi^{*} \omega$ on \tilde{V} directly, since this metric is singular and the associated operators fail to be uniformly elliptic.

Instead, for each $\epsilon \in(0,1]$, we can construct a PHYM metric \tilde{H}_{ϵ} on \tilde{E}. Define

$$
\tilde{s}_{\epsilon}:=\log \tilde{H}_{1}^{-1} \tilde{H}_{\epsilon} .
$$

The desired PHYM metric on E will be constructed by taking the limit as ϵ tends to zero.

Fix and arbitrary neighborhood U of $S \subset V$. Need estimates independent of ϵ, specifically

$$
\left\|\tilde{s}_{\epsilon}\right\|_{C_{\delta}^{k}\left(\tilde{V}_{\epsilon} \backslash \tilde{U}\right)} \leq C_{k, U}
$$

The singular case

Set

$$
K_{\epsilon}:=i \Lambda_{\epsilon} F_{\tilde{H}_{1}}-\frac{\operatorname{tr}\left(i \Lambda_{\epsilon} F_{\tilde{H}_{1}}\right)}{r k(E)} l d
$$

and let $f_{\epsilon} \in C_{\delta}^{0}\left(\tilde{V}_{\epsilon}\right)$ and $A_{\epsilon}>0 \mathrm{~b}$ the unique solutions to

$$
\Delta_{\epsilon}\left(f_{\epsilon}-A_{\epsilon} \ell\right)=4\left|K_{\epsilon}\right| .
$$

The key is to show that these barriers are independent of ϵ, i.e.

If so we can use the same argument as before to achieve
convergence.

The singular case

Set

$$
K_{\epsilon}:=i \Lambda_{\epsilon} F_{\tilde{H}_{1}}-\frac{\operatorname{tr}\left(i \Lambda_{\epsilon} F_{\tilde{H}_{1}}\right)}{r k(E)} l d
$$

and let $f_{\epsilon} \in C_{\delta}^{0}\left(\tilde{V}_{\epsilon}\right)$ and $A_{\epsilon}>0 \mathrm{~b}$ the unique solutions to

$$
\Delta_{\epsilon}\left(f_{\epsilon}-A_{\epsilon} \ell\right)=4\left|K_{\epsilon}\right| .
$$

The key is to show that these barriers are independent of ϵ, i.e.

$$
\left\|f_{\epsilon}\right\|_{L^{\infty}\left(\tilde{V}_{\epsilon} \backslash \tilde{U}\right)} \leq c U, \quad A_{\epsilon}<c, \quad\left\|F_{\tilde{H}_{1}}\right\|_{L^{2}\left(\tilde{V}_{\epsilon}, L_{0}\right)} \leq c
$$

If so we can use the same argument as before to achieve
convergence.

The singular case

Set

$$
K_{\epsilon}:=i \Lambda_{\epsilon} F_{\tilde{H}_{1}}-\frac{\operatorname{tr}\left(i \Lambda_{\epsilon} F_{\tilde{H}_{1}}\right)}{r k(E)} l d
$$

and let $f_{\epsilon} \in C_{\delta}^{0}\left(\tilde{V}_{\epsilon}\right)$ and $A_{\epsilon}>0 \mathrm{~b}$ the unique solutions to

$$
\Delta_{\epsilon}\left(f_{\epsilon}-A_{\epsilon} \ell\right)=4\left|K_{\epsilon}\right| .
$$

The key is to show that these barriers are independent of ϵ, i.e.

$$
\left\|f_{\epsilon}\right\|_{L^{\infty}\left(\tilde{V}_{\epsilon} \backslash \tilde{U}\right)} \leq c U, \quad A_{\epsilon}<c, \quad\left\|F_{\tilde{H}_{1}}\right\|_{L^{2}\left(\tilde{V}_{\epsilon}, L_{0}\right)} \leq c
$$

If so we can use the same argument as before to achieve convergence.

The singular case

Control of $\left\|F_{\tilde{H}_{1}}\right\|_{L^{2}\left(\tilde{V}_{\epsilon}, L_{0}\right)}$ follows by scaling

$$
\left|F_{\tilde{H}_{1}}\right|_{\omega_{\epsilon}}^{p} \operatorname{vol}_{\epsilon} \leq C\left(1+\epsilon^{2 n-2 p}\right)\left|F_{\tilde{H}_{1}}\right|_{\omega_{1}}^{p} v o l_{1} .
$$

Also note that ω_{ϵ} is independent of ϵ on the tubular end, so

Both of these estimates yield control of A_{ϵ}, since

$$
A_{\epsilon} \leq C\left\|K_{\epsilon}\right\|_{L^{1}\left(\tilde{V}_{\epsilon}\right)} .
$$

The singular case

Control of $\left\|F_{\tilde{H}_{1}}\right\|_{L^{2}\left(\tilde{V}_{\epsilon}, L_{0}\right)}$ follows by scaling

$$
\left|F_{\tilde{H}_{1}}\right|_{\omega_{\epsilon}}^{p} v o l_{\epsilon} \leq C\left(1+\epsilon^{2 n-2 p}\right)\left|F_{\tilde{H}_{1}}\right|_{\omega_{1}}^{p} v o l_{1} .
$$

Also note that ω_{ϵ} is independent of ϵ on the tubular end, so

$$
\left\|K_{\epsilon}\right\|_{c_{\delta}^{k}\left(V \backslash v_{L_{0}}\right)} \leq c_{k} .
$$

Both of these estimates yield control of A_{ϵ}, since

$$
A_{\epsilon} \leq C\left\|K_{\epsilon}\right\|_{L^{1}\left(\tilde{V}_{\epsilon}\right)} .
$$

The singular case

Control of $\left\|F_{\tilde{H}_{1}}\right\|_{L^{2}\left(\tilde{V}_{\epsilon}, L_{0}\right)}$ follows by scaling

$$
\left|F_{\tilde{H}_{1}}\right|_{\omega_{\epsilon}}^{p} v o l_{\epsilon} \leq C\left(1+\epsilon^{2 n-2 p}\right)\left|F_{\tilde{H}_{1}}\right|_{\omega_{1}}^{p} v o l_{1} .
$$

Also note that ω_{ϵ} is independent of ϵ on the tubular end, so

$$
\left\|K_{\epsilon}\right\|_{c_{\delta}^{k}\left(V \backslash V_{L_{0}}\right)} \leq c_{k} .
$$

Both of these estimates yield control of A_{ϵ}, since

$$
A_{\epsilon} \leq C\left\|K_{\epsilon}\right\|_{L^{1}\left(\tilde{V}_{\epsilon}\right)} .
$$

The singular case

Thus, all that is left is control for f_{ϵ}. Here we need our proposition which gave a uniform weighted Poincaré inequality

$$
\left\|e^{-\frac{\delta \ell}{2}}\left(f_{\epsilon}-\bar{f}_{\epsilon}\right)\right\|_{L^{2}\left(\tilde{V}_{\epsilon}\right)}^{2} \leq C\left\|\nabla_{\epsilon} f_{\epsilon}\right\|_{L^{2}\left(\tilde{V}_{\epsilon}\right)}^{2}
$$

Using control of A_{ϵ} and that f_{ϵ} solves the Poisson equation, we have

Combining with the Poincaré inequality gives L^{2} control of both $e^{-\frac{\partial \ell}{2}}\left(f_{\epsilon}-\bar{f}_{\epsilon}\right)$ and $\nabla_{\epsilon} f_{\epsilon}$.

The singular case

Thus, all that is left is control for f_{ϵ}. Here we need our proposition which gave a uniform weighted Poincaré inequality

$$
\left\|e^{-\frac{\delta \ell}{2}}\left(f_{\epsilon}-\bar{f}_{\epsilon}\right)\right\|_{L^{2}\left(\tilde{V}_{\epsilon}\right)}^{2} \leq C\left\|\nabla_{\epsilon} f_{\epsilon}\right\|_{L^{2}\left(\tilde{V}_{\epsilon}\right)}^{2}
$$

Using control of A_{ϵ} and that f_{ϵ} solves the Poisson equation, we have

$$
\begin{aligned}
\left\|\nabla_{\epsilon} f_{\epsilon}\right\|_{L^{2}\left(\tilde{V}_{\epsilon}\right)}^{2} & =\int_{\tilde{V}_{\epsilon}}\left\langle\Delta_{\epsilon}\left(f_{\epsilon}-\bar{f}_{\epsilon}\right), f_{\epsilon}-\bar{f}_{\epsilon}\right\rangle \\
& \leq\left\|e^{\frac{\delta \ell}{2}}\left(K_{\epsilon}+A_{\epsilon} \Delta_{\epsilon} \ell\right)\right\|_{L^{2}\left(\tilde{V}_{\epsilon}\right)}\left\|e^{-\frac{\delta \ell}{2}}\left(f_{\epsilon}-\bar{f}_{\epsilon}\right)\right\|_{L^{2}\left(\tilde{V}_{\epsilon}\right)}
\end{aligned}
$$

Combining with the Poincaré inequality gives L^{2} control of both $e^{-\frac{\partial \ell}{2}}\left(f_{\epsilon}-\bar{f}_{\epsilon}\right)$ and $\nabla_{\epsilon} f_{\epsilon}$.

The singular case

Thus, all that is left is control for f_{ϵ}. Here we need our proposition which gave a uniform weighted Poincaré inequality

$$
\left\|e^{-\frac{\delta \ell}{2}}\left(f_{\epsilon}-\bar{f}_{\epsilon}\right)\right\|_{L^{2}\left(\tilde{V}_{\epsilon}\right)}^{2} \leq C\left\|\nabla_{\epsilon} f_{\epsilon}\right\|_{L^{2}\left(\tilde{V}_{\epsilon}\right)}^{2}
$$

Using control of A_{ϵ} and that f_{ϵ} solves the Poisson equation, we have

$$
\begin{aligned}
\left\|\nabla_{\epsilon} f_{\epsilon}\right\|_{L^{2}\left(\tilde{V}_{\epsilon}\right)}^{2} & =\int_{\tilde{V}_{\epsilon}}\left\langle\Delta_{\epsilon}\left(f_{\epsilon}-\bar{f}_{\epsilon}\right), f_{\epsilon}-\bar{f}_{\epsilon}\right\rangle \\
& \leq\left\|e^{\frac{\delta \ell}{2}}\left(K_{\epsilon}+A_{\epsilon} \Delta_{\epsilon} \ell\right)\right\|_{L^{2}\left(\tilde{V}_{\epsilon}\right)}\left\|e^{-\frac{\delta \ell}{2}}\left(f_{\epsilon}-\bar{f}_{\epsilon}\right)\right\|_{L^{2}\left(\tilde{V}_{\epsilon}\right)}
\end{aligned}
$$

Combining with the Poincaré inequality gives L^{2} control of both $e^{-\frac{\delta \ell}{2}}\left(f_{\epsilon}-\bar{f}_{\epsilon}\right)$ and $\nabla_{\epsilon} f_{\epsilon}$.

The singular case

Now, working on the tube, set

$$
F(L):=\int_{V \backslash V_{L_{0}}}\left|\nabla_{\epsilon} f_{\epsilon}\right|^{2}
$$

We just saw that $F(L) \leq c$.
As before, an integration by parts estimate shows

$$
F(L) \leq C\left(e^{-\frac{\delta L}{2}}-F^{\prime}(L)\right),
$$

which implies on $V \backslash V_{L_{0}}$

The singular case

Now, working on the tube, set

$$
F(L):=\int_{V \backslash V_{L_{0}}}\left|\nabla_{\epsilon} f_{\epsilon}\right|^{2}
$$

We just saw that $F(L) \leq c$.
As before, an integration by parts estimate shows

$$
F(L) \leq C\left(e^{-\frac{\delta L}{2}}-F^{\prime}(L)\right)
$$

which implies on $V \backslash V_{L_{0}}$

$$
F(L) \leq C e^{-\gamma L}
$$

Control of f_{ϵ} everywhere on \tilde{V}_{ϵ} follows from interior estimates.

The singular case

Now, working on the tube, set

$$
F(L):=\int_{V \backslash V_{L_{0}}}\left|\nabla_{\epsilon} f_{\epsilon}\right|^{2}
$$

We just saw that $F(L) \leq c$.
As before, an integration by parts estimate shows

$$
F(L) \leq C\left(e^{-\frac{\delta L}{2}}-F^{\prime}(L)\right)
$$

which implies on $V \backslash V_{L_{0}}$

$$
F(L) \leq C e^{-\gamma L}
$$

Control of f_{ϵ} everywhere on \tilde{V}_{ϵ} follows from interior estimates.

Tangent cones

This completes the existence theorem. However, it says nothing about the behavior of the connection near the singular set (where E is not locally free).

In the case of constructing G_{2} instantons, for the perturbation theory to work we need to know the structure of the singularity. Recall the construction uses Calabi-Yau 3-folds as building blocks.

In complex dimension three, reflexive sheaves only have point singularities.

Tangent cones

This completes the existence theorem. However, it says nothing about the behavior of the connection near the singular set (where E is not locally free).

In the case of constructing G_{2} instantons, for the perturbation theory to work we need to know the structure of the singularity. Recall the construction uses Calabi-Yau 3-folds as building blocks.

In complex dimension three, reflexive sheaves only have point singularities.

Tangent cones

This completes the existence theorem. However, it says nothing about the behavior of the connection near the singular set (where E is not locally free).

In the case of constructing G_{2} instantons, for the perturbation theory to work we need to know the structure of the singularity. Recall the construction uses Calabi-Yau 3-folds as building blocks.

In complex dimension three, reflexive sheaves only have point singularities.

Tangent cones

We consider the case of a reflexive sheaf E with an isolated singularity at the origin in $B_{1}(0) \subset \mathbb{C}^{n}$. Equip $B_{1}(0)$ with a metric

$$
\omega=\frac{i}{2} \partial \bar{\partial}|z|^{2}+O\left(|z|^{2}\right)
$$

Let H solve $i \wedge F_{H}=0$ on $B_{1}(0)$, and denote by A the Chern connection.

For $\lambda_{i} \rightarrow 0$, let $\tau_{i}: B_{1}(0) \rightarrow B_{\lambda_{i}}(0)$ be defined by $z \mapsto \lambda_{i} z$. Set
$A_{i}:=\tau_{i}^{*} A$.

Tangent cones

We consider the case of a reflexive sheaf E with an isolated singularity at the origin in $B_{1}(0) \subset \mathbb{C}^{n}$. Equip $B_{1}(0)$ with a metric

$$
\omega=\frac{i}{2} \partial \bar{\partial}|z|^{2}+O\left(|z|^{2}\right)
$$

Let H solve $i \wedge F_{H}=0$ on $B_{1}(0)$, and denote by A the Chern connection.

For $\lambda_{i} \rightarrow 0$, let $\tau_{i}: B_{1}(0) \rightarrow B_{\lambda_{i}}(0)$ be defined by $z \mapsto \lambda_{i} z$. Set
$A_{i}:=\tau_{i}^{*} A$.

Tangent cones

We consider the case of a reflexive sheaf E with an isolated singularity at the origin in $B_{1}(0) \subset \mathbb{C}^{n}$. Equip $B_{1}(0)$ with a metric

$$
\omega=\frac{i}{2} \partial \bar{\partial}|z|^{2}+O\left(|z|^{2}\right)
$$

Let H solve $i \wedge F_{H}=0$ on $B_{1}(0)$, and denote by A the Chern connection.

For $\lambda_{i} \rightarrow 0$, let $\tau_{i}: B_{1}(0) \rightarrow B_{\lambda_{i}}(0)$ be defined by $z \mapsto \lambda_{i} z$. Set $A_{i}:=\tau_{i}^{*} A$.

Tangent cones

A_{i} is a sequence of Yang-Mills connections, using Price monotonicity A_{i} converges (away from a singular set) to a limit connection A_{∞}, satisfying $\iota_{\partial r}^{\partial r} A_{\infty}=0$. (Tian)

Questions:

- Does Λ_{∞} depend on the choice of sequence λ_{i} ?
- Can A_{∞} be identified?

In general this type of question is very hard. B. Yang demonstrated an affirmative answer to the first question assuming that $\left|F_{A}\right| \leq \frac{C}{r^{2}}$. Can we use the complex structure to our advantage?

Tangent cones

A_{i} is a sequence of Yang-Mills connections, using Price monotonicity A_{i} converges (away from a singular set) to a limit connection A_{∞}, satisfying $\iota_{\frac{\partial}{\partial r}} A_{\infty}=0$. (Tian)

Questions:

- Does A_{∞} depend on the choice of sequence λ_{i} ?
- Can A_{∞} be identified?

In general this type of question is very hard. B. Yang demonstrated an affirmative answer to the first question assuming that $\left|F_{A}\right| \leq \frac{C}{r^{2}}$. Can we use the complex structure to our advantage?

Tangent cones

A_{i} is a sequence of Yang-Mills connections, using Price monotonicity A_{i} converges (away from a singular set) to a limit connection A_{∞}, satisfying $\iota_{\frac{\partial}{\partial r}} A_{\infty}=0$. (Tian)

Questions:

- Does A_{∞} depend on the choice of sequence λ_{i} ?
- Can A_{∞} be identified?

In general this type of question is very hard. B. Yang demonstrated an affirmative answer to the first question assuming that $\left|F_{A}\right| \leq \frac{C}{r^{2}}$. Can we use the complex structure to our advantage?

Tangent cones

A_{i} is a sequence of Yang-Mills connections, using Price monotonicity A_{i} converges (away from a singular set) to a limit connection A_{∞}, satisfying $\iota_{\frac{\partial}{\partial r}} A_{\infty}=0$. (Tian)

Questions:

- Does A_{∞} depend on the choice of sequence λ_{i} ?
- Can A_{∞} be identified?

In general this type of question is very hard. B. Yang demonstrated an affirmative answer to the first question assuming that $\left|F_{A}\right| \leq \frac{C}{r^{2}}$.
Can we use the complex structure to our advantage?

Tangent cones

Let $\pi: \mathbb{C}^{n} \backslash\{0\} \rightarrow \mathbb{P}^{n-1}$ be the natural projection, and $\iota: \mathbb{C}^{n} \backslash\{0\} \rightarrow \mathbb{C}^{n}$ the inclusion. Let $\Theta=\sum_{j=1}^{n} \frac{z^{j} d z^{j}-z^{j} d \bar{z}^{j}}{2 i|z|^{2}}$ be the pullback of the standard contact structure on $S^{2 n-1}$.

We assume that $E \cong \iota_{*} \pi^{*} \mathcal{F}$, where $\mathcal{F}=\oplus \mathcal{F}_{p}$ is a direct sum of stable bundles on \mathbb{P}^{n-1}

If B_{p} is the unique HYM connection on \mathcal{F}_{p} with HYM constant μ_{p}, then

$$
A_{0}:=\bigoplus \pi^{*} B_{p}+i \mu_{p} I d_{\mathcal{F}_{p}} \Theta
$$

is the unique tangent cone for any HYM connection on E.

Tangent cones

Let $\pi: \mathbb{C}^{n} \backslash\{0\} \rightarrow \mathbb{P}^{n-1}$ be the natural projection, and $\iota: \mathbb{C}^{n} \backslash\{0\} \rightarrow \mathbb{C}^{n}$ the inclusion. Let $\Theta=\sum_{j=1}^{n} \frac{\bar{z}^{j} d z^{j}-z^{j} d \bar{z}^{j}}{2 i|z|^{2}}$ be the pullback of the standard contact structure on $S^{2 n-1}$.

We assume that $E \cong \iota_{*} \pi^{*} \mathcal{F}$, where $\mathcal{F}=\oplus \mathcal{F}_{p}$ is a direct sum of stable bundles on \mathbb{P}^{n-1}.

If B_{p} is the unique HYM connection on \mathcal{F}_{p} with HYM constant μ_{p}, then

$$
A_{0}:=\bigoplus \pi^{*} B_{p}+i \mu_{p} / d_{\mathcal{F}_{p}} \Theta
$$

is the unique tangent cone for any HYM connection on E.

Tangent cones

Let $\pi: \mathbb{C}^{n} \backslash\{0\} \rightarrow \mathbb{P}^{n-1}$ be the natural projection, and
$\iota: \mathbb{C}^{n} \backslash\{0\} \rightarrow \mathbb{C}^{n}$ the inclusion. Let $\Theta=\sum_{j=1}^{n} \frac{\bar{z}^{j} d z^{j}-z^{j} d \bar{z}^{j}}{2 i|z|^{2}}$ be the pullback of the standard contact structure on $S^{2 n-1}$.

We assume that $E \cong \iota_{*} \pi^{*} \mathcal{F}$, where $\mathcal{F}=\oplus \mathcal{F}_{p}$ is a direct sum of stable bundles on \mathbb{P}^{n-1}.

If B_{p} is the unique HYM connection on \mathcal{F}_{p} with HYM constant μ_{p}, then

$$
A_{0}:=\bigoplus \pi^{*} B_{p}+i \mu_{p} I d_{\mathcal{F}_{p}} \Theta
$$

is the unique tangent cone for any HYM connection on E.

Tangent cones

Theorem (J. - Sá Earp-Walpuski)
In $B_{1}(0)$, assume $E \cong \iota_{*} \pi^{*} \mathcal{F}$, and let A be a HYM connection on
E. Then there exists a unique connection A_{0} satisfying

$$
|z|^{k+1}\left|\nabla_{0}^{k}\left(A-A_{0}\right)\right| \leq \frac{C_{k}}{(-\log |z|)^{1 / 2}}
$$

The constants C_{k} depend on $\omega, \mathcal{F},\left.A\right|_{B_{R}(0) \backslash B_{\frac{R}{2}}(0)}$ and $\left\|F_{A}\right\|_{L^{2}\left(B_{R}(0)\right.}^{2}$.

Tangent cones

Theorem (J. - Sá Earp-Walpuski)
In $B_{1}(0)$, assume $E \cong \iota_{*} \pi^{*} \mathcal{F}$, and let A be a HYM connection on
E. Then there exists a unique connection A_{0} satisfying

$$
|z|^{k+1}\left|\nabla_{0}^{k}\left(A-A_{0}\right)\right| \leq \frac{C_{k}}{(-\log |z|)^{1 / 2}}
$$

The constants C_{k} depend on $\omega, \mathcal{F},\left.A\right|_{B_{R}(0) \backslash B_{\frac{R}{2}}(0)}$ and $\left\|F_{A}\right\|_{L^{2}\left(B_{R}(0)\right.}^{2}$.

We do have some examples satisfying the assumptions on $(E, \bar{\partial})$. In the future, we hope to improve our assumptions to include more general complex structures.

Thank You!

