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A G2 manifold is a seven dimensional Riemannian manifold whose
holonomy group is contained in the exceptional Lie group G2.

I G2 manifolds are Einstein.
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I G2 manifolds play an important role in M−theory

I They admit natural classes of Yang-Mills bundles, called G2

instantons. Donaldson and Thomas conjecture counting G2

instantons can lead to a Casson-type invariant.



Motivation

A G2 manifold is a seven dimensional Riemannian manifold whose
holonomy group is contained in the exceptional Lie group G2.

I G2 manifolds are Einstein.

I They have natural classes of calibrated submanifolds.

I G2 manifolds play an important role in M−theory

I They admit natural classes of Yang-Mills bundles, called G2

instantons. Donaldson and Thomas conjecture counting G2

instantons can lead to a Casson-type invariant.



Motivation

A G2 manifold is a seven dimensional Riemannian manifold whose
holonomy group is contained in the exceptional Lie group G2.

I G2 manifolds are Einstein.

I They have natural classes of calibrated submanifolds.

I G2 manifolds play an important role in M−theory

I They admit natural classes of Yang-Mills bundles, called G2

instantons. Donaldson and Thomas conjecture counting G2

instantons can lead to a Casson-type invariant.



Motivation

A G2 manifold is a seven dimensional Riemannian manifold whose
holonomy group is contained in the exceptional Lie group G2.

I G2 manifolds are Einstein.

I They have natural classes of calibrated submanifolds.

I G2 manifolds play an important role in M−theory

I They admit natural classes of Yang-Mills bundles, called G2

instantons. Donaldson and Thomas conjecture counting G2

instantons can lead to a Casson-type invariant.



Motivation

A G2 manifold is a seven dimensional Riemannian manifold whose
holonomy group is contained in the exceptional Lie group G2.

I G2 manifolds are Einstein.

I They have natural classes of calibrated submanifolds.

I G2 manifolds play an important role in M−theory

I They admit natural classes of Yang-Mills bundles, called G2

instantons. Donaldson and Thomas conjecture counting G2

instantons can lead to a Casson-type invariant.



Motivation

A G2 manifold is a seven dimensional Riemannian manifold whose
holonomy group is contained in the exceptional Lie group G2.

I G2 manifolds are Einstein.

I They have natural classes of calibrated submanifolds.

I G2 manifolds play an important role in M−theory

I They admit natural classes of Yang-Mills bundles, called G2

instantons. Donaldson and Thomas conjecture counting G2

instantons can lead to a Casson-type invariant.



Motivation
I The main motivation for this project is the construction of G2

instantons.

I Idea is based off of the twisted connected sum construction,
pioneered by Kovalev and later extended by
Corti-Haskins-Nordström-Pacini.

I In short, one begins with two asymptotically cylindrical
Calabi-Yau 3-folds, each equipped with a trivial S1 bundle,
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manifolds. Can it be used to construct G2 instantons?

The starting point for our work is the result of Sá Earp:
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Let (E , ∂̄) be a holomorphic bundle over an asymptotically
cylindrical Calabi-Yau 3-fold. If E is asymptotic to a degree zero
stable bundle along the cylindrical end, then there exists a metric
H on E satisfying the Hermitian Yang-Mills equations.
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Motivation

From here, Sá Earp-Walpuski outlined a program and developed
the perturbation theory needed to construct a G2 instanton from
the twisted connected sum.

I Exponential asymptotic decay of the connection on each
building block needed.

I The perturbation theory places restrictions on the cohomology
of the bundle.

As of yet no new example of G2 instantons created by this method.
However, reflexive sheaves are more abundant. Can they be used
to construct singular G2 instantons?
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Background

Let X be a complex manifold.

For a Kähler metric g on T 1,0X , we have the corresponding Kähler
form

ω =
i

2
gj k̄ dz

j ∧ dz̄k .

Let (E , ∂̄) be a holomorphic vector bundle over X .

Given a Hermitian metric H on E , one can define the associated
Chern connection dH , compatible with H and the holomorphic
structure ∂̄. We write dH = ∂H + ∂̄.
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iΛFH = µ Id

is called a Hermitian-Yang-Mills metric (Hermitian-Einstein).
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Question: When does (E , ∂̄) admit a Hermitian-Yang-Mills
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Previous results

If X is compact, solution is given by the following beautiful result:

Theorem (Donaldson, Uhlenbeck-Yau)

E admits a Hermitian-Yang-Mills metric if and only if it is stable in
the sense of Mumford-Takemoto:

deg(F)

rk(F)
<

deg(E )

rk(E )

for all proper, reflexive subsheaves F ⊂ E .

The degree is given by

deg(E ) = i

∫
X
tr(FH) ∧ ωn−1,

and is independent of a choice of metric.
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Many interesting generalizations of the above Theorem. Most
notably for us, the result was extended to the case where E is a
reflexive sheaf by Bando-Siu.

Here, metrics are only defined away from the singular set (of
complex codimension at least 3), where E is a holomorphic bundle.

The solution satisfies

||iΛFH ||L∞(X ) ≤ C and ||FH ||L2(X ) ≤ C .

Such metrics are called admissible.
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Donaldson uses the Yang-Mills flow (and later Simpson and
Bando-Siu), while Uhlenbeck-Yau employ the method of continuity.

Let H0 be a fixed metric and H a metric along either method.
Right away one sees |iΛFH | is controlled.

The key estimate is a uniform C 0 bound for es = H−1
0 H. This is

where stability comes into play in the compact setting.
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Previous results

Question: What happens if X is complete, non-compact?

In some cases you can make the structure of X work for you.

Theorem (Ni-Ren)

If X admits a spectral gap (λ1(X ) > 0), and E admits a metric H0

such that |iΛFH0 − µId | ∈ Lp(X ) for some p > 1, then there exists
a metric H such that

iΛFH = µ Id .

This uses an argument similar to Donaldson’s solution of the
Dirichlet problem, since we have along the flow(

d

dt
+ ∆

)
|iΛFH − µ Id |2 ≤ 0.
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Previous results

(In this talk I use the Geometer’s Laplacian, ∆ = d∗d on functions)

Ni also showed that the same conclusion holds, for example, if X
satisfies a L2 Sobolev inequality and p ∈ [1, n2 ), or if it is
non-parabolic (i.e., admits a positive Greens function) and p = 1.

In this case, for a fixed initial metric H0, one can solve

∆u = |iΛFH0 |,

and use u as a barrier to control s, since

∆log tr(es) ≤ 4|iΛFH0 |.

For asymptotically cylindrical manifolds we have linear volume
growth, so the above results can not be used.
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Main result

Building off of Sá Earp’s result, we prove the following

Theorem (J. - Walpuski)

Let V be an asymptotically cylindrical Kähler manifold with
asymptotic cross-section D. Let ED be a stable vector bundle over
D, and E a reflexive sheaf asymptotic to ED . There exists an
asymptotically translation-invariant Hermitian metric H on E which
satisfies the projective Hermitian Yang-Mills (PHYM) equation

KH := iΛFH −
tr(iΛFH)

rk(E )
Id = 0.

Furthermore |FH | ∈ L2
loc(V ).

Rmk: Every PHYM metric can be converted to a HYM metric via
a conformal change. However, this metric will typically not be
asymptotically translation invariant.
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ACyl Kähler manifolds

Definition: Let (D, gD , ID) be a compact Kähler manifold. A
Kähler manifold (V , g , I ) is called asymptotically cylindrical (ACyl)
with asymptotic cross-section (D, Ig , ID) if there exists a constant
δV > 0, a compact subset K ⊂ V , and a diffeomorphism
π : V \ K → (0,∞)× S1 × D, such that

|∇k(π∗g − g∞)|+ |∇k(π∗I − I∞)| = O(e−δV `)

for all k ≥ 0. Here (`, θ) are the canonical coordinates on
(0,∞)× S1 and

g∞ := d`2 ⊕ dθ2 ⊕ gD I∞ =

(
0 −1
1 0

)
⊕ ID



ACyl Kähler manifolds

By a slight abuse of notation denote ` : V → [0,∞). Given L > 0,
define the truncated manifold

VL := `−1([0, L]).

Let E be a reflexive sheaf over V . Let S be the singular set of E
and assume S ⊂ VL0 for some L0. Then we have the following:

Definition: Let (ED , ∂̄D) be a holomorphic vector bundle over D.
Let (E∞, ∂̄∞) denote the pullback to (L0,∞)× S1 × D. We say E
is asymptotic to ED if there exists a bundle isomorphism
π̄ : E |V \VL0

→ E∞ and a constant δE such that

|∇k(π∗∂̄ − ∂̄∞)| = O(e−δE `).

Finally, a metric H on E is asymptotically translation-invariant if it
is asymptotic to a metric HD on ED .



ACyl Kähler manifolds

By a slight abuse of notation denote ` : V → [0,∞). Given L > 0,
define the truncated manifold

VL := `−1([0, L]).

Let E be a reflexive sheaf over V . Let S be the singular set of E
and assume S ⊂ VL0 for some L0. Then we have the following:

Definition: Let (ED , ∂̄D) be a holomorphic vector bundle over D.
Let (E∞, ∂̄∞) denote the pullback to (L0,∞)× S1 × D. We say E
is asymptotic to ED if there exists a bundle isomorphism
π̄ : E |V \VL0

→ E∞ and a constant δE such that

|∇k(π∗∂̄ − ∂̄∞)| = O(e−δE `).

Finally, a metric H on E is asymptotically translation-invariant if it
is asymptotic to a metric HD on ED .



ACyl Kähler manifolds

By a slight abuse of notation denote ` : V → [0,∞). Given L > 0,
define the truncated manifold

VL := `−1([0, L]).

Let E be a reflexive sheaf over V . Let S be the singular set of E
and assume S ⊂ VL0 for some L0. Then we have the following:

Definition: Let (ED , ∂̄D) be a holomorphic vector bundle over D.
Let (E∞, ∂̄∞) denote the pullback to (L0,∞)× S1 × D. We say E
is asymptotic to ED if there exists a bundle isomorphism
π̄ : E |V \VL0

→ E∞ and a constant δE such that

|∇k(π∗∂̄ − ∂̄∞)| = O(e−δE `).

Finally, a metric H on E is asymptotically translation-invariant if it
is asymptotic to a metric HD on ED .



ACyl Kähler manifolds

By a slight abuse of notation denote ` : V → [0,∞). Given L > 0,
define the truncated manifold

VL := `−1([0, L]).

Let E be a reflexive sheaf over V . Let S be the singular set of E
and assume S ⊂ VL0 for some L0. Then we have the following:

Definition: Let (ED , ∂̄D) be a holomorphic vector bundle over D.
Let (E∞, ∂̄∞) denote the pullback to (L0,∞)× S1 × D. We say E
is asymptotic to ED if there exists a bundle isomorphism
π̄ : E |V \VL0

→ E∞ and a constant δE such that

|∇k(π∗∂̄ − ∂̄∞)| = O(e−δE `).

Finally, a metric H on E is asymptotically translation-invariant if it
is asymptotic to a metric HD on ED .



Linear analysis

We define the following weighted Hölder spaces. For k ∈ N,
α ∈ (0, 1), and δ ∈ R, define:

C k,α
δ (V ) := {f ∈ C k,α(V ) | ||f ||

C k,α
δ

<∞}

with
|| · ||

C k,α
δ

:= ||eδ` · ||C k,α .

Proposition

For 0 < δ << 1, the linear map C k+2,α
δ (V )⊕ R→ C k,α

δ (V )
defined by

(f ,A) 7→ ∆f − A∆`

is an isomorphism.
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Proof

As a first step, we prove the result when E is smooth.
Construct a background Hermitian metric H0 on E which is
asymptotically translation-invariant and satisfies

KH0 ∈ C∞δ (V , i su(E ,H0)).

Given such an H0, we define a map

L : C∞δ (V , isu(E ,H0))× [0, 1]→ C∞δ (V , isu(E ,H0))

by
L(s, t) : Ad(es/2)KH0es + t · s.

A solution s to the equation L(s, 0) = 0 proves the theorem.
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Proof

For estimates, it is helpful to think of the the equation L(s, t) = 0
as (

1

2
∇∗H0
∇H0 + t

)
s + B(∇H0s ⊗∇H0s) = C (KH0),

where B and C are linear with coefficients depending on s, but not
on its derivatives.

We now follow the method of continuity. Set

I := {t ∈ [0, 1] : L(s, t) = 0 for some s}.

We prove I is open, closed, and nonempty.
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Proof

I First, to show 1 ∈ I , we use a trick discovered by
Lübke-Teleman.

I To show I is open, we demonstrate that the Linearization of L
is invertible.

I Key step is to show that |s| is bounded uniformly, from which
all other estimates follow.

I Use barriers to show that if |s| is large, it must be large far
down the tube, where we can take advantage of the stability
assumption.
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C 0 bound

Fix L0 large, and denote N := ||s||L∞(V ) and M := ||s||L∞(V \VL0
).

Using the equation L(s, t) = 0, derive the inequality

∆|s|2 ≤ 4N|KH0 |.

Let f ∈ C∞δ (V ) and A > 0 be the unique solution to

∆(f − A`) = 4|KH0 |.

Apply the maximum principle to |s|2 − N(f − A`) on VL0 to
conclude

N2 ≤ M2 + N(AL0 + 2||f ||L∞)

so
N ≤ M + C (L0 + 1).



C 0 bound

Fix L0 large, and denote N := ||s||L∞(V ) and M := ||s||L∞(V \VL0
).

Using the equation L(s, t) = 0, derive the inequality

∆|s|2 ≤ 4N|KH0 |.

Let f ∈ C∞δ (V ) and A > 0 be the unique solution to

∆(f − A`) = 4|KH0 |.

Apply the maximum principle to |s|2 − N(f − A`) on VL0 to
conclude

N2 ≤ M2 + N(AL0 + 2||f ||L∞)

so
N ≤ M + C (L0 + 1).



C 0 bound

Fix L0 large, and denote N := ||s||L∞(V ) and M := ||s||L∞(V \VL0
).

Using the equation L(s, t) = 0, derive the inequality

∆|s|2 ≤ 4N|KH0 |.

Let f ∈ C∞δ (V ) and A > 0 be the unique solution to

∆(f − A`) = 4|KH0 |.

Apply the maximum principle to |s|2 − N(f − A`) on VL0 to
conclude

N2 ≤ M2 + N(AL0 + 2||f ||L∞)

so
N ≤ M + C (L0 + 1).



C 0 bound

Fix L0 large, and denote N := ||s||L∞(V ) and M := ||s||L∞(V \VL0
).

Using the equation L(s, t) = 0, derive the inequality

∆|s|2 ≤ 4N|KH0 |.

Let f ∈ C∞δ (V ) and A > 0 be the unique solution to

∆(f − A`) = 4|KH0 |.

Apply the maximum principle to |s|2 − N(f − A`) on VL0 to
conclude

N2 ≤ M2 + N(AL0 + 2||f ||L∞)

so
N ≤ M + C (L0 + 1).



C 0 bound

Thus if N approaches infinity so does M. As a result it suffices to
bound the supremum of |s| on the tubular end.

Using the barrier function, we show that if |s| gets large at some
point down the tube, it must be large on a portion of the tube
with length proportional to M. Integrating along this portion of
tube and applying bounds from stability yields the result.
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C 0 bound

A few more details. Let x0 ∈ V \VL0 be such that |s|(x0) = M.

Apply maximum principle to

|s|2 − N(f − A`)

on VL, for L ≥ `(x0), to see

M ≤ C (||s||L∞(∂VL) + L− `(x0)).

Thus, for a length of tube L− `(x0) = M/2C , we have ||s||L∞ is
larger than M/2C on transverse slices.

Now we use our stability assumption.
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C 0 bound

On a transversal slice Dz , by a Theorem of Donaldson

||s||L∞(Dz ) ≤ C (M(H0,H0e
s |Dz )− 1).

This relays on stability

In fact, one can argue further that

||s||L∞(Dz ) ≤ C (M

∫
Dz

|KH0es |Dz
| − 1).

An energy bound shows we can control the curvature term, even
when integrated along the tube of length L− `(x0). Thus
integrating we achieve our desired bound:

M2 ≤ CM.



C 0 bound

On a transversal slice Dz , by a Theorem of Donaldson

||s||L∞(Dz ) ≤ C (M(H0,H0e
s |Dz )− 1).

This relays on stability

In fact, one can argue further that

||s||L∞(Dz ) ≤ C (M

∫
Dz

|KH0es |Dz
| − 1).

An energy bound shows we can control the curvature term, even
when integrated along the tube of length L− `(x0). Thus
integrating we achieve our desired bound:

M2 ≤ CM.



C 0 bound

On a transversal slice Dz , by a Theorem of Donaldson

||s||L∞(Dz ) ≤ C (M(H0,H0e
s |Dz )− 1).

This relays on stability

In fact, one can argue further that

||s||L∞(Dz ) ≤ C (M

∫
Dz

|KH0es |Dz
| − 1).

An energy bound shows we can control the curvature term, even
when integrated along the tube of length L− `(x0). Thus
integrating we achieve our desired bound:

M2 ≤ CM.



Asymptotic decay

This establishes uniform C 0 control of |s|. By openess along the
method of continuity, it follows that |s| ∈ C∞δ for each time t,
although this bound may depend on t.

We need a uniform bound of the form

|s| ≤ Ce−δ`.

To accomplish this, we use the following inequality derived from
L(s, t) = 0 and our C 0 bound:

|∇H0s|2 ≤ C (|KH0 | −∆|s|2).
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Asymptotic decay

Integrating the above inequality over V gives:∫
V
|∇H0s|2 ≤ C .

This is not good enough to give us decay. Instead we integrate
over V \VL to see∫

V \VL

|∇H0s|2 ≤ C (e−δL +

∫
∂VL

|∇H0s||s|).

Because the bundle ED is stable, it follows that ∇H0 has trivial
kernel on trace free endomorphisms. This yields∫

∂VL

|s|2 ≤ C

∫
∂VL

|∇H0s|2.
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Asymptotic decay

As a result we conclude

g(L) :=

∫
V \VL

|∇H0s|2 ≤ C (e−δL +

∫
∂VL

|∇H0s|2).

We can now follow an ODE argument.

Proposition

If g : [0,∞)→ [0,∞) satisfies g(L) ≤ Ae−δL − Bg ′(L), with
A,B > 0, then

g(L) ≤ (2A + g(0))e−εL

with ε :=min{δ, 1
B }.

This gives the correct decay for g , and by elliptic regularity we can
bootstrap this up to exponential control of |s| and all its
derivatives.
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The singular case

To prove our main Theorem for reflexive sheaves E we use a
regularization scheme based on ideas of Bando and Siu.

Blow up V along S :=sing(E )

π : Ṽ → V ,

and equip Ṽ with a family of Kähler metrics ωε that degenerate to
π∗ω as ε→ 0.

Ṽ carries a holomorphic vector bundle Ẽ , which agrees with the
reflexive sheaf E outside S , and to which the smooth case can be
applied to construct a PHYM metric Hε.
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Ṽ carries a holomorphic vector bundle Ẽ , which agrees with the
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The singular case

Proposition

There is a complex manifold Ṽ , a holomorphic map π : Ṽ → V
which induces a biholomorphic map to V \S , and a holomorphic
vector bundle Ẽ over Ṽ such that

Ẽ |Ṽ \π−1(S)
∼= π∗(E |V \S).

Moreover, there exists a one-parameter family of Kähler metrics ωε
on Ṽ such that

I on π−1(V \Bε(S)), we have ωε = π∗ω.

I for L ≥ L0, the Neumann-Poincaré constant of (π−1(VL), gε)
is bounded above by a constant independent of ε.

I π−1(VL0) is contained in a geodesic ball whose radius does
not depend on ε.
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The singular case

We can not solve the equation with the metric π∗ω on Ṽ directly,
since this metric is singular and the associated operators fail to be
uniformly elliptic.

Instead, for each ε ∈ (0, 1], we can construct a PHYM metric H̃ε
on Ẽ . Define

s̃ε := logH̃−1
1 H̃ε.

The desired PHYM metric on E will be constructed by taking the
limit as ε tends to zero.

Fix and arbitrary neighborhood U of S ⊂ V . Need estimates
independent of ε, specifically

||s̃ε||C k
δ (Ṽε\Ũ) ≤ Ck,U .
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The singular case

Set

Kε := iΛεFH̃1
−

tr(iΛεFH̃1
)

rk(E )
Id

and let fε ∈ C 0
δ (Ṽε) and Aε > 0 b the unique solutions to

∆ε(fε − Aε`) = 4|Kε|.

The key is to show that these barriers are independent of ε, i.e.

||fε||L∞(Ṽε\Ũ) ≤ cU , Aε < c , ||FH̃1
||L2(Ṽε,L0) ≤ c .

If so we can use the same argument as before to achieve
convergence.
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The singular case

Control of ||FH̃1
||L2(Ṽε,L0) follows by scaling

|FH̃1
|pωεvolε ≤ C (1 + ε2n−2p)|FH̃1

|pω1
vol1.

Also note that ωε is independent of ε on the tubular end, so

||Kε||C k
δ (V \VL0

) ≤ ck .

Both of these estimates yield control of Aε, since

Aε ≤ C ||Kε||L1(Ṽε)
.
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The singular case

Thus, all that is left is control for fε. Here we need our proposition
which gave a uniform weighted Poincaré inequality

||e−
δ`
2 (fε − f̄ε)||2L2(Ṽε)

≤ C ||∇εfε||2L2(Ṽε)
.

Using control of Aε and that fε solves the Poisson equation, we
have

||∇εfε||2L2(Ṽε)
=

∫
Ṽε

〈∆ε(fε − f̄ε), fε − f̄ε〉

≤ ||e
δ`
2 (Kε + Aε∆ε`)||L2(Ṽε)

||e−
δ`
2 (fε − f̄ε)||L2(Ṽε)

Combining with the Poincaré inequality gives L2 control of both

e−
δ`
2 (fε − f̄ε) and ∇εfε.
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=

∫
Ṽε
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The singular case

Now, working on the tube, set

F (L) :=

∫
V \VL0

|∇εfε|2.

We just saw that F (L) ≤ c.

As before, an integration by parts estimate shows

F (L) ≤ C (e−
δL
2 − F ′(L)),

which implies on V \VL0

F (L) ≤ Ce−γL

Control of fε everywhere on Ṽε follows from interior estimates.
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Tangent cones

This completes the existence theorem. However, it says nothing
about the behavior of the connection near the singular set (where
E is not locally free).

In the case of constructing G2 instantons, for the perturbation
theory to work we need to know the structure of the singularity.
Recall the construction uses Calabi-Yau 3-folds as building blocks.

In complex dimension three, reflexive sheaves only have point
singularities.
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We consider the case of a reflexive sheaf E with an isolated
singularity at the origin in B1(0) ⊂ Cn. Equip B1(0) with a metric

ω =
i

2
∂∂̄|z |2 + O(|z |2).

Let H solve iΛFH = 0 on B1(0), and denote by A the Chern
connection.

For λi → 0, let τi : B1(0)→ Bλi (0) be defined by z 7→ λiz . Set
Ai := τ∗i A.
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Tangent cones

Ai is a sequence of Yang-Mills connections, using Price
monotonicity Ai converges (away from a singular set) to a limit
connection A∞, satisfying ι ∂

∂r
A∞ = 0. (Tian)

Questions:

I Does A∞ depend on the choice of sequence λi?

I Can A∞ be identified?

In general this type of question is very hard. B. Yang demonstrated
an affirmative answer to the first question assuming that |FA| ≤ C

r2 .
Can we use the complex structure to our advantage?
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Let π : Cn\{0} → Pn−1 be the natural projection, and

ι : Cn\{0} → Cn the inclusion. Let Θ =
∑n

j=1
z̄ j dz j−z j dz̄ j

2i |z|2 be the

pullback of the standard contact structure on S2n−1.

We assume that E ∼= ι∗π
∗F , where F = ⊕Fp is a direct sum of

stable bundles on Pn−1.

If Bp is the unique HYM connection on Fp with HYM constant
µp, then

A0 :=
⊕

π∗Bp + i µp IdFp Θ

is the unique tangent cone for any HYM connection on E .
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Theorem (J. - Sá Earp-Walpuski)

In B1(0), assume E ∼= ι∗π
∗F , and let A be a HYM connection on

E . Then there exists a unique connection A0 satisfying

|z |k+1|∇k
0(A− A0)| ≤ Ck

(−log|z |)1/2
.

The constants Ck depend on ω,F ,A|BR(0)\BR
2

(0) and ||FA||2L2(BR(0).

We do have some examples satisfying the assumptions on (E , ∂̄).
In the future, we hope to improve our assumptions to include more
general complex structures.
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