Lelong numbers of singular metrics on vector bundles.

Bo Berndtsson
Chalmers University of Technology
Lecture IMS, Singapore May 9, 2017.

We first look at a holomorphic vector bundle $E \rightarrow Y$ over a complex manifold Y, equipped with a hermitian metric h_{E}. When $\operatorname{rk}(E)=1, E=L$ is a line bundle, and locally we can write $h=e^{-\phi}$, where ϕ is a function.

We first look at a holomorphic vector bundle $E \rightarrow Y$ over a complex manifold Y, equipped with a hermitian metric h_{E}. When $r k(E)=1, E=L$ is a line bundle, and locally we can write $h=e^{-\phi}$, where ϕ is a function.
It has proved useful to allow ϕ to be singular, $\phi \in L_{\text {loc }}^{1}$. We can still defined the curvature form (or current)

$$
\Theta=i \partial \bar{\partial} \phi .
$$

If $\Theta \geq 0,(L, \phi)$ is positively curved; if $\Theta \leq 0$ it is negatively curved.

We first look at a holomorphic vector bundle $E \rightarrow Y$ over a complex manifold Y, equipped with a hermitian metric h_{E}. When $r k(E)=1, E=L$ is a line bundle, and locally we can write $h=e^{-\phi}$, where ϕ is a function.
It has proved useful to allow ϕ to be singular, $\phi \in L_{\text {loc }}^{1}$. We can still defined the curvature form (or current)

$$
\Theta=i \partial \bar{\partial} \phi .
$$

If $\Theta \geq 0,(L, \phi)$ is positively curved; if $\Theta \leq 0$ it is negatively curved.

Now let $r k(E) \geq 1$. Locally h is given by an hermitian matrix and

$$
\Theta=i \bar{\partial} h^{-1} \partial h .
$$

We first look at a holomorphic vector bundle $E \rightarrow Y$ over a complex manifold Y, equipped with a hermitian metric h_{E}. When $r k(E)=1, E=L$ is a line bundle, and locally we can write $h=e^{-\phi}$, where ϕ is a function.
It has proved useful to allow ϕ to be singular, $\phi \in L_{\text {loc }}^{1}$. We can still defined the curvature form (or current)

$$
\Theta=i \partial \bar{\partial} \phi .
$$

If $\Theta \geq 0,(L, \phi)$ is positively curved; if $\Theta \leq 0$ it is negatively curved.

Now let $r k(E) \geq 1$. Locally h is given by an hermitian matrix and

$$
\Theta=i \bar{\partial} h^{-1} \partial h .
$$

What if h is singular?

We first look at a holomorphic vector bundle $E \rightarrow Y$ over a complex manifold Y, equipped with a hermitian metric h_{E}. When $r k(E)=1, E=L$ is a line bundle, and locally we can write $h=e^{-\phi}$, where ϕ is a function.
It has proved useful to allow ϕ to be singular, $\phi \in L_{\text {loc }}^{1}$. We can still defined the curvature form (or current)

$$
\Theta=i \partial \bar{\partial} \phi .
$$

If $\Theta \geq 0,(L, \phi)$ is positively curved; if $\Theta \leq 0$ it is negatively curved.

Now let $r k(E) \geq 1$. Locally h is given by an hermitian matrix and

$$
\Theta=i \bar{\partial} h^{-1} \partial h .
$$

What if h is singular? What is a singular metric? What is its curvature?

Definition: h is a singular metric if locally (with respect to a frame) h is a positive hermitian matrix defined almost everywhere, and $\log \|u\|^{2}$ is locally in L^{1} for any local holomorphic section of E.

Definition: h is a singular metric if locally (with respect to a frame) h is a positive hermitian matrix defined almost everywhere, and $\log \|u\|^{2}$ is locally in L^{1} for any local holomorphic section of E.
We say that h is negatively curved if $\log \|u\|^{2}$ is psh for any local holomorphic section. We say that h is positively curved if the dual metric on E^{*} is negatively curved.

Definition: h is a singular metric if locally (with respect to a frame) h is a positive hermitian matrix defined almost everywhere, and $\log \|u\|^{2}$ is locally in L^{1} for any local holomorphic section of E.
We say that h is negatively curved if $\log \|u\|^{2}$ is psh for any local holomorphic section. We say that h is positively curved if the dual metric on E^{*} is negatively curved.

But, what is the curvature?

Definition: h is a singular metric if locally (with respect to a frame) h is a positive hermitian matrix defined almost everywhere, and $\log \|u\|^{2}$ is locally in L^{1} for any local holomorphic section of E.
We say that h is negatively curved if $\log \|u\|^{2}$ is psh for any local holomorphic section. We say that h is positively curved if the dual metric on E^{*} is negatively curved.

But, what is the curvature?
Example (Raufi): Let $E=D \times \mathbb{C}^{2}$ and define h by
$\|u\|^{2}=\left|u_{1}+z u_{2}\right|^{2}+\left|z u_{1}\right|^{2}$. Then h is negatively curved, but Θ
is a current of order 1 . So the curvature is not measure valued.

Let now $Y=D$, the unit disk. E is trivial and we fix a trivialization, $E=\mathcal{D} \times V$ where V is a vector space of dimension n. For subharmonic functions $\phi, i \partial \bar{\partial} \phi(\{0\})$ is closely related to the Lelong number of ϕ at 0 . So we look at the Lelong numbers of h.

Let now $Y=D$, the unit disk. E is trivial and we fix a trivialization, $E=\mathcal{D} \times V$ where V is a vector space of dimension n. For subharmonic functions $\phi, i \partial \bar{\partial} \phi(\{0\})$ is closely related to the Lelong number of ϕ at 0 . So we look at the Lelong numbers of h.

Definition: Assume h has negative curvature. Then, for u in V,

$$
\gamma_{h}(u, 0):=\gamma_{\log \|u\|^{2}}(0)
$$

Let now $Y=D$, the unit disk. E is trivial and we fix a trivialization, $E=\mathcal{D} \times V$ where V is a vector space of dimension n. For subharmonic functions $\phi, i \partial \bar{\partial} \phi(\{0\})$ is closely related to the Lelong number of ϕ at 0 . So we look at the Lelong numbers of h.
Definition: Assume h has negative curvature. Then, for u in V,

$$
\gamma_{h}(u, 0):=\gamma_{\log \|u\|^{2}}(0)
$$

We also look at

$$
\alpha_{h}(u, 0)=-\gamma_{h}(u, 0)=\limsup _{z \rightarrow 0} \frac{\log \|u\|_{z}^{2}}{\log \left(\frac{1}{|z|}\right)}(\leq 0)
$$

Let $V_{\alpha}:=\{u \in V ; \alpha(u) \leq \alpha\}$. It is a linear subsapce of V (by the triangle inequality). The family V_{α} is increasing and can jump at, at most, n places.

Let $V_{\alpha}:=\{u \in V ; \alpha(u) \leq \alpha\}$. It is a linear subsapce of V (by the triangle inequality). The family V_{α} is increasing and can jump at, at most, n places.
So, we get a filtration of V

$$
\{0\} \subseteq V_{\alpha_{1}} \subseteq \ldots V_{\alpha_{n}}=V
$$

Let $V_{\alpha}:=\{u \in V ; \alpha(u) \leq \alpha\}$. It is a linear subsapce of V (by the triangle inequality). The family V_{α} is increasing and can jump at, at most, n places.

So, we get a filtration of V

$$
\{0\} \subseteq V_{\alpha_{1}} \subseteq \ldots V_{\alpha_{n}}=V
$$

where, if $\alpha_{j} \leq \alpha<\alpha_{j+1}, V_{\alpha}=V_{\alpha_{j}}$ and $\operatorname{dim} V_{\alpha_{j}}=j$. (We also put $\alpha_{0}=-\infty$, so $V_{\alpha_{0}}=\{0\}$.)

Let $V_{\alpha}:=\{u \in V ; \alpha(u) \leq \alpha\}$. It is a linear subsapce of V (by the triangle inequality). The family V_{α} is increasing and can jump at, at most, n places.
So, we get a filtration of V

$$
\{0\} \subseteq V_{\alpha_{1}} \subseteq \ldots V_{\alpha_{n}}=V
$$

where, if $\alpha_{j} \leq \alpha<\alpha_{j+1}, V_{\alpha}=V_{\alpha_{j}}$ and $\operatorname{dim} V_{\alpha_{j}}=j$. (We also put $\alpha_{0}=-\infty$, so $V_{\alpha_{0}}=\{0\}$.)
Let $F=V^{*}$, so $E^{*}=D \times F$. We get the dual metric on E^{*}. Let $F_{\alpha}=V_{\alpha}^{\perp}$, the annihilator of V_{α}.

Let $V_{\alpha}:=\{u \in V ; \alpha(u) \leq \alpha\}$. It is a linear subsapce of V (by the triangle inequality). The family V_{α} is increasing and can jump at, at most, n places.
So, we get a filtration of V

$$
\{0\} \subseteq V_{\alpha_{1}} \subseteq \ldots V_{\alpha_{n}}=V
$$

where, if $\alpha_{j} \leq \alpha<\alpha_{j+1}, V_{\alpha}=V_{\alpha_{j}}$ and $\operatorname{dim} V_{\alpha_{j}}=j$. (We also put $\alpha_{0}=-\infty$, so $V_{\alpha_{0}}=\{0\}$.)
Let $F=V^{*}$, so $E^{*}=D \times F$. We get the dual metric on E^{*}. Let $F_{\alpha}=V_{\alpha}^{\perp}$, the annihilator of V_{α}.
So

$$
\{0\}=F_{\alpha_{n}} \subseteq F_{\alpha_{n-1}} \subseteq \ldots F_{\alpha_{0}}=F
$$

Let $V_{\alpha}:=\{u \in V ; \alpha(u) \leq \alpha\}$. It is a linear subsapce of V (by the triangle inequality). The family V_{α} is increasing and can jump at, at most, n places.

So, we get a filtration of V

$$
\{0\} \subseteq V_{\alpha_{1}} \subseteq \ldots V_{\alpha_{n}}=V
$$

where, if $\alpha_{j} \leq \alpha<\alpha_{j+1}, V_{\alpha}=V_{\alpha_{j}}$ and $\operatorname{dim} V_{\alpha_{j}}=j$. (We also put $\alpha_{0}=-\infty$, so $V_{\alpha_{0}}=\{0\}$.)
Let $F=V^{*}$, so $E^{*}=D \times F$. We get the dual metric on E^{*}. Let $F_{\alpha}=V_{\alpha}^{\perp}$, the annihilator of V_{α}.
So

$$
\{0\}=F_{\alpha_{n}} \subseteq F_{\alpha_{n-1}} \subseteq \ldots F_{\alpha_{0}}=F
$$

How can we describe F_{α} ?

We restrict the situation even further: Assume $h\left(e^{i \theta} z\right)=h(z)$; or $h(z)=h(|z|)$.

We restrict the situation even further: Assume $h\left(e^{i \theta} z\right)=h(z)$; or $h(z)=h(|z|)$. Then transfer the problem to the right half plane \mathcal{H} by $\zeta=\log (1 / z)$. If $\zeta=t+i$ is, we get a metric $h=h(t)$ over a bundle $\mathcal{H} \times V$.

We restrict the situation even further: Assume $h\left(e^{i \theta} z\right)=h(z)$; or $h(z)=h(|z|)$. Then transfer the problem to the right half plane \mathcal{H} by $\zeta=\log (1 / z)$. If $\zeta=t+i$ is, we get a metric $h=h(t)$ over a bundle $\mathcal{H} \times V$.
Now $\log \|u\|_{t}^{2}$ is convex, and for u in V

$$
\alpha(u)=\lim _{t \rightarrow \infty} \frac{1}{t} \log \|u\|_{t}^{2} .
$$

If the matric comes from a negative curved metric on the disk, we have $\|u\| \leq\|u\|_{0}$, and $\alpha(u) \leq 0$. It is no essential difference to allow

$$
\|u\|_{t}^{2} \leq C\|u\|_{0}^{2} e^{A t}
$$

for some C, A.

We restrict the situation even further: Assume $h\left(e^{i \theta} z\right)=h(z)$; or $h(z)=h(|z|)$. Then transfer the problem to the right half plane \mathcal{H} by $\zeta=\log (1 / z)$. If $\zeta=t+i$ is, we get a metric $h=h(t)$ over a bundle $\mathcal{H} \times V$.
Now $\log \|u\|_{t}^{2}$ is convex, and for u in V

$$
\alpha(u)=\lim _{t \rightarrow \infty} \frac{1}{t} \log \|u\|_{t}^{2} .
$$

If the matric comes from a negative curved metric on the disk, we have $\|u\| \leq\|u\|_{0}$, and $\alpha(u) \leq 0$. It is no essential difference to allow

$$
\|u\|_{t}^{2} \leq C\|u\|_{0}^{2} e^{A t}
$$

for some C, A.
Note also that if $\|u\|_{0}=1$, then $u \in V_{\alpha}$ if and only if $\|u\|_{t}^{2} \leq e^{\alpha t}$ for all $t>0$.

Theorem

Assume $h(t)$ has negative curvature; $\|u\|_{t}=\|u\|_{h(t)}$. Let $\|v\|_{-t}^{2}$ be the induced norms on $F=V^{*}$. (A positively curved metric on E^{*}).
Let $\alpha_{j} \leq \alpha<\alpha_{j+1}$ (so α_{j} is a jumping number). Then TFAE:

1. $v \in F_{\alpha_{j}}$.

Theorem

Assume $h(t)$ has negative curvature; $\|u\|_{t}=\|u\|_{h(t)}$. Let $\|v\|_{-t}^{2}$ be the induced norms on $F=V^{*}$. (A positively curved metric on E^{*}).
Let $\alpha_{j} \leq \alpha<\alpha_{j+1}$ (so α_{j} is a jumping number). Then TFAE:

1. $v \in F_{\alpha_{j}}$.
2.

$$
\int_{0}^{\infty}\|v\|_{-t}^{2} e^{t \alpha} d t<\infty
$$

Theorem

Assume $h(t)$ has negative curvature; $\|u\|_{t}=\|u\|_{h(t)}$. Let $\|v\|_{-t}^{2}$ be the induced norms on $F=V^{*}$. (A positively curved metric on E^{*}).
Let $\alpha_{j} \leq \alpha<\alpha_{j+1}$ (so α_{j} is a jumping number). Then TFAE:

1. $v \in F_{\alpha_{j}}$.
2.

$$
\int_{0}^{\infty}\|v\|_{-t}^{2} e^{t \alpha} d t<\infty
$$

3. $\lim \sup _{t \rightarrow \infty} \frac{1}{t} \log \|v\|_{-t}^{2} \leq-\alpha_{j+1}$.

Theorem

Assume $h(t)$ has negative curvature; $\|u\|_{t}=\|u\|_{h(t)}$. Let $\|v\|_{-t}^{2}$ be the induced norms on $F=V^{*}$. (A positively curved metric on E^{*}).
Let $\alpha_{j} \leq \alpha<\alpha_{j+1}$ (so α_{j} is a jumping number). Then TFAE:

1. $v \in F_{\alpha_{j}}$.
2.

$$
\int_{0}^{\infty}\|v\|_{-t}^{2} e^{t \alpha} d t<\infty
$$

3. $\lim \sup _{t \rightarrow \infty} \frac{1}{t} \log \|v\|_{-t}^{2} \leq-\alpha_{j+1}$.

In particular, the set of α such that the integral in 2. is finite, is open.

During the proof we get the following statement :

Proposition

In the same setting as before ($h(t)$ negatively curved), there is a flat metric h_{∞} such that $h_{\infty} \geq h$ and h_{∞} defines the same filtration and has the same jumping numbers as h.

During the proof we get the following statement :

Proposition

In the same setting as before ($h(t)$ negatively curved), there is a flat metric h_{∞} such that $h_{\infty} \geq h$ and h_{∞} defines the same filtration and has the same jumping numbers as h.

In conclusion: In a better part of the multiverse, the curvature
Θ would be a matrix (endomorphism) valued current with measure coefficients. Then $\Theta(\{0\})$ would be a hermitian matrix, giving a decomposition of V into eigenspaces.

During the proof we get the following statement :

Proposition

In the same setting as before ($h(t)$ negatively curved), there is a flat metric h_{∞} such that $h_{\infty} \geq h$ and h_{∞} defines the same filtration and has the same jumping numbers as h.

In conclusion: In a better part of the multiverse, the curvature
Θ would be a matrix (endomorphism) valued current with measure coefficients. Then $\Theta(\{0\})$ would be a hermitian matrix, giving a decomposition of V into eigenspaces.
In our world, we get a filtration instead. When h satisfies our extra condition (it depends only on $|z|$ or $\operatorname{Re} \zeta$) we can describe the dual filtration in terms of integrability.

What is this supposed to be good for?

One motivation for studying singular metrics comes from fibrations: Let

$$
p: \mathcal{X} \rightarrow Y
$$

be a smooth proper fibration.

What is this supposed to be good for?

One motivation for studying singular metrics comes from fibrations: Let

$$
p: \mathcal{X} \rightarrow Y
$$

be a smooth proper fibration.
Let $(L, \phi) \rightarrow \mathcal{X}$ be a hermitian holomorphic line bundle. Assume $i \partial \bar{\partial} \phi \geq 0$. Let $X_{y}=p^{-1}(y)$ be the fibers of p; they are compact manifolds.

What is this supposed to be good for?

One motivation for studying singular metrics comes from fibrations: Let

$$
p: \mathcal{X} \rightarrow Y
$$

be a smooth proper fibration.
Let $(L, \phi) \rightarrow \mathcal{X}$ be a hermitian holomorphic line bundle. Assume $i \partial \bar{\partial} \phi \geq 0$. Let $X_{y}=p^{-1}(y)$ be the fibers of p; they are compact manifolds.

Theorem

Positivity of direct images:
Assume also that \mathcal{X} is Kähler. Then there is a vector bundle E of positive curvature over Y with fibers

$$
E_{y}=H^{n, 0}\left(X_{y}, L_{X_{y}}\right) .
$$

This bundle has a natural L^{2}-metric.

What is this supposed to be good for?

One motivation for studying singular metrics comes from fibrations: Let

$$
p: \mathcal{X} \rightarrow Y
$$

be a smooth proper fibration.
Let $(L, \phi) \rightarrow \mathcal{X}$ be a hermitian holomorphic line bundle. Assume $i \partial \bar{\partial} \phi \geq 0$. Let $X_{y}=p^{-1}(y)$ be the fibers of p; they are compact manifolds.

Theorem

Positivity of direct images:
Assume also that \mathcal{X} is Kähler. Then there is a vector bundle E of positive curvature over Y with fibers

$$
E_{y}=H^{n, 0}\left(X_{y}, L_{X}\right) .
$$

This bundle has a natural L^{2}-metric. This metric has positive curvature,

If we allow ϕ to be singular, or p to be just a surjective map, we get singular metrics. See B-Paun, Paun-Takayama and Cao-Paun for a spectacular application.

If we allow ϕ to be singular, or p to be just a surjective map, we get singular metrics. See B-Paun, Paun-Takayama and Cao-Paun for a spectacular application.

There is also a version of the theorem for non proper fibrations. Then we assume instead that \mathcal{X} is Stein. The simplest case is the following:

Theorem

Let D be a pseudoconvex domain in \mathbb{C}^{n} and let U be the unit disk. Let $\psi(t, z)$ be psh in $\mathcal{D}=U \times D$. Then the vector bundle E with fibers $E_{t}=H^{2}\left(D, e^{-\psi(t, z)}\right)$ and the natural L^{2}-norm has positive curvature.

Here is another application (of the Stein case). It is a special case of a theorem of Guan-Zhou:

Theorem

Let $\psi \leq 0$ be psh in the unit ball of \mathbb{C}^{n}, with an isolated singularity at the origin. Assume h is holomorphic in the ball and

$$
\int_{B}|h|^{2} e^{-\psi}<\infty
$$

Here is another application (of the Stein case). It is a special case of a theorem of Guan-Zhou:

Theorem

Let $\psi \leq 0$ be psh in the unit ball of \mathbb{C}^{n}, with an isolated singularity at the origin. Assume h is holomorphic in the ball and

$$
\int_{B}|h|^{2} e^{-\psi}<\infty
$$

Then there is an $\epsilon>0$ such that

$$
\int_{B}|h|^{2} e^{-(1+\epsilon) \psi}<\infty
$$

Sketch of proof: Let for $t \geq 0$,
$\psi_{t}=\max (\psi+t, 0)=t+\max (\psi,-t)$.

Sketch of proof: Let for $t \geq 0$,
$\psi_{t}=\max (\psi+t, 0)=t+\max (\psi,-t)$.
Let for h holomorphic in the ball

$$
\|h\|_{-t}^{2}=\int_{B}|h|^{2} e^{-2 \psi_{t}}
$$

Sketch of proof: Let for $t \geq 0$,
$\psi_{t}=\max (\psi+t, 0)=t+\max (\psi,-t)$.
Let for h holomorphic in the ball

$$
\|h\|_{-t}^{2}=\int_{B}|h|^{2} e^{-2 \psi_{t}}
$$

This is a metric of positive curvature that fits with our previous discussion, by our theorem on positivity of direct images.

Sketch of proof: Let for $t \geq 0$,
$\psi_{t}=\max (\psi+t, 0)=t+\max (\psi,-t)$.
Let for h holomorphic in the ball

$$
\|h\|_{-t}^{2}=\int_{B}|h|^{2} e^{-2 \psi_{t}}
$$

This is a metric of positive curvature that fits with our previous discussion, by our theorem on positivity of direct images.

A direct computation gives that

$$
\int_{B}|h|^{2} e^{-p \psi} \sim \int_{0}^{\infty}\|h\|_{-t}^{2} e^{p t} d t
$$

Sketch of proof: Let for $t \geq 0$,
$\psi_{t}=\max (\psi+t, 0)=t+\max (\psi,-t)$.
Let for h holomorphic in the ball

$$
\|h\|_{-t}^{2}=\int_{B}|h|^{2} e^{-2 \psi_{t}}
$$

This is a metric of positive curvature that fits with our previous discussion, by our theorem on positivity of direct images.

A direct computation gives that

$$
\int_{B}|h|^{2} e^{-p \psi} \sim \int_{0}^{\infty}\|h\|_{-t}^{2} e^{p t} d t
$$

As we have seen the set of p such that the RHS is finite is open.

Let D be a domain in \mathbb{C}^{n} and let ψ be plurisubharmonic in D. The Suita problem is about estimating the minimal L^{2}-norm

$$
\int_{D}|h|^{2} e^{-\psi}
$$

of a holomorphic function in D with $h(0)=1$. (Blocki, Guan-Zhou.)

Let D be a domain in \mathbb{C}^{n} and let ψ be plurisubharmonic in D. The Suita problem is about estimating the minimal L^{2}-norm

$$
\int_{D}|h|^{2} e^{-\psi}
$$

of a holomorphic function in D with $h(0)=1$. (Blocki, Guan-Zhou.)

It can be framed as estimating

$$
\|1\|_{0}^{2}
$$

where $\|\cdot\|_{0}$ is the quotient norm in $F:=H^{2}\left(D, e^{-\psi}\right) / \mathcal{J}_{0}$, where \mathcal{J}_{0} is the ideal of functions vanishing at the origin.

Let G be a negative psh-function in D with a logarithmic pole at 0 , and let $D_{t}=\{z \in D ; G(z)<-t\}$. Replacing D by D_{t} we get a scale of problems, and as shown by Blocki-Lempert one gets the good estimate by using that the corresponding family of quotient norms

$$
\|1\|_{-t}
$$

in $H^{2}\left(D_{t}, e^{-\psi}\right) / \mathcal{J}_{0}$ has positive curvature. (Here F has dimension 1.)

Let G be a negative psh-function in D with a logarithmic pole at 0 , and let $D_{t}=\{z \in D ; G(z)<-t\}$. Replacing D by D_{t} we get a scale of problems, and as shown by Blocki-Lempert one gets the good estimate by using that the corresponding family of quotient norms

$$
\|1\|_{-t}
$$

in $H^{2}\left(D_{t}, e^{-\psi}\right) / \mathcal{J}_{0}$ has positive curvature. (Here F has dimension 1.)

Indeed, if $u \in V$ (the dual space), basically $u=\delta_{0}$. Moreover, D_{t} is roughly a ball $B\left(0, e^{-t}\right)$ for t large. Hence $\|u\|_{t}^{2} \sim e^{2 n t}$

Let G be a negative psh-function in D with a logarithmic pole at 0 , and let $D_{t}=\{z \in D ; G(z)<-t\}$. Replacing D by D_{t} we get a scale of problems, and as shown by Blocki-Lempert one gets the good estimate by using that the corresponding family of quotient norms

$$
\|1\|_{-t}
$$

in $H^{2}\left(D_{t}, e^{-\psi}\right) / \mathcal{J}_{0}$ has positive curvature. (Here F has dimension 1.)

Indeed, if $u \in V$ (the dual space), basically $u=\delta_{0}$. Moreover, D_{t} is roughly a ball $B\left(0, e^{-t}\right)$ for t large. Hence $\|u\|_{t}^{2} \sim e^{2 n t}$ In our previous language, $\alpha(u)=2 n$. Hence, $\log \|u\|_{t}^{2}-2 n t$ is bounded,

Let G be a negative psh-function in D with a logarithmic pole at 0 , and let $D_{t}=\{z \in D ; G(z)<-t\}$. Replacing D by D_{t} we get a scale of problems, and as shown by Blocki-Lempert one gets the good estimate by using that the corresponding family of quotient norms

$$
\|1\|_{-t}
$$

in $H^{2}\left(D_{t}, e^{-\psi}\right) / \mathcal{J}_{0}$ has positive curvature. (Here F has dimension 1.)

Indeed, if $u \in V$ (the dual space), basically $u=\delta_{0}$. Moreover, D_{t} is roughly a ball $B\left(0, e^{-t}\right)$ for t large. Hence $\|u\|_{t}^{2} \sim e^{2 n t}$ In our previous language, $\alpha(u)=2 n$. Hence, $\log \|u\|_{t}^{2}-2 n t$ is bounded, therefore decreasing!

Let G be a negative psh-function in D with a logarithmic pole at 0 , and let $D_{t}=\{z \in D ; G(z)<-t\}$. Replacing D by D_{t} we get a scale of problems, and as shown by Blocki-Lempert one gets the good estimate by using that the corresponding family of quotient norms

$$
\|1\|_{-t}
$$

in $H^{2}\left(D_{t}, e^{-\psi}\right) / \mathcal{J}_{0}$ has positive curvature. (Here F has dimension 1.)

Indeed, if $u \in V$ (the dual space), basically $u=\delta_{0}$. Moreover, D_{t} is roughly a ball $B\left(0, e^{-t}\right)$ for t large. Hence $\|u\|_{t}^{2} \sim e^{2 n t}$ In our previous language, $\alpha(u)=2 n$. Hence, $\log \|u\|_{t}^{2}-2 n t$ is bounded, therefore decreasing! Hence $\log \|1\|_{-t}^{2}+2 n t$ is increasing. So

$$
\|1\|_{0}^{2} \leq \lim _{t \rightarrow \infty}\|1\|_{-t} e^{2 n t}
$$

which is easy to estimate.

One can also look at a more general problem, where \mathcal{J}_{0} is replaced by another ideal, \mathcal{J}, at the origin. (Popovici, Demailly, Cao-Demailly-Matsumura). Then

$$
\left.F=H^{2}\left(D, e^{-\psi}\right) / \mathcal{J}\right)=H^{2}\left(D_{t}, e^{-\psi}\right) / \mathcal{J}
$$

has higher dimension and it fits into our scheme.

One can also look at a more general problem, where \mathcal{J}_{0} is replaced by another ideal, \mathcal{J}, at the origin. (Popovici, Demailly, Cao-Demailly-Matsumura). Then

$$
\left.F=H^{2}\left(D, e^{-\psi}\right) / \mathcal{J}\right)=H^{2}\left(D_{t}, e^{-\psi}\right) / \mathcal{J}
$$

has higher dimension and it fits into our scheme.
If $u \in V=F^{*}$ and $u \in V_{\alpha_{j}}$, then $\|u\|_{t}^{2} e^{\alpha_{j} t}$, is bounded and it's log is convex. Hence decreasing. Therefore we get estimates for $\|v\|_{-t}^{2}$ in the dual of $V_{\alpha_{j}}$ which is $F / F_{\alpha_{j}}$.

One can also look at a more general problem, where \mathcal{J}_{0} is replaced by another ideal, \mathcal{J}, at the origin. (Popovici, Demailly, Cao-Demailly-Matsumura). Then

$$
\left.F=H^{2}\left(D, e^{-\psi}\right) / \mathcal{J}\right)=H^{2}\left(D_{t}, e^{-\psi}\right) / \mathcal{J}
$$

has higher dimension and it fits into our scheme.
If $u \in V=F^{*}$ and $u \in V_{\alpha_{j}}$, then $\|u\|_{t}^{2} e^{\alpha_{j} t}$, is bounded and it's log is convex. Hence decreasing. Therefore we get estimates for $\|v\|_{-t}^{2}$ in the dual of $V_{\alpha_{j}}$ which is $F / F_{\alpha_{j}}$. In general, this estimates just says that the quantity we want to estimate is less than infinity. But, if $v \in F_{\alpha_{j-1}}$ it is finite (?). Therefore the method seems to work if $v \in F_{\alpha_{n-1}}$ (since $F_{\alpha_{n}}=0$.)

One can also look at a more general problem, where \mathcal{J}_{0} is replaced by another ideal, \mathcal{J}, at the origin. (Popovici, Demailly, Cao-Demailly-Matsumura). Then

$$
\left.F=H^{2}\left(D, e^{-\psi}\right) / \mathcal{J}\right)=H^{2}\left(D_{t}, e^{-\psi}\right) / \mathcal{J}
$$

has higher dimension and it fits into our scheme.
If $u \in V=F^{*}$ and $u \in V_{\alpha j}$, then $\|u\|_{t}^{2} e^{\alpha_{j} t}$, is bounded and it's log is convex. Hence decreasing. Therefore we get estimates for $\|v\|_{-t}^{2}$ in the dual of $V_{\alpha_{j}}$ which is $F / F_{\alpha_{j}}$. In general, this estimates just says that the quantity we want to estimate is less than infinity. But, if $v \in F_{\alpha_{j-1}}$ it is finite (?). Therefore the method seems to work if $v \in F_{\alpha_{n-1}}$ (since $F_{\alpha_{n}}=0$.)
In general, one decomposes v as a sum in $F_{\alpha} \ominus F_{\alpha_{j+1}}$ in $\|\cdot\|_{0}$. This makes the result non explicit.

Thank you!

