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Now let rk(E) > 1. Locally his given by an hermitian matrix and
© = idh~'oh.

What if his singular? What is a singular metric? What is its
curvature?



Definition: his a singular metric if locally (with respect to a
frame) h is a positive hermitian matrix defined almost
everywhere, and log ||u||? is locally in L' for any local
holomorphic section of E. O]




Definition: his a singular metric if locally (with respect to a
frame) h is a positive hermitian matrix defined almost
everywhere, and log ||u||? is locally in L' for any local
holomorphic section of E. O]

We say that h is negatively curved if log ||u||? is psh for any
local holomorphic section. We say that h is positively curved if
the dual metric on E* is negatively curved.




Definition: his a singular metric if locally (with respect to a
frame) his a positive hermitian matrix defined almost
everywhere, and log ||u||? is locally in L' for any local
holomorphic section of E. O]

We say that h is negatively curved if log ||u||? is psh for any
local holomorphic section. We say that h is positively curved if
the dual metric on E* is negatively curved.

But, what is the curvature?




Definition: his a singular metric if locally (with respect to a
frame) his a positive hermitian matrix defined almost
everywhere, and log ||u||? is locally in L' for any local
holomorphic section of E. O]

We say that h is negatively curved if log ||u||? is psh for any
local holomorphic section. We say that h is positively curved if
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But, what is the curvature?

Example (Raufi): Let E = D x C? and define h by
|ul|? = |ug + zuz|? + |zuy |2. Then his negatively curved, but ©
is a current of order 1. So the curvature is not measure

valued. O
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We also look at

(<0).

- log ||ul|2
ah(”? 0) = _Vh(ua 0) = lim sSup
z-0 log( )
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Let F = V*,so E* = D x F. We get the dual metric on E*. Let
F. = Vi, the annihilator of V.
So

{0} =F,, CF,, , C..Fyy=F.

How can we describe F,?
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we have |u|| < ||ullo, and a(u) < 0. It is no essential difference
to allow

2 2 _A
lullf < Cllulige™

for some C, A.
Note also that if ||ullo = 1, then u € V,, if and only if ||u||? < e*!
forall t > 0.
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be the induced norms on F = V*. (A positively curved metric
on E*).
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In particular, the set of o such that the integral in 2. is finite, is
open.
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During the proof we get the following statement :

Proposition

In the same setting as before (h(t) negatively curved), there is
a flat metric h, such that h., > h and h, defines the same
filtration and has the same jumping numbers as h.

In conclusion: In a better part of the multiverse, the curvature
© would be a matrix (endomorphism) valued current with
measure coefficients. Then ©({0}) would be a hermitian
matrix, giving a decomposition of V into eigenspaces.

In our world, we get a filtration instead. When h satisfies our
extra condition (it depends only on |z| or Re ¢) we can describe
the dual filtration in terms of integrability.
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There is also a version of the theorem for non proper fibrations.
Then we assume instead that X' is Stein. The simplest case is
the following:

Let D be a pseudoconvex domain in C" and let U be the unit
disk. Let(t,z) be psh in D = U x D. Then the vector bundle E
with fibers E; = H?(D, e=*(%2)) and the natural L?-norm has

positive curvature.
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This is a metric of positive curvature that fits with our previous
discussion, by our theorem on positivity of direct images.

A direct computation gives that
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As we have seen the set of p such that the RHS is finite is
open. O
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It can be framed as estimating

11115

where || - ||o is the quotient norm in F := H?(D, e~¥)/Jy, Where
Jo is the ideal of functions vanishing at the origin.
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scale of problems, and as shown by Blocki-Lempert one gets
the good estimate by using that the corresponding family of
quotient norms

1]t

in H?(Dy, e=¥)/ J, has positive curvature. (Here F has
dimension 1.)

Indeed, if u € V (the dual space), basically u = §y. Moreover,
Dy is roughly a ball B(0, e~*) for t large. Hence ||u||? ~ e2™
In our previous language, a(u) = 2n. Hence, log ||u||? — 2nt is
bounded, therefore decreasing! Hence log ||1]|?, + 2nt is
increasing. So
11113 < lim [[1]]_€2",
t—o0

which is easy to estimate.
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Cao-Demailly-Matsumura). Then

F=H*D,e")/J)=H*Dne %)/ T

has higher dimension and it fits into our scheme.

lfue V=Fandue V,, then |u||?e%t, is bounded and it's
log is convex. Hence decreasing. Therefore we get estimates
for || v|/2, in the dual of Va; which is F/F,,. In general, this
estimates just says that the quantity we want to estimate is less
than infinity. But, if v € F,,_, itis finite (?). Therefore the method
seems to work if v e F,, _, (since F,, =0.)

In general, one decomposes v as asumin F, © Fy, in || - [|o.
This makes the result non explicit.



Thank you!




