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We first look at a holomorphic vector bundle E → Y over a
complex manifold Y , equipped with a hermitian metric hE .
When rk(E) = 1, E = L is a line bundle, and locally we can
write h = e−φ, where φ is a function.

It has proved useful to allow φ to be singular, φ ∈ L1
loc . We can

still defined the curvature form (or current)

Θ = i∂∂̄φ.

If Θ ≥ 0, (L, φ) is positively curved; if Θ ≤ 0 it is negatively
curved.

Now let rk(E) ≥ 1. Locally h is given by an hermitian matrix and

Θ = i ∂̄h−1∂h.

What if h is singular? What is a singular metric? What is its
curvature?
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Definition: h is a singular metric if locally (with respect to a
frame) h is a positive hermitian matrix defined almost
everywhere, and log ‖u‖2 is locally in L1 for any local
holomorphic section of E .

We say that h is negatively curved if log ‖u‖2 is psh for any
local holomorphic section. We say that h is positively curved if
the dual metric on E∗ is negatively curved.

But, what is the curvature?

Example (Raufi): Let E = D × C2 and define h by
‖u‖2 = |u1 + zu2|2 + |zu1|2. Then h is negatively curved, but Θ
is a current of order 1. So the curvature is not measure
valued.
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Let now Y = D, the unit disk. E is trivial and we fix a
trivialization, E = D × V where V is a vector space of
dimension n. For subharmonic functions φ, i∂∂̄φ({0}) is closely
related to the Lelong number of φ at 0. So we look at the Lelong
numbers of h.

Definition: Assume h has negative curvature. Then, for u in V ,

γh(u,0) := γlog ‖u‖2(0).

We also look at

αh(u,0) = −γh(u,0) = lim sup
z→0

log ‖u‖2z
log( 1

|z|)
(≤ 0).
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Let Vα := {u ∈ V ;α(u) ≤ α}. It is a linear subsapce of V (by
the triangle inequality). The family Vα is increasing and can
jump at, at most, n places.

So, we get a filtration of V

{0} ⊆ Vα1 ⊆ ...Vαn = V ,

where, if αj ≤ α < αj+1, Vα = Vαj and dimVαj = j . (We also put
α0 = −∞, so Vα0 = {0}.)

Let F = V ∗, so E∗ = D × F . We get the dual metric on E∗. Let
Fα = V⊥α , the annihilator of Vα.
So

{0} = Fαn ⊆ Fαn−1 ⊆ ...Fα0 = F .

How can we describe Fα?
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We restrict the situation even further: Assume h(eiθz) = h(z);
or h(z) = h(|z|).

Then transfer the problem to the right half
plane H by ζ = log(1/z). If ζ = t + is, we get a metric h = h(t)
over a bundle H× V .

Now log ‖u‖2t is convex, and for u in V

α(u) = lim
t→∞

1
t

log ‖u‖2t .

If the matric comes from a negative curved metric on the disk,
we have ‖u‖ ≤ ‖u‖0, and α(u) ≤ 0. It is no essential difference
to allow

‖u‖2t ≤ C‖u‖20eAt

for some C,A.
Note also that if ‖u‖0 = 1, then u ∈ Vα if and only if ‖u‖2t ≤ eαt

for all t > 0.
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Theorem

Assume h(t) has negative curvature; ‖u‖t = ‖u‖h(t). Let ‖v‖2−t
be the induced norms on F = V ∗. (A positively curved metric
on E∗).
Let αj ≤ α < αj+1 (so αj is a jumping number). Then TFAE:

1. v ∈ Fαj .

2. ∫ ∞
0
‖v‖2−te

tαdt <∞.

3. lim supt→∞
1
t log ‖v‖2−t ≤ −αj+1.

In particular, the set of α such that the integral in 2. is finite, is
open.



Theorem

Assume h(t) has negative curvature; ‖u‖t = ‖u‖h(t). Let ‖v‖2−t
be the induced norms on F = V ∗. (A positively curved metric
on E∗).
Let αj ≤ α < αj+1 (so αj is a jumping number). Then TFAE:

1. v ∈ Fαj .

2. ∫ ∞
0
‖v‖2−te

tαdt <∞.

3. lim supt→∞
1
t log ‖v‖2−t ≤ −αj+1.

In particular, the set of α such that the integral in 2. is finite, is
open.



Theorem

Assume h(t) has negative curvature; ‖u‖t = ‖u‖h(t). Let ‖v‖2−t
be the induced norms on F = V ∗. (A positively curved metric
on E∗).
Let αj ≤ α < αj+1 (so αj is a jumping number). Then TFAE:

1. v ∈ Fαj .

2. ∫ ∞
0
‖v‖2−te

tαdt <∞.

3. lim supt→∞
1
t log ‖v‖2−t ≤ −αj+1.

In particular, the set of α such that the integral in 2. is finite, is
open.



Theorem

Assume h(t) has negative curvature; ‖u‖t = ‖u‖h(t). Let ‖v‖2−t
be the induced norms on F = V ∗. (A positively curved metric
on E∗).
Let αj ≤ α < αj+1 (so αj is a jumping number). Then TFAE:

1. v ∈ Fαj .

2. ∫ ∞
0
‖v‖2−te

tαdt <∞.

3. lim supt→∞
1
t log ‖v‖2−t ≤ −αj+1.

In particular, the set of α such that the integral in 2. is finite, is
open.



During the proof we get the following statement :

Proposition

In the same setting as before (h(t) negatively curved), there is
a flat metric h∞ such that h∞ ≥ h and h∞ defines the same
filtration and has the same jumping numbers as h.

In conclusion: In a better part of the multiverse, the curvature
Θ would be a matrix (endomorphism) valued current with
measure coefficients. Then Θ({0}) would be a hermitian
matrix, giving a decomposition of V into eigenspaces.

In our world, we get a filtration instead. When h satisfies our
extra condition (it depends only on |z| or Re ζ) we can describe
the dual filtration in terms of integrability.
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What is this supposed to be good for?
One motivation for studying singular metrics comes from
fibrations: Let

p : X → Y

be a smooth proper fibration.

Let (L, φ)→ X be a hermitian holomorphic line bundle. Assume
i∂∂̄φ ≥ 0. Let Xy = p−1(y) be the fibers of p; they are compact
manifolds.

Theorem
Positivity of direct images:
Assume also that X is Kähler. Then there is a vector bundle E
of positive curvature over Y with fibers

Ey = Hn,0(Xy ,L|Xy ).

This bundle has a natural L2-metric. This metric has positive
curvature,
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If we allow φ to be singular, or p to be just a surjective map, we
get singular metrics. See B-Paun, Paun-Takayama and
Cao-Paun for a spectacular application.

There is also a version of the theorem for non proper fibrations.
Then we assume instead that X is Stein. The simplest case is
the following:

Theorem
Let D be a pseudoconvex domain in Cn and let U be the unit
disk. Let ψ(t , z) be psh in D = U ×D. Then the vector bundle E
with fibers Et = H2(D,e−ψ(t ,z)) and the natural L2-norm has
positive curvature.
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Here is another application (of the Stein case). It is a special
case of a theorem of Guan-Zhou:

Theorem
Let ψ ≤ 0 be psh in the unit ball of Cn, with an isolated
singularity at the origin. Assume h is holomorphic in the ball and∫

B
|h|2e−ψ <∞.

Then there is an ε > 0 such that∫
B
|h|2e−(1+ε)ψ <∞.
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Sketch of proof: Let for t ≥ 0,
ψt = max(ψ + t ,0) = t + max(ψ,−t).

Let for h holomorphic in the ball

‖h‖2−t =

∫
B
|h|2e−2ψt .

This is a metric of positive curvature that fits with our previous
discussion, by our theorem on positivity of direct images.

A direct computation gives that∫
B
|h|2e−pψ ∼

∫ ∞
0
‖h‖2−te

ptdt .

As we have seen the set of p such that the RHS is finite is
open.
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Let D be a domain in Cn and let ψ be plurisubharmonic in D.
The Suita problem is about estimating the minimal L2-norm∫

D
|h|2e−ψ

of a holomorphic function in D with h(0) = 1. (Blocki,
Guan-Zhou.)

It can be framed as estimating

‖1‖20

where ‖ · ‖0 is the quotient norm in F := H2(D,e−ψ)/J0, where
J0 is the ideal of functions vanishing at the origin.
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Let G be a negative psh-function in D with a logarithmic pole at
0, and let Dt = {z ∈ D; G(z) < −t}. Replacing D by Dt we get a
scale of problems, and as shown by Blocki-Lempert one gets
the good estimate by using that the corresponding family of
quotient norms
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in H2(Dt ,e−ψ)/J0 has positive curvature. (Here F has
dimension 1.)

Indeed, if u ∈ V (the dual space), basically u = δ0. Moreover,
Dt is roughly a ball B(0,e−t ) for t large. Hence ‖u‖2t ∼ e2nt

In our previous language, α(u) = 2n. Hence, log ‖u‖2t − 2nt is
bounded, therefore decreasing! Hence log ‖1‖2−t + 2nt is
increasing. So

‖1‖20 ≤ lim
t→∞
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which is easy to estimate.
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One can also look at a more general problem, where J0 is
replaced by another ideal, J , at the origin. (Popovici, Demailly,
Cao-Demailly-Matsumura). Then

F = H2(D,e−ψ)/J ) = H2(Dt ,e−ψ)/J

has higher dimension and it fits into our scheme.

If u ∈ V = F ∗ and u ∈ Vαj , then ‖u‖2t eαj t , is bounded and it’s
log is convex. Hence decreasing. Therefore we get estimates
for ‖v‖2−t in the dual of Vαj which is F/Fαj . In general, this
estimates just says that the quantity we want to estimate is less
than infinity. But, if v ∈ Fαj−1 it is finite (?). Therefore the method
seems to work if v ∈ Fαn−1 (since Fαn = 0.)

In general, one decomposes v as a sum in Fα 	 Fαj+1 in ‖ · ‖0.
This makes the result non explicit.
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Thank you!


