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Theorem

Assume i00¢ > 0. Then there is a holomorphic vector bundle E
over Y with fibers

E, = H™(X,, L|x,).
Give E the natural L?-metric

Hm@:%/qu¢L

Then (E, L?-metric) has positive curvature.
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Now we will discuss explicit formulas for the curvature. First we
need the set up: Let Q be the Kahler form on X'. The most
important thing is that wy, := Q[x, > 0 for all y.

Definition (Schumacher, Siu): Let V be a complex (1,0)
vector field on X. V is horizontal if

QV, V) =0

for any vertical field. O
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Similarily, [s] U u € H™=11,
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We next look at the case when L is not trivial and assume that
i©0¢, > 0 on each fiber. To simplify the writing we assume the
base dimension is 1, and let t be a local coordinate on the
base. Let Q = i0d¢.
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We next look at the case when L is not trivial and assume that
i©0¢, > 0 on each fiber. To simplify the writing we assume the
base dimension is 1, and let t be a local coordinate on the
base. Let Q = i0d¢.

We then define

1 Qn+1

)= 77 it A dE

The function ¢(¢) has an interesting interpretation when

X = X x Y is atrivial fibration, and L is the pullback to X of a
line bundle on X. Then all the fibers X, are the same, and the
line bundles L|x, are also all the same. The only thing that
changes is the metric ¢ = ¢;.



When the base is one dimensional, say a domain in C, we can
think of a metric on L over X' as a complex curve ¢; of metrics
on L over X. If ¢; only depends on the real part of ¢ it is a real

curve.




When the base is one dimensional, say a domain in C, we can
think of a metric on L over X' as a complex curve ¢; of metrics
on L over X. If ¢; only depends on the real part of ¢ it is a real
curve.

Let H, be the space of positively curved metrics on L. This
Mabuchi space has a natural Riemannian structure:

13]2 = /X R(i080)"

If c(¢) = 0, then ¢; is a geodesic in the Mabuchi space. In
general, ¢(¢) is the geodesic curvature of the curve t — ¢; in
the Mabuchi space. (Semmes, Donaldson)




Theorem

(Ou,u)y = Cn/ c(p)untie=?+((140) " kg/atUU, koo Utl)y >

Xy

l[xa0¢ L Ulll3-

Example: Let ¥ = X x YandletL=—-Kx >0.(So X is
Fano.) Then H"(X, —Kx) = C and E is a trivial bundle with a
nontrivial metric. We have a trivializing section, 1. The positivity
of E means that

100y Iog/ e ?<0
X

(a complex Brunn-Minkowski theorem). Let £(¢) be the
Aubin-Yau energy, so that

(d/a)e( / d(i0860)" /.
BEEEEEE———



Then

D(¢) = log /X e+ £(0)

is the Ding functional.
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is the Ding functional.
Its critical points satisfy

e~? = C(iddg)",

the Ké&hler-Einstein equation.
It follows that the Ding functional is convex along geodesics,
and the explicit formula tells us when it is linear:

Theorem
Assume that ¢; only depends on t, and that

Iog/ e %t
X

is linear. Then there is a holomorphic vector field V on X with
flow F; such that i00¢: = Fi(i00¢g).

v




This can be used to prove uniqueness; the (generalized)
Bando-Mabuchi theorem.

The Ding functional plays a role in the recent theorem of CDS
on existence of KE-metrics.

This leads to a philosophical problem:

Donaldson’s program was based on the Mabuchi K-energy,
whose derivative is interpreted as a moment map, p, for the
symplectic group of X acting on an infinite dimensional

manifold, 7. The KE-equation was then the equation . = 0.
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He then showed that the Ding functional can also be seen as a
moment map, but for a different symplectic structure on 7:




J is the space of all complex structures on X that are
biholomorphic with the given one and compatible with a fixed
Kéhler form on X, w. This space can be indentified with the
space of all diffeomorphisms, f, such that f*(w) is (1,1) and
positive for the given structure.




J is the space of all complex structures on X that are
biholomorphic with the given one and compatible with a fixed
Kéhler form on X, w. This space can be indentified with the
space of all diffeomorphisms, f, such that f*(w) is (1,1) and
positive for the given structure.

If fliesin J and g is a symplectic map for w, then gf lies in 7,
so the symplectic group acts on 7. We get a map from 7 to a
space of K&hler forms on X by p(f) = f*(w).




J is the space of all complex structures on X that are
biholomorphic with the given one and compatible with a fixed
Kéhler form on X, w. This space can be indentified with the
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If fliesin J and g is a symplectic map for w, then gf lies in 7,
so the symplectic group acts on 7. We get a map from 7 to a
space of K&hler forms on X by p(f) = f*(w).

Any function on the Mabuchi space of Kahler forms, F,
therefore induces a function on 7, F o p, which is invariant
under the action of the symplectic group on 7.
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This applies to both the K-energy and the Ding functional.
Since these functions are convex, they become
plurisubharmonic on J and define Kahler forms on 7.

The K-energy defines the standard Kahler form, the Ding
functional gives the new Kahler form introduced by Donaldson.

One can check that

(1+0) ThgUl, kU T)

is the new Ké&hler form found by Donaldson.
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is positive. When n = 1, this is the bundle of quadratic
differentials; the cotangent space of Teichmiiller space. So we
get a negatively curved metric on Teichmaller space.

When ¢, is a Kahler-Einstein potential, we get the classical
Weil-Peterson metric (Ahlfors, Royden, Wolpert), and our
curvature formula reduces to Wolpert’s explict formula for the
curvature of the WP-metric.



What about the WP-metric in higher dimension (Siu,
Schumacher, To-Yeung)? We then consider more general
bundles (joint with Mihai Paun and Xu Wang).




What about the WP-metric in higher dimension (Siu,
Schumacher, To-Yeung)? We then consider more general
bundles (joint with Mihai Paun and Xu Wang).

Look at a bundle with fibers

HP9(Xy, Lix, ),

wherep+qg=n. _
We assume that i00¢; > 0 or i00¢; < 0 on fibers. Let
Q = +i00¢,. (And assume the base is onedimensional.)




Theorem
If 100¢, < 0 on fibers

(Ou,u)y =
—((+0O) ur, pr)y — (1 +0)77E8)y — (e(o)u, uhy + [Inally-
If i9d¢, > 0 on fibers

(©u, u)y = (1+0) "0, n)yH(1+0) v, v)y+{c(d)u, u)y—lIénlly-

(This formula was found independently with a different method
by Ph Naumann.)
Heren=ruu,{ =RUU.




Let us focus on the negative case, i9d¢; < 0 on fibers and take
L = —Kx/y- Look first at H”vO(Xy, —Kx,)- This is a trivial line
bundle as before, and i = ¢ = 0. Let u® = 1 be the trivializing
section. Here n = n° = x U u° and the last term can be
interpreted as a norm of «.




Let us focus on the negative case, i9d¢; < 0 on fibers and take
L = —Kx/y- Look first at H™0(X,, —Kx,)- This is a trivial line
bundle as before, and i = ¢ = 0. Let u® = 1 be the trivializing
section. Here n = n° = x U u° and the last term can be
interpreted as a norm of «.

Then look at H"~11(X,, —Kx,) which can be identified with
H%1(X,, T10(X,)), the tangent space to Teichmiiller space. If
the metric is given by a KE-potential our L2-norm is the
Weil-Peterson norm. In this case our formula coincides with a
classical formula of Siu, which was generalized to all HP:9 by
Schumacher. It contains u' := x U u°, and our new 7 is

xUUu' = (kU)2u°. Continuing in this way we eventually get
(kU)"u®, whose n : th root defines a negatively curved Finsler
metric (the n:th n vanishes for bidegree reasons).



The only problem is that this metric might be 0 (it measures «"
instead of «).
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But then the previous one, "~ has negative curvature, etc. To
obtain one Finsler metric not depending on choices, one needs
to combine all the metrics we get into one; this was carried out
by To-Yeung.




The only problem is that this metric might be 0 (it measures «"
instead of «).

But then the previous one, "~ has negative curvature, etc. To
obtain one Finsler metric not depending on choices, one needs
to combine all the metrics we get into one; this was carried out
by To-Yeung.

The advantage in allowing other metrics ¢ than KE-potentials
comes when we allow singularities in the fibration. Then we
construct an ad hoc metric, which allows to continue our
metrics over singularities.




Thank you!




