(Higher) direct images

Bo Berndtsson
Chalmers University of Technology
2:nd Lecture at IMS, Singapore May 9, 2017.

Let \mathcal{X} and Y be complex manifolds and assume that \mathcal{X} is Kähler. Let (L, ϕ) be a hermitian holomorphic line bundle over \mathcal{X}, and let $p: \mathcal{X} \rightarrow Y$ be a smooth proper fibration.

Let \mathcal{X} and Y be complex manifolds and assume that \mathcal{X} is Kähler. Let (L, ϕ) be a hermitian holomorphic line bundle over \mathcal{X}, and let $p: \mathcal{X} \rightarrow Y$ be a smooth proper fibration.

Theorem

Assume $i \partial \bar{\partial} \phi \geq 0$. Then there is a holomorphic vector bundle E over Y with fibers

$$
E_{y}=H^{n, 0}\left(X_{y}, L_{X_{y}}\right)
$$

Give E the natural L^{2}-metric

$$
\|u\|_{y}^{2}=c_{n} \int u \wedge \bar{u} e^{-\phi_{L}}
$$

Then (E, L^{2}-metric) has positive curvature.

There is a similar result when p is non-proper and \mathcal{X} is Stein, e g the natural map

$$
p: \mathcal{D} \rightarrow \mathbb{C}
$$

where \mathcal{D} is a pseudoconvex domain in \mathbb{C}^{n+1}. (cf Hössjer, Maitani-Yamaguchi).

There is a similar result when p is non-proper and \mathcal{X} is Stein, e g the natural map

$$
p: \mathcal{D} \rightarrow \mathbb{C}
$$

where \mathcal{D} is a pseudoconvex domain in \mathbb{C}^{n+1}. (cf Hössjer, Maitani-Yamaguchi). This is the setting I used in the previous lecture.

There is a similar result when p is non-proper and \mathcal{X} is Stein, e g the natural map

$$
p: \mathcal{D} \rightarrow \mathbb{C}
$$

where \mathcal{D} is a pseudoconvex domain in \mathbb{C}^{n+1}. (cf Hössjer, Maitani-Yamaguchi). This is the setting I used in the previous lecture.

Now we will discuss explicit formulas for the curvature. First we need the set up: Let Ω be the Kähler form on \mathcal{X}. The most important thing is that $\omega_{y}:=\left.\Omega\right|_{x_{y}}>0$ for all y.

There is a similar result when p is non-proper and \mathcal{X} is Stein, e g the natural map

$$
p: \mathcal{D} \rightarrow \mathbb{C}
$$

where \mathcal{D} is a pseudoconvex domain in \mathbb{C}^{n+1}. (cf Hössjer, Maitani-Yamaguchi). This is the setting I used in the previous lecture.

Now we will discuss explicit formulas for the curvature. First we need the set up: Let Ω be the Kähler form on \mathcal{X}. The most important thing is that $\omega_{y}:=\left.\Omega\right|_{x_{y}}>0$ for all y.
Definition (Schumacher, Siu): Let V be a complex $(1,0)$ vector field on $\mathcal{X} . V$ is horizontal if

$$
\Omega\left(V, \bar{V}^{\prime}\right)=0
$$

for any vertical field.

If W is a field on Y, we say that V is a lift of W if $d p(V)=W$ everywhere. Lifts always exist.

Theorem

(Schumacher, Siu) Any vector field on the base Y has a unique horizontal lift.

If W is a field on Y, we say that V is a lift of W if $d p(V)=W$ everywhere. Lifts always exist.

Theorem

(Schumacher, Siu) Any vector field on the base Y has a unique horizontal lift.

If V is any lift of a holomorphic field W on Y, we let $\kappa V=\left.\bar{\partial} V\right|_{X_{y}} \in \mathcal{Z}^{0,1}\left(X_{y}, T^{1,0}\left(X_{y}\right)\right.$. The cohomology class of κ in $H^{0,1}\left(X_{y}, T^{1,0}\left(X_{y}\right)\right)$ does not depend on the lift.

If W is a field on Y, we say that V is a lift of W if $d p(V)=W$ everywhere. Lifts always exist.

Theorem

(Schumacher, Siu) Any vector field on the base Y has a unique horizontal lift.

If V is any lift of a holomorphic field W on Y, we let $\kappa V=\left.\bar{\partial} V\right|_{X_{y}} \in \mathcal{Z}^{0,1}\left(X_{y}, T^{1,0}\left(X_{y}\right)\right.$. The cohomology class of κ in $H^{0,1}\left(X_{y}, T^{1,0}\left(X_{y}\right)\right)$ does not depend on the lift. It is the Kodaira-Spencer class of the fibration at y.

If W is a field on Y, we say that V is a lift of W if $d p(V)=W$ everywhere. Lifts always exist.

Theorem

(Schumacher, Siu) Any vector field on the base Y has a unique horizontal lift.

If V is any lift of a holomorphic field W on Y, we let $\kappa V=\left.\bar{\partial} V\right|_{X_{y}} \in \mathcal{Z}^{0,1}\left(X_{y}, T^{1,0}\left(X_{y}\right)\right.$. The cohomology class of κ in $H^{0,1}\left(X_{y}, T^{1,0}\left(X_{y}\right)\right)$ does not depend on the lift. It is the Kodaira-Spencer class of the fibration at y.
Taking V to be the horizontal lift of W, we get a canonical representative of the Kodaira-Spencer class.

If W is a field on Y, we say that V is a lift of W if $d p(V)=W$ everywhere. Lifts always exist.

Theorem

(Schumacher, Siu) Any vector field on the base Y has a unique horizontal lift.

If V is any lift of a holomorphic field W on Y, we let $\kappa V=\left.\bar{\partial} V\right|_{X_{y}} \in \mathcal{Z}^{0,1}\left(X_{y}, T^{1,0}\left(X_{y}\right)\right.$. The cohomology class of κ in $H^{0,1}\left(X_{y}, T^{1,0}\left(X_{y}\right)\right)$ does not depend on the lift. It is the Kodaira-Spencer class of the fibration at y.
Taking V to be the horizontal lift of W, we get a canonical representative of the Kodaira-Spencer class. κ acts on $u \in H^{n, 0}\left(X_{y}, L\right)$, so we get

$$
\kappa \cup u \in \mathcal{Z}^{n-1,1}
$$

If W is a field on Y, we say that V is a lift of W if $d p(V)=W$ everywhere. Lifts always exist.

Theorem

(Schumacher, Siu) Any vector field on the base Y has a unique horizontal lift.

If V is any lift of a holomorphic field W on Y, we let $\kappa V=\left.\bar{\partial} V\right|_{X_{y}} \in \mathcal{Z}^{0,1}\left(X_{y}, T^{1,0}\left(X_{y}\right)\right.$. The cohomology class of κ in $H^{0,1}\left(X_{y}, T^{1,0}\left(X_{y}\right)\right)$ does not depend on the lift. It is the Kodaira-Spencer class of the fibration at y.
Taking V to be the horizontal lift of W, we get a canonical representative of the Kodaira-Spencer class. κ acts on $u \in H^{n, 0}\left(X_{y}, L\right)$, so we get

$$
\kappa \cup u \in \mathcal{Z}^{n-1,1}
$$

Similarily, $[\kappa] \cup u \in H^{n-1,1}$.

Theorem
(Griffiths) Take $L=0$. Then

$$
\left\langle\Theta_{W, \bar{W}}^{E} u, u\right\rangle_{y}=\left\|\left[\kappa_{W} \cup u\right]\right\|_{y}^{2} .
$$

Theorem
(Griffiths) Take $L=0$. Then

$$
\left\langle\Theta_{W, \bar{W}}^{E} u, u\right\rangle_{y}=\left\|\left[\kappa_{W} \cup u\right]\right\|_{y}^{2} .
$$

We next look at the case when L is not trivial and assume that $i \partial \bar{\partial} \phi_{L}>0$ on each fiber. To simplify the writing we assume the base dimension is 1 , and let t be a local coordinate on the base. Let $\Omega=i \partial \bar{\partial} \phi$.

Theorem
(Griffiths) Take $L=0$. Then

$$
\left\langle\Theta_{W, \bar{W}}^{E} u, u\right\rangle_{y}=\|[\kappa W \cup u]\|_{y}^{2} .
$$

We next look at the case when L is not trivial and assume that $i \partial \bar{\partial} \phi_{L}>0$ on each fiber. To simplify the writing we assume the base dimension is 1 , and let t be a local coordinate on the base. Let $\Omega=i \partial \bar{\partial} \phi$.
We then define

$$
c(\phi)=\frac{1}{n+1} \frac{\Omega^{n+1}}{\Omega^{n} \wedge i d t \wedge d \bar{t}} .
$$

Theorem

(Griffiths) Take $L=0$. Then

$$
\left\langle\Theta_{W, \bar{W}}^{E} u, u\right\rangle_{y}=\left\|\left[\kappa_{W} \cup u\right]\right\|_{y}^{2} .
$$

We next look at the case when L is not trivial and assume that $i \partial \bar{\partial} \phi_{L}>0$ on each fiber. To simplify the writing we assume the base dimension is 1 , and let t be a local coordinate on the base. Let $\Omega=i \partial \bar{\partial} \phi$.
We then define

$$
c(\phi)=\frac{1}{n+1} \frac{\Omega^{n+1}}{\Omega^{n} \wedge i d t \wedge d \bar{t}} .
$$

The function $c(\phi)$ has an interesting interpretation when $\mathcal{X}=X \times Y$ is a trivial fibration, and L is the pullback to \mathcal{X} of a line bundle on X. Then all the fibers X_{y} are the same, and the line bundles $L_{X_{y}}$ are also all the same. The only thing that changes is the metric $\phi=\phi_{t}$.

When the base is one dimensional, say a domain in \mathbb{C}, we can think of a metric on L over \mathcal{X} as a complex curve ϕ_{t} of metrics on L over X. If ϕ_{t} only depends on the real part of t it is a real curve.

When the base is one dimensional, say a domain in \mathbb{C}, we can think of a metric on L over \mathcal{X} as a complex curve ϕ_{t} of metrics on L over X. If ϕ_{t} only depends on the real part of t it is a real curve.

Let \mathcal{H}_{L} be the space of positively curved metrics on L. This Mabuchi space has a natural Riemannian structure:

$$
\|\dot{\phi}\|^{2}=\int_{X}|\dot{\phi}|^{2}(i \partial \bar{\partial} \phi)^{n} / n!
$$

If $c(\phi)=0$, then ϕ_{t} is a geodesic in the Mabuchi space. In general, $c(\phi)$ is the geodesic curvature of the curve $t \rightarrow \phi_{t}$ in the Mabuchi space. (Semmes, Donaldson)

Theorem

$$
\begin{gathered}
\langle\Theta u, u\rangle_{y}=c_{n} \int_{X_{y}} c(\phi) u \wedge \bar{u} e^{-\phi}+\left\langle(1+\square)^{-1} \kappa_{\partial / \partial t} \cup u, \kappa_{\partial / \partial t} \cup u\right\rangle_{y} \geq \\
\left\|\left[\kappa_{\partial / \partial t} \cup u\right]\right\|_{y}^{2}
\end{gathered}
$$

Example: Let $\mathcal{X}=X \times Y$ and let $L=-K_{X}>0$. (So X is Fano.) Then $H^{n}\left(X,-K_{X}\right)=\mathbb{C}$ and E is a trivial bundle with a nontrivial metric. We have a trivializing section, 1. The positivity of E means that

$$
i \partial \bar{\partial}_{Y} \log \int_{X} e^{-\phi} \leq 0
$$

(a complex Brunn-Minkowski theorem). Let $\mathcal{E}(\phi)$ be the Aubin-Yau energy, so that

$$
(d / d t) \mathcal{E}\left(\phi_{t}\right)=\frac{1}{V} \int_{X} \dot{\phi}_{t}\left(i \partial \bar{\partial} \phi_{t}\right)^{n} / n!
$$

Then

$$
D(\phi):=\log \int_{X} e^{-\phi}+\mathcal{E}(\phi)
$$

is the Ding functional.

Then

$$
D(\phi):=\log \int_{X} e^{-\phi}+\mathcal{E}(\phi)
$$

is the Ding functional. Its critical points satisfy

$$
e^{-\phi}=C(i \partial \bar{\partial} \phi)^{n},
$$

the Kähler-Einstein equation.

Then

$$
D(\phi):=\log \int_{X} e^{-\phi}+\mathcal{E}(\phi)
$$

is the Ding functional. Its critical points satisfy

$$
e^{-\phi}=C(i \partial \bar{\partial} \phi)^{n},
$$

the Kähler-Einstein equation.
It follows that the Ding functional is convex along geodesics, and the explicit formula tells us when it is linear:

Then

$$
D(\phi):=\log \int_{X} e^{-\phi}+\mathcal{E}(\phi)
$$

is the Ding functional.
Its critical points satisfy

$$
e^{-\phi}=C(i \partial \bar{\partial} \phi)^{n},
$$

the Kähler-Einstein equation.
It follows that the Ding functional is convex along geodesics, and the explicit formula tells us when it is linear:

Theorem

Assume that ϕ_{t} only depends on t, and that

$$
\log \int_{X} e^{-\phi_{t}}
$$

is linear. Then there is a holomorphic vector field V on X with flow F_{t} such that $i \partial \bar{\partial} \phi_{t}=F_{t}^{*}\left(i \partial \bar{\partial} \phi_{0}\right)$.

This can be used to prove uniqueness; the (generalized) Bando-Mabuchi theorem.

The Ding functional plays a role in the recent theorem of CDS on existence of KE-metrics.

This leads to a philosophical problem:
Donaldson's program was based on the Mabuchi K-energy, whose derivative is interpreted as a moment map, μ, for the symplectic group of X acting on an infinite dimensional manifold, \mathcal{J}. The KE-equation was then the equation $\mu=0$.

This can be used to prove uniqueness; the (generalized) Bando-Mabuchi theorem.

The Ding functional plays a role in the recent theorem of CDS on existence of KE-metrics.

This leads to a philosophical problem:
Donaldson's program was based on the Mabuchi K-energy, whose derivative is interpreted as a moment map, μ, for the symplectic group of X acting on an infinite dimensional manifold, \mathcal{J}. The KE-equation was then the equation $\mu=0$. He then showed that the Ding functional can also be seen as a moment map, but for a different symplectic structure on \mathcal{J} :
\mathcal{J} is the space of all complex structures on X that are biholomorphic with the given one and compatible with a fixed Kähler form on X, ω. This space can be indentified with the space of all diffeomorphisms, f, such that $f^{*}(\omega)$ is $(1,1)$ and positive for the given structure.
\mathcal{J} is the space of all complex structures on X that are biholomorphic with the given one and compatible with a fixed Kähler form on X, ω. This space can be indentified with the space of all diffeomorphisms, f, such that $f^{*}(\omega)$ is $(1,1)$ and positive for the given structure.

If f lies in \mathcal{J} and g is a symplectic map for ω, then $g f$ lies in \mathcal{J}, so the symplectic group acts on \mathcal{J}. We get a map from \mathcal{J} to a space of Kähler forms on X by $p(f)=f^{*}(\omega)$.
\mathcal{J} is the space of all complex structures on X that are biholomorphic with the given one and compatible with a fixed Kähler form on X, ω. This space can be indentified with the space of all diffeomorphisms, f, such that $f^{*}(\omega)$ is $(1,1)$ and positive for the given structure.

If f lies in \mathcal{J} and g is a symplectic map for ω, then $g f$ lies in \mathcal{J}, so the symplectic group acts on \mathcal{J}. We get a map from \mathcal{J} to a space of Kähler forms on X by $p(f)=f^{*}(\omega)$.
Any function on the Mabuchi space of Kähler forms, F, therefore induces a function on $\mathcal{J}, F \circ p$, which is invariant under the action of the symplectic group on \mathcal{J}.

This applies to both the K-energy and the Ding functional. Since these functions are convex, they become plurisubharmonic on \mathcal{J} and define Kähler forms on \mathcal{J}.

This applies to both the K-energy and the Ding functional. Since these functions are convex, they become plurisubharmonic on \mathcal{J} and define Kähler forms on \mathcal{J}.

The K-energy defines the standard Kähler form, the Ding functional gives the new Kähler form introduced by Donaldson.

This applies to both the K-energy and the Ding functional. Since these functions are convex, they become plurisubharmonic on \mathcal{J} and define Kähler forms on \mathcal{J}.

The K-energy defines the standard Kähler form, the Ding functional gives the new Kähler form introduced by Donaldson.

One can check that

$$
\left\langle(1+\square)^{-1} \kappa_{\phi} \cup 1, \kappa_{\phi} \cup 1\right\rangle
$$

is the new Kähler form found by Donaldson.

Example: The fibration is nontrivial and such that $K_{X_{y}}>0$ for all y (a canonically polarized family). Take $L=K_{X / Y}$, so
$L_{X_{y}}=K_{X_{y}}$ for all y.

Example: The fibration is nontrivial and such that $K_{X_{y}}>0$ for all y (a canonically polarized family). Take $L=K_{X / Y}$, so
$L_{X_{y}}=K_{X_{y}}$ for all y.
Then the bundle with fibers

$$
H^{n, 0}\left(X_{y}, K_{X_{y}}\right)
$$

is positive. When $n=1$, this is the bundle of quadratic differentials; the cotangent space of Teichmüller space. So we get a negatively curved metric on Teichmüller space.

Example: The fibration is nontrivial and such that $K_{x_{y}}>0$ for all y (a canonically polarized family). Take $L=K_{X / Y}$, so $L_{X_{y}}=K_{X_{y}}$ for all y.
Then the bundle with fibers

$$
H^{n, 0}\left(X_{y}, K_{X_{y}}\right)
$$

is positive. When $n=1$, this is the bundle of quadratic differentials; the cotangent space of Teichmüller space. So we get a negatively curved metric on Teichmüller space.
When ϕ_{L} is a Kähler-Einstein potential, we get the classical Weil-Peterson metric (Ahlfors, Royden, Wolpert), and our curvature formula reduces to Wolpert's explict formula for the curvature of the WP-metric.

What about the WP-metric in higher dimension (Siu, Schumacher, To-Yeung)? We then consider more general bundles (joint with Mihai Paun and Xu Wang).

What about the WP-metric in higher dimension (Siu, Schumacher, To-Yeung)? We then consider more general bundles (joint with Mihai Paun and Xu Wang).
Look at a bundle with fibers

$$
H^{p, q}\left(X_{y}, L_{X_{y}}\right),
$$

where $p+q=n$.
We assume that $i \partial \bar{\partial} \phi_{L}>0$ or $i \partial \bar{\partial} \phi_{L}<0$ on fibers. Let
$\Omega= \pm i \partial \bar{\partial} \phi_{L}$. (And assume the base is onedimensional.)

Theorem

If I $\partial \bar{\partial} \phi_{L}<0$ on fibers

$$
\langle\Theta u, u\rangle_{y}=
$$

$-\left\langle(1+\square)^{-1} \mu_{\perp}, \mu_{\perp}\right\rangle_{y}-\left\langle(1+\square)^{-1} \xi, \xi\right\rangle_{y}-\langle c(\phi) u, u\rangle_{y}+\left\|\eta_{h}\right\|_{y}$. If i$\partial \bar{\partial} \phi_{L}>0$ on fibers

$$
\langle\Theta u, u\rangle_{y}=\left\langle(1+\square)^{-1} \eta, \eta\right\rangle_{y}+\left\langle(1+\square)^{-1} \nu, \nu\right\rangle_{y}+\langle c(\phi) u, u\rangle_{y}-\left\|\xi_{h}\right\|_{y} .
$$

(This formula was found independently with a different method by Ph Naumann.) Here $\eta=\kappa \cup u, \xi=\bar{\kappa} \cup u$.

Let us focus on the negative case, $i \partial \bar{\partial} \phi_{L}<0$ on fibers and take $L=-K_{X / Y}$. Look first at $H^{n, 0}\left(X_{y},-K_{X_{y}}\right)$. This is a trivial line bundle as before, and $\mu=\xi=0$. Let $u^{0}=1$ be the trivializing section. Here $\eta=\eta^{0}=\kappa \cup u^{0}$ and the last term can be interpreted as a norm of κ.

Let us focus on the negative case, $i \partial \bar{\partial} \phi_{L}<0$ on fibers and take $L=-K_{X / Y}$. Look first at $H^{n, 0}\left(X_{y},-K_{X_{y}}\right)$. This is a trivial line bundle as before, and $\mu=\xi=0$. Let $u^{0}=1$ be the trivializing section. Here $\eta=\eta^{0}=\kappa \cup u^{0}$ and the last term can be interpreted as a norm of κ.

Then look at $H^{n-1,1}\left(X_{y},-K_{X_{y}}\right)$ which can be identified with $H^{0,1}\left(X_{y}, T^{1,0}\left(X_{y}\right)\right)$, the tangent space to Teichmüller space. If the metric is given by a KE -potential our L^{2}-norm is the Weil-Peterson norm. In this case our formula coincides with a classical formula of Siu, which was generalized to all $H^{p, q}$ by Schumacher. It contains $u^{1}:=\kappa \cup u^{0}$, and our new η is $\kappa \cup u^{1}=(\kappa \cup)^{2} u^{0}$. Continuing in this way we eventually get $(\kappa \cup)^{n} u^{0}$, whose n : th root defines a negatively curved Finsler metric (the n :th η vanishes for bidegree reasons).

The only problem is that this metric might be 0 (it measures κ^{n} instead of κ).

The only problem is that this metric might be 0 (it measures κ^{n} instead of κ).

But then the previous one, κ^{n-1} has negative curvature, etc. To obtain one Finsler metric not depending on choices, one needs to combine all the metrics we get into one; this was carried out by To-Yeung.

The only problem is that this metric might be 0 (it measures κ^{n} instead of κ).

But then the previous one, κ^{n-1} has negative curvature, etc. To obtain one Finsler metric not depending on choices, one needs to combine all the metrics we get into one; this was carried out by To-Yeung.

The advantage in allowing other metrics ϕ than KE-potentials comes when we allow singularities in the fibration. Then we construct an ad hoc metric, which allows to continue our metrics over singularities.

Thank you!

