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Let X and Y be complex manifolds and assume that X is
Kähler. Let (L, φ) be a hermitian holomorphic line bundle over
X , and let p : X → Y be a smooth proper fibration.

Theorem

Assume i∂∂̄φ ≥ 0. Then there is a holomorphic vector bundle E
over Y with fibers

Ey = Hn,0(Xy ,L|Xy ).

Give E the natural L2-metric

‖u‖2y = cn

∫
u ∧ ūe−φL

Then (E ,L2-metric) has positive curvature.
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There is a similar result when p is non-proper and X is Stein, e
g the natural map

p : D → C,

where D is a pseudoconvex domain in Cn+1. (cf Hössjer,
Maitani-Yamaguchi).

This is the setting I used in the previous
lecture.

Now we will discuss explicit formulas for the curvature. First we
need the set up: Let Ω be the Kähler form on X . The most
important thing is that ωy := Ω|Xy > 0 for all y .

Definition (Schumacher, Siu): Let V be a complex (1,0)
vector field on X . V is horizontal if

Ω(V , V̄ ′) = 0

for any vertical field.
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If W is a field on Y , we say that V is a lift of W if dp(V ) = W
everywhere. Lifts always exist.

Theorem
(Schumacher, Siu) Any vector field on the base Y has a unique
horizontal lift.

If V is any lift of a holomorphic field W on Y , we let
κV = ∂̄V |Xy ∈ Z0,1(Xy ,T 1,0(Xy ). The cohomology class of κ in
H0,1(Xy ,T 1,0(Xy )) does not depend on the lift. It is the
Kodaira-Spencer class of the fibration at y .

Taking V to be the horizontal lift of W , we get a canonical
representative of the Kodaira-Spencer class. κ acts on
u ∈ Hn,0(Xy ,L), so we get

κ ∪ u ∈ Zn−1,1.

Similarily, [κ] ∪ u ∈ Hn−1,1.
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Theorem
(Griffiths) Take L = 0. Then

〈ΘE
W ,W̄ u,u〉y = ‖ [κW ∪ u] ‖2y .

We next look at the case when L is not trivial and assume that
i∂∂̄φL > 0 on each fiber. To simplify the writing we assume the
base dimension is 1, and let t be a local coordinate on the
base. Let Ω = i∂∂̄φ.
We then define

c(φ) =
1

n + 1
Ωn+1

Ωn ∧ idt ∧ dt̄
.

The function c(φ) has an interesting interpretation when
X = X × Y is a trivial fibration, and L is the pullback to X of a
line bundle on X . Then all the fibers Xy are the same, and the
line bundles L|Xy are also all the same. The only thing that
changes is the metric φ = φt .
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When the base is one dimensional, say a domain in C, we can
think of a metric on L over X as a complex curve φt of metrics
on L over X . If φt only depends on the real part of t it is a real
curve.

Let HL be the space of positively curved metrics on L. This
Mabuchi space has a natural Riemannian structure:

‖φ̇‖2 =

∫
X
|φ̇|2(i∂∂̄φ)n/n!

If c(φ) = 0 , then φt is a geodesic in the Mabuchi space. In
general, c(φ) is the geodesic curvature of the curve t → φt in
the Mabuchi space. (Semmes, Donaldson)
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Theorem

〈Θu,u〉y = cn

∫
Xy

c(φ)u∧ūe−φ+〈(1+�)−1κ∂/∂t∪u, κ∂/∂t∪u〉y ≥

‖[κ∂/∂t ∪ u]‖2y .

Example: Let X = X × Y and let L = −KX > 0. ( So X is
Fano.) Then Hn(X ,−KX ) = C and E is a trivial bundle with a
nontrivial metric. We have a trivializing section, 1. The positivity
of E means that

i∂∂̄Y log
∫

X
e−φ ≤ 0

(a complex Brunn-Minkowski theorem). Let E(φ) be the
Aubin-Yau energy, so that

(d/dt)E(φt ) =
1
V

∫
X
φ̇t (i∂∂̄φt )

n/n!.



Then
D(φ) := log

∫
X

e−φ + E(φ)

is the Ding functional.

Its critical points satisfy

e−φ = C(i∂∂̄φ)n,

the Kähler-Einstein equation.
It follows that the Ding functional is convex along geodesics,
and the explicit formula tells us when it is linear:

Theorem
Assume that φt only depends on t, and that

log
∫

X
e−φt

is linear. Then there is a holomorphic vector field V on X with
flow Ft such that i∂∂̄φt = F ∗t (i∂∂̄φ0).
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This can be used to prove uniqueness; the (generalized)
Bando-Mabuchi theorem.

The Ding functional plays a role in the recent theorem of CDS
on existence of KE-metrics.

This leads to a philosophical problem:

Donaldson’s program was based on the Mabuchi K-energy,
whose derivative is interpreted as a moment map, µ, for the
symplectic group of X acting on an infinite dimensional
manifold, J . The KE-equation was then the equation µ = 0.

He then showed that the Ding functional can also be seen as a
moment map, but for a different symplectic structure on J :



This can be used to prove uniqueness; the (generalized)
Bando-Mabuchi theorem.

The Ding functional plays a role in the recent theorem of CDS
on existence of KE-metrics.

This leads to a philosophical problem:

Donaldson’s program was based on the Mabuchi K-energy,
whose derivative is interpreted as a moment map, µ, for the
symplectic group of X acting on an infinite dimensional
manifold, J . The KE-equation was then the equation µ = 0.

He then showed that the Ding functional can also be seen as a
moment map, but for a different symplectic structure on J :



J is the space of all complex structures on X that are
biholomorphic with the given one and compatible with a fixed
Kähler form on X , ω. This space can be indentified with the
space of all diffeomorphisms, f , such that f ∗(ω) is (1,1) and
positive for the given structure.

If f lies in J and g is a symplectic map for ω, then gf lies in J ,
so the symplectic group acts on J . We get a map from J to a
space of Kähler forms on X by p(f ) = f ∗(ω).
Any function on the Mabuchi space of Kähler forms, F ,
therefore induces a function on J , F ◦ p, which is invariant
under the action of the symplectic group on J .
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This applies to both the K-energy and the Ding functional.
Since these functions are convex, they become
plurisubharmonic on J and define Kähler forms on J .

The K-energy defines the standard Kähler form, the Ding
functional gives the new Kähler form introduced by Donaldson.

One can check that

〈(1 + �)−1κφ ∪ 1, κφ ∪ 1〉

is the new Kähler form found by Donaldson.
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Example: The fibration is nontrivial and such that KXy > 0 for
all y (a canonically polarized family). Take L = KX/Y , so
L|Xy = KXy for all y .

Then the bundle with fibers

Hn,0(Xy ,KXy )

is positive. When n = 1, this is the bundle of quadratic
differentials; the cotangent space of Teichmüller space. So we
get a negatively curved metric on Teichmüller space.

When φL is a Kähler-Einstein potential, we get the classical
Weil-Peterson metric (Ahlfors, Royden, Wolpert), and our
curvature formula reduces to Wolpert’s explict formula for the
curvature of the WP-metric.
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What about the WP-metric in higher dimension (Siu,
Schumacher, To-Yeung)? We then consider more general
bundles (joint with Mihai Paun and Xu Wang).

Look at a bundle with fibers

Hp,q(Xy ,L|Xy ),

where p + q = n.
We assume that i∂∂̄φL > 0 or i∂∂̄φL < 0 on fibers. Let
Ω = ±i∂∂̄φL. (And assume the base is onedimensional.)
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Theorem

If I∂∂̄φL < 0 on fibers
〈Θu,u〉y =

−〈(1 + �)−1µ⊥, µ⊥〉y − 〈(1 + �)−1ξ, ξ〉y − 〈c(φ)u,u〉y + ‖ηh‖y .

If i∂∂̄φL > 0 on fibers

〈Θu,u〉y = 〈(1+�)−1η, η〉y +〈(1+�)−1ν, ν〉y +〈c(φ)u,u〉y−‖ξh‖y .

(This formula was found independently with a different method
by Ph Naumann.)
Here η = κ ∪ u, ξ = κ̄ ∪ u.



Let us focus on the negative case, i∂∂̄φL < 0 on fibers and take
L = −KX/Y . Look first at Hn,0(Xy ,−KXy ). This is a trivial line
bundle as before, and µ = ξ = 0. Let u0 = 1 be the trivializing
section. Here η = η0 = κ ∪ u0 and the last term can be
interpreted as a norm of κ.

Then look at Hn−1,1(Xy ,−KXy ) which can be identified with
H0,1(Xy ,T 1,0(Xy )), the tangent space to Teichmüller space. If
the metric is given by a KE-potential our L2-norm is the
Weil-Peterson norm. In this case our formula coincides with a
classical formula of Siu, which was generalized to all Hp,q by
Schumacher. It contains u1 := κ ∪ u0, and our new η is
κ ∪ u1 = (κ∪)2u0. Continuing in this way we eventually get
(κ∪)nu0, whose n : th root defines a negatively curved Finsler
metric (the n:th η vanishes for bidegree reasons).
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The only problem is that this metric might be 0 (it measures κn

instead of κ).

But then the previous one, κn−1 has negative curvature, etc. To
obtain one Finsler metric not depending on choices, one needs
to combine all the metrics we get into one; this was carried out
by To-Yeung.

The advantage in allowing other metrics φ than KE-potentials
comes when we allow singularities in the fibration. Then we
construct an ad hoc metric, which allows to continue our
metrics over singularities.
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Thank you!


