On the first order asymptotics of partial Bergman kernels

joint work with George Marinescu (University of Cologne)

Dan Coman

Department of Mathematics, Syracuse University Syracuse, NY 13244-1150, USA

Conference on Complex Geometry, Dynamical Systems and Foliation Theory

Institute for Mathematical Sciences
National University of Singapore
May 15-19, 2017

Plan of the talk:

1. Singular Hermitian holomorphic line bundles
2. Exponential decay of the partial Bergman kernel near the zero locus
3. Bergman kernel of a singular metric with logarithmic poles
4. Estimates for the partial Bergman kernel

1. Singular Hermitian holomorphic line bundles

Let (X, ω) be a compact Hermitian manifold of dimension n and L be a holomorphic line bundle on X.

Then $X=\bigcup U_{\alpha}$, such that there exist $e_{\alpha}: U_{\alpha} \longrightarrow L$ local holomorphic frames, $e_{\beta}=g_{\alpha \beta} e_{\alpha}, g_{\alpha \beta} \in \mathcal{O}^{*}\left(U_{\alpha} \cap U_{\beta}\right)$ are the transition functions.
$H^{0}(X, L)$ denotes the space of global holomorphic sections $S: X \longrightarrow L$: $\left.S\right|_{U_{\alpha}}=s_{\alpha} e_{\alpha}, s_{\alpha} \in \mathcal{O}\left(U_{\alpha}\right), s_{\alpha}=s_{\beta} g_{\alpha \beta}$ on $U_{\alpha} \cap U_{\beta}$.

Singular Hermitian metric h on L : collection $\left\{\varphi_{\alpha} \in L_{\text {loc }}^{1}\left(U_{\alpha}, \omega^{n}\right)\right\}$, with $h\left(e_{\alpha}, e_{\alpha}\right)=\left|e_{\alpha}\right|_{h}^{2}=e^{-2 \varphi_{\alpha}}, \varphi_{\alpha}=\varphi_{\beta}+\log \left|g_{\alpha \beta}\right|$ on $U_{\alpha} \cap U_{\beta}$. If φ_{α} are locally bounded we say that h has locally bounded weights.

The curvature current $c_{1}(L, h)$ of h is defined by $c_{1}(L, h) \mid u_{\alpha}=d d^{c} \varphi_{\alpha}$. Note $c_{1}(L, h) \geq 0$ if and only if each φ_{α} is psh on U_{α}.

Suppose that h, \widetilde{h} are singular Hermitian metrics on L such that h has locally bounded weights. Set $L^{p}:=L^{\otimes p}, h_{p}:=h^{\otimes p}, \widetilde{h}_{p}:=\widetilde{h}^{\otimes p}$.

Bergman spaces of L^{2}-holomorphic sections:

$$
\begin{aligned}
& H_{(2)}^{0}\left(X, L^{p}, h_{p}\right)=\left\{S \in H^{0}\left(X, L^{p}\right):\|S\|_{p}^{2}:=\int_{X}|S|_{h_{p}}^{2} \frac{\omega^{n}}{n!}<\infty\right\}, \\
& H_{(2)}^{0}\left(X, L^{p}, \widetilde{h}_{p}\right) \subseteq H_{(2)}^{0}\left(X, L^{p}, h_{p}\right)=H^{0}\left(X, L^{p}\right)
\end{aligned}
$$

$P_{p}:=$ (full) Bergman kernel function of $H^{0}\left(X, L^{p}\right)=H_{(2)}^{0}\left(X, L^{p}, h_{p}\right)$
$\widetilde{P}_{p}:=$ Bergman kernel function of $H_{(2)}^{0}\left(X, L^{p}, \widetilde{h}_{p}\right)$
Note that $d_{p}:=\operatorname{dim} H^{0}\left(X, L^{p}\right)<\infty$, since X is compact. If $S_{1}, \ldots, S_{d_{p}}$ is an o.n. basis of $H^{0}\left(X, L^{p}\right)$ then P_{p} is defined by

$$
P_{p}(x)=\sum_{j=1}^{d_{p}}\left|S_{j}(x)\right|_{h_{p}}^{2}, x \in X
$$

2. Exponential decay of the partial Bergman kernel near the zero locus

We consider the following setting:
(A) (X, ω) is a compact Hermitian manifold, $\operatorname{dim} X=n, \Sigma$ is a smooth complex hypersurface of X, and $t>0$ is a fixed real number.
(B) (L, h) is a singular Hermitian holomorphic line bundle on X such that h has locally bounded weights.

Consider the subspace of holomorphic sections of L^{p} vanishing to order at least $\lfloor t p\rfloor$ along Σ :

$$
\begin{gathered}
H_{0}^{0}\left(X, L^{p}\right):=H^{0}\left(X, L^{p} \otimes \mathcal{O}(-\lfloor t p\rfloor \Sigma)\right) \leqslant H^{0}\left(X, L^{p}\right), \\
d_{0, p}:=\operatorname{dim} H_{0}^{0}\left(X, L^{p}\right) \leq d_{p}=\operatorname{dim} H^{0}\left(X, L^{p}\right) .
\end{gathered}
$$

Fix an o.n. basis $\left\{S_{j}^{p}: 1 \leq j \leq d_{p}\right\}$ of $H^{0}\left(X, L^{p}\right)$ such that $\left\{S_{j}^{p}: 1 \leq j \leq d_{0, p}\right\}$ is an o.n. basis of $H_{0}^{0}\left(X, L^{p}\right)$.

The partial Bergman kernel function $P_{0, p}$ of $H_{0}^{0}\left(X, L^{p}\right)$ is

$$
P_{0, p}(x)=\sum_{j=1}^{d_{0, p}}\left|S_{j}^{p}(x)\right|_{h_{p}}^{2}, x \in X
$$

Then $P_{0, p}(x) \leq P_{p}(x)$ on X and

$$
P_{0, p}(x)=\max \left\{|S(x)|_{h_{p}}^{2}: S \in H_{0}^{0}\left(X, L^{p}\right),\|S\|_{p}^{2}=\int_{X}|S|_{h_{p}}^{2} \frac{\omega^{n}}{n!}=1\right\}
$$

Theorem 1

Assume that conditions $(A)-(B)$ are fulfilled. Then there exist a neighborhood U_{t} of Σ and a constant $a_{t} \in(0,1)$ such that

$$
P_{0, p}(x) \leq a_{t}^{p}, \text { for } x \in U_{t} \text { and } p>2 / t
$$

Let $S_{\Sigma} \in H^{0}(X, \mathcal{O}(\Sigma))$ be a canonical section vanishing to first order on Σ, and h_{Σ} be a smooth Hermitian metric on $\mathcal{O}(\Sigma)$ such that

$$
\varrho:=\log \left|S_{\Sigma}\right|_{h_{\Sigma}}<0 \text { on } X
$$

Fix an open cover $\mathcal{W}=\left\{W_{j}\right\}_{1 \leq j \leq N}$ of Σ (compact), such that W_{j} are Stein contractible coordinate neighborhoods centered at $y_{j} \in \Sigma$, and

$$
\begin{aligned}
& \Delta^{n}\left(y_{j}, 2\right) \subset W_{j}, \quad \Sigma \subset W:=\bigcup_{j=1}^{N} \operatorname{int} \Delta^{n}\left(y_{j}, 1\right), \\
& \Sigma \cap W_{j}=\left\{z \in W_{j}: z_{1}=0\right\}, \text { for } j=1 \ldots, N .
\end{aligned}
$$

Here $z=\left(z_{1}, \ldots, z_{n}\right)$ are the coordinates on W_{j} and

$$
\Delta^{n}(y, r):=\left\{z \in W_{j}:\left|z_{\ell}-y_{\ell}\right| \leq r, \ell=1, \ldots, n\right\}
$$

is the (closed) polydisk of radius $r>0$ centered at $y \in W_{j}$.

Since $L \mid w_{j}$ is trivial, let e_{j} be a holomorphic frame of $L \mid w_{j}$ and let $\left|e_{j}\right|_{h}=e^{-\varphi_{j}}$. Set

$$
\begin{gathered}
\left\|\varphi_{j}\right\|_{\infty, W_{j}}=\sup \left\{\left|\varphi_{j}(w)\right|: w \in \Delta^{n}\left(y_{j}, 2\right)\right\} \\
\|h\|_{\infty}=\|h\|_{\infty, \mathcal{W}}:=\max \left\{\left\|\varphi_{j}\right\|_{\infty, W_{j}}: 1 \leq j \leq N\right\}
\end{gathered}
$$

Theorem 2
In the setting of Theorem 1, there exists $A=A(\rho, \mathcal{W}) \geq 1$ such that

$$
P_{0, p}(x) \leq\left(A e^{\rho(x)}\right)^{2\lfloor t p\rfloor} e^{4 p\|h\|_{\infty}}, \quad \forall x \in W, p \geq 1
$$

In particular, if $U_{t}:=\left\{x \in W:\left(A e^{\rho(x)}\right)^{t} e^{4\|h\|_{\infty}}<1\right\}$ then

$$
P_{0, p}(x) \leq\left[\left(A e^{\rho(x)}\right)^{t} e^{4\|h\|_{\infty}}\right]^{p}, \quad \forall x \in U_{t}, p>2 / t
$$

Lemma 3

If $k \geq 0$ and $f \in \mathcal{O}(\Delta(0,2))$, where $\Delta(0,2) \subset \mathbb{C}$ is the closed disk centered at 0 and of radius 2 , then

$$
\int_{\Delta(0,2)}|f(\zeta)|^{2} d m(\zeta) \leq \frac{k+1}{2^{2 k}} \int_{\Delta(0,2)}|\zeta|^{2 k}|f(\zeta)|^{2} d m(\zeta) .
$$

Proof. Let $f(\zeta)=\sum_{j=0}^{\infty} a_{j} \zeta^{j}$ in $\Delta(0,2)$, so $\zeta^{k} f(\zeta)=\sum_{j=0}^{\infty} a_{j} \zeta^{j+k}$. Then

$$
\begin{aligned}
& \int_{\Delta(0,2)}|f(\zeta)|^{2} d m(\zeta)=2 \pi \sum_{j=0}^{\infty}\left|a_{j}\right|^{2} \int_{0}^{2} r^{2 j+1} d r=2 \pi \sum_{j=0}^{\infty} \frac{2^{2 j+2}}{2 j+2}\left|a_{j}\right|^{2}, \\
& \int_{\Delta(0,2)}|\zeta|^{2 k}|f(\zeta)|^{2} d m(\zeta)=2 \pi \sum_{j=0}^{\infty} \frac{2^{2 j+2+2 k}}{2 j+2+2 k}\left|a_{j}\right|^{2} \\
& \quad \geq \frac{2^{2 k}}{k+1} 2 \pi \sum_{j=0}^{\infty} \frac{2^{2 j+2}}{2 j+2}\left|a_{j}\right|^{2}=\frac{2^{2 k}}{k+1} \int_{\Delta(0,2)}|f(\zeta)|^{2} d m(\zeta) .
\end{aligned}
$$

Proof of Theorem 2. Let $x \in \operatorname{int} \Delta^{n}\left(y_{j}, 1\right) \subset W$, for some $j \in\{1, \ldots, N\}$. If $S \in H_{0}^{0}\left(X, L^{p}\right)$ we write $S=s e_{j}^{\otimes p}$, so $s(z)=z_{1}^{\lfloor t p\rfloor} \widetilde{s}(z)$, with $\widetilde{s} \in \mathcal{O}\left(W_{j}\right)$.
Then by the sub-averaging inequality

$$
\begin{aligned}
|S(x)|_{h_{p}}^{2} & =\left|x_{1}\right|^{2\lfloor t p\rfloor}|\widetilde{s}(x)|^{2} e^{-2 p \varphi_{j}(x)} \\
& \leq\left|x_{1}\right|^{2\lfloor t p\rfloor} e^{-2 p \varphi_{j}(x)} \frac{1}{\pi^{n}} \int_{\Delta^{n}(x, 1)}|\widetilde{s}(z)|^{2} d m(z) \\
& \leq\left|x_{1}\right|^{2\lfloor t p\rfloor} e^{-2 p \varphi_{j}(x)} \int_{\Delta^{n}(0,2)}|\widetilde{s}(z)|^{2} d m(z) .
\end{aligned}
$$

We estimate

$$
\int_{\Delta^{n}(0,2)}|\widetilde{s}(z)|^{2} d m(z)
$$

by using Fubini's theorem for the splitting $z=\left(z_{1}, z^{\prime}\right)$ and Lemma 3 for the variable z_{1}.

$$
\begin{aligned}
& \int_{\Delta^{n}(0,2)}|\widetilde{s}(z)|^{2} d m(z)=\int_{\Delta^{n-1}(0,2)} \int_{\Delta(0,2)}\left|\widetilde{s}\left(z_{1}, z^{\prime}\right)\right|^{2} d m\left(z_{1}\right) d m\left(z^{\prime}\right) \\
& \quad \leq \frac{\lfloor t p\rfloor+1}{2^{2\lfloor t p\rfloor}} \int_{\Delta^{n}(0,2)}\left|z_{1}\right|^{2\lfloor t p\rfloor}|\widetilde{s}(z)|^{2} d m(z) \\
& \quad \leq C \exp \left(2 p \sup _{\Delta^{n}(0,2)} \varphi_{j}\right) \int_{\Delta^{n}(0,2)}|s(z)|^{2} e^{-2 p \varphi_{j}(z)} \frac{\omega^{n}}{n!}
\end{aligned}
$$

where $C=C(\mathcal{W}) \geq 1$ is such that $d m(z) \leq C \omega^{n} / n!$ on each $\Delta^{n}\left(y_{j}, 2\right)$.
Since $\left|x_{1}\right| \leq A^{\prime} e^{\rho(x)}$ on W, with $A^{\prime}=A^{\prime}(\rho, W)>1$, we conclude that

$$
\begin{aligned}
|S(x)|_{h_{p}}^{2} & \leq C\left|x_{1}\right|^{2\lfloor t p\rfloor} \exp \left(2 p \sup _{\Delta^{n}(0,2)} \varphi_{j}-2 p \varphi_{j}(x)\right)\|S\|_{p}^{2} \\
& \leq\left(A e^{\rho(x)}\right)^{2\lfloor t p\rfloor} e^{4 p\|h\|_{\infty}}\|S\|_{p}^{2}
\end{aligned}
$$

where $A:=A^{\prime} C=A(\rho, W)>1$.

Since $A e^{\rho(x)}<1$ for $x \in U_{t}$, and $2\lfloor t p\rfloor>2 t p-2>t p$ for $p>2 / t$, we get

$$
|S(x)|_{h_{p}}^{2} \leq\left[\left(A e^{\rho(x)}\right)^{t} e^{4\|h\|_{\infty}}\right]^{p}\|S\|_{p}^{2} .
$$

\square

A version of Theorem 2 in the case when X is not compact:
Theorem 4
Let (X, ω) be a Hermitian manifold of dimension n, Σ be a smooth complex hypersurface of $X, t>0$ a fixed real number, and (L, h) a singular Hermitian holomorphic line bundle on X such that h has locally bounded weights. Then for any compact set $E \subset X$ there exists a neighborhood W of $\Sigma \cap E$ and a constant $A=A(\rho, W) \geq 1$, where $\varrho:=\log \left|S_{\Sigma}\right|_{h_{\Sigma}}<0$ on E, such that

$$
P_{0, p}(x) \leq\left(A e^{\rho(x)}\right)^{2\lfloor t p\rfloor} e^{4 p\|h\|_{\infty}}, \quad \forall x \in W, p \geq 1
$$

3. Bergman kernel of a singular metric with logarithmic poles

Recall that $\varrho:=\log \left|S_{\Sigma}\right|_{h_{\Sigma}}<0$ on X, and $t>0$ is a fixed real number.
Suppose $\xi: X \rightarrow \mathbb{R} \cup\{-\infty\}$ is smooth on $X \backslash \Sigma$ and $\xi=t \rho$ in a neighborhood of Σ. Let $\operatorname{dist}(\cdot, \cdot)$ be the distance on X induced by ω.

Theorem 5

Let $(X, \omega),(L, h), \Sigma$ be as in (A)-(B), and assume ω is Kähler and h is smooth. Consider the singular metric $\widetilde{h}=h e^{-2 \xi}$ on L and assume that $c_{1}(L, \widetilde{h}) \geq \varepsilon \omega$ for some constant $\varepsilon>0$. Let \widetilde{P}_{p} be the Bergman kernel function of $H_{(2)}^{0}\left(X, L^{p}, \widetilde{h}_{p}\right)$. Then there exists a constant $C>1$ such that for every $x \in X \backslash \Sigma$ and every $p \in \mathbb{N}$ with $p \operatorname{dist}(x, \Sigma)^{8 / 3}>C$ we have

$$
\begin{equation*}
\left|\frac{\widetilde{P}_{p}(x)}{p^{n}} \frac{\omega_{x}^{n}}{c_{1}(L, \widetilde{h})_{x}^{n}}-1\right| \leq C p^{-1 / 8} \tag{1}
\end{equation*}
$$

In the case of a positive line bundle (L, h) (i.e. h is smooth and $c_{1}(L, h)$ is a Kähler form) on a compact Kähler manifold $(X, \omega), \operatorname{dim} X=n$, the first order asymptotics of the Bergman kernel P_{p} of $H^{0}\left(X, L^{p}, h_{p}, \omega^{n} / n!\right)$,

$$
\left\|\frac{1}{p^{n}} P_{p}-\frac{c_{1}(L, h)^{n}}{\omega^{n}}\right\|_{\mathscr{C}^{2}(X)} \leq \frac{C}{p},
$$

was first proved by Tian (1990).

Later generalizations by Catlin (1999), Zelditch (1998), Dai-Liu-Ma (2004), Ma-Marinescu (2004), ...

Interpretation of Theorem 5:

1. If $x \in K$, where $K \subset X \backslash \Sigma$ is compact, we have a concrete bound $p_{0}=C \operatorname{dist}(K, \Sigma)^{-8 / 3}$ such that for $p>p_{0}$ the estimate (1) holds.
By Hsiao-Marinescu (2014) \widetilde{P}_{p} has an asymptotic expansion

$$
\widetilde{P}_{p}(x)=\sum_{r=0}^{\infty} \mathbf{b}_{r}(x) p^{n-r}+O\left(p^{-\infty}\right), \text { locally uniformly on } X \backslash \Sigma
$$

In particular, there exist $p_{0}(K) \in \mathbb{N}$ and C_{K} such that for $p>p_{0}(K)$,

$$
\left|\frac{\widetilde{P}_{p}(x)}{p^{n}} \frac{\omega_{x}^{n}}{c_{1}(L, \widetilde{h})_{x}^{n}}-1\right| \leq C_{K} p^{-1} \text { on } K .
$$

2. Theorem 5 gives a uniform estimate in p for \widetilde{P}_{p} (C is independent of K) on compact sets whose distance to Σ decreases as $p^{-3 / 8}$. Indeed, the estimate (1) holds on $K_{p}:=\left\{x \in X: \operatorname{dist}(x, \Sigma) \geq(C / p)^{3 / 8}\right\}$, for every p.

About the proof of Theorem 5. We use ideas of Berndtsson (2003) who gave a simple proof for the first order asymptotics of the Bergman kernel function in the case of powers of a positive line bundle.

Fix $x \in X \backslash \Sigma, 0<r_{p}<c \operatorname{dist}(x, \Sigma)$, such that

$$
r_{p}^{2} \rightarrow 0, p r_{p}^{3} \rightarrow 0, r_{p} \sqrt{p} \rightarrow \infty
$$

If $S \in H_{(2)}^{0}\left(X, L^{p}, \widetilde{h}_{p}\right)$ by using the sub-averaging inequality one shows that

$$
|S(x)|_{\widetilde{h}_{p}}^{2} \leq \frac{p^{n} c_{1}(L, \widetilde{h})_{x}^{n}}{\omega_{x}^{n}}\left(1+C r_{p}^{2}\right)\left(1+C p r_{p}^{3}\right)\left(1+C e^{-2 \varepsilon p r_{p}^{2}}\right)\|S\|_{p}^{2}
$$

So

$$
\frac{\widetilde{P}_{p}(x)}{p^{n}} \frac{\omega_{x}^{n}}{c_{1}(L, \widetilde{h})_{x}^{n}} \leq\left(1+C r_{p}^{2}\right)\left(1+C p r_{p}^{3}\right)\left(1+C e^{-2 \varepsilon p r_{p}^{2}}\right)
$$

By solving $\bar{\partial}$ one constructs a section $S \in H_{(2)}^{0}\left(X, L^{p}, \widetilde{h}_{p}\right)$ such that

$$
\begin{aligned}
|S(x)|_{\tilde{h}_{p}}^{2} & \geq 1-\frac{C}{r_{p} \sqrt{p}}, \\
\|S\|_{p}^{2} & \leq \frac{\omega_{x}^{n}}{p^{n} C_{1}(L, \widetilde{h})_{x}^{n}}\left(1+C r_{p}^{2}\right)\left(1+C p r_{p}^{3}\right)\left(1+\frac{C}{r_{p} \sqrt{p}}\right) .
\end{aligned}
$$

So

$$
\frac{\widetilde{P}_{p}(x)}{p^{n}} \frac{\omega_{x}^{n}}{c_{1}(L, \widetilde{h})_{x}^{n}} \geq\left(1-C r_{p}^{2}\right)\left(1-C p r_{p}^{3}\right)\left(1-\frac{C}{r_{p} \sqrt{p}}\right) .
$$

Choosing $r_{p}=p^{-3 / 8}$ we have $p r_{p}^{3}=\frac{1}{r_{p} \sqrt{p}}=p^{-1 / 8}, r_{p}^{2}=p^{-3 / 4}$, so

$$
1-C p^{-1 / 8} \leq \frac{\widetilde{P}_{p}(x)}{p^{n}} \frac{\omega_{x}^{n}}{c_{1}(L, \widetilde{h})_{x}^{n}} \leq 1+C p^{-1 / 8}
$$

provided that $p^{-3 / 8}<c \operatorname{dist}(x, \Sigma)$.

4. Estimates for the partial Bergman kernel

Let $(X, \omega),(L, h), \Sigma$ be as in (A)-(B), and assume ω is Kähler, h is smooth, and $c_{1}(L, h) \geq \varepsilon \omega$ for some constant $\varepsilon>0$.

Recall that P_{p} denotes the (full) Bergman kernel function of $H^{0}\left(X, L^{p}\right)$.
Given a compact set $K \subset X \backslash \Sigma$ we let
$t_{0}(K):=\sup \left\{t>0: \exists \eta \in \mathscr{C}^{\infty}(X,[0,1]), \operatorname{supp} \eta \subset X \backslash K, \eta=1\right.$ near Σ, $c_{1}(L, h)+t d d^{c}(\eta \varrho)$ is a Kähler current on $\left.X\right\}$,
where $\varrho:=\log \left|S_{\Sigma}\right|_{h_{\Sigma}}<0$ on X. Note ρ is a qpsh function.
We fix now a compact set $K \subset X \backslash \Sigma$ and let $t \in\left(0, t_{0}(K)\right)$.
Using Theorems 1 and 5 we show the following asymptotics of $P_{0, p}$:

Theorem 6

In the above setting, there exist constants $C>1, M>1$ and a neighborhood U_{t} of Σ, all depending on t, such that:
(2) $M e^{t \varrho(x)}<1$ and $P_{0, p}(x) \leq\left(M e^{t \varrho(x)}\right)^{p}$, for $x \in U_{t}$ and $p>2 / t$,
(3) $\quad P_{0, p}(x) \geq \frac{p^{n}}{C} e^{2 t p \varrho(x)}$, for $x \in U_{t}$ and $p \operatorname{dist}(x, \Sigma)^{8 / 3}>C$,
(4) $P_{0, p}(x)=P_{p}(x)+O\left(p^{-\infty}\right)$, as $p \rightarrow \infty$, in any \mathscr{C}^{ℓ} topology on K.

In particular, $P_{0, p}(x)=\mathbf{b}_{0}(x) p^{n}+\mathbf{b}_{1}(x) p^{n-1}+O\left(p^{n-2}\right)$, as $p \rightarrow \infty$, uniformly on K, where

$$
\mathbf{b}_{0}=\frac{c_{1}(L, h)^{n}}{\omega^{n}}, \quad \mathbf{b}_{1}=\frac{\mathbf{b}_{0}}{8 \pi}\left(r^{x}-2 \Delta \log \mathbf{b}_{0}\right)
$$

and r^{X}, Δ, are the scalar curvature, respectively the Laplacian, of the Riemannian metric associated to $c_{1}(L, h)$.

Recall that $P_{0, p}(x)=P_{p}(x)+O\left(p^{-\infty}\right)$ means that for every $\ell, N \in \mathbb{N}$ there exists $C_{\ell, N}>0$ such that $\left\|P_{0, p}-P_{p}\right\|_{\mathscr{C}^{\ell}(K)} \leq C_{\ell, N} p^{-N}$ for all $p \geq 1$.

Remarks about Theorem 6:
(2) and (3) show that on U_{t} the exponential decay estimate for $P_{0, p}$ is sharp. By (4) $P_{0, p}$ has the same asymptotics on K as the full Bergman kernel P_{p}. However, in Theorem 6 we do not obtain a partition of X in two sets with different regimes since $U_{t} \cup K \neq X$.

Such a partition (a neighborhood $U(\Sigma)$ of Σ such that $P_{0, p}=O\left(p^{-\infty}\right)$ on $U(\Sigma)$ and $P_{0, p}(x)=P_{p}(x)+O\left(p^{-\infty}\right)$ on $\left.X \backslash \bar{U}(\Sigma)\right)$ was exhibited under further hypotheses by: Berman (2007), Pokorny-Singer (2014) for a toric variety X and a toric Σ, Ross-Singer (2013) and Zelditch-Zhou (2016) under the assumption that Σ is invariant under an S^{1}-action. Moreover they study the asymptotics of the partial Bergman kernel on the interface region $\partial U(\Sigma)$ as well.

Proof of Theorem 6. There exist $\eta \in \mathscr{C}^{\infty}(X,[0,1])$ and $\delta>0$ such that $\eta=0$ near $K, \eta=1$ near $\Sigma, c_{1}(L, h)+t d d^{c}(\eta \varrho) \geq \delta \omega$. Define

$$
\widetilde{h}_{t}=h \exp (-2 t \eta \varrho), \quad \widetilde{h}_{t, p}=\widetilde{h}_{t}^{\otimes p}
$$

Thus: $\quad \widetilde{h}_{t}=h$ in a neighborhood of $K, \quad \widetilde{h}_{t} \geq h$ on $X, \quad c_{1}\left(L, \widetilde{h}_{t}\right) \geq \delta \omega$. As Σ is smooth, $H_{0}^{0}\left(X, L^{p}\right)=H_{(2)}^{0}\left(X, L^{p}, \widetilde{h}_{t, p}\right)$. Norm on $H_{(2)}^{0}\left(X, L^{p}, \widetilde{h}_{t, p}\right)$:

$$
\|S\|_{t, p}^{2}=\int_{X}|S|_{\widetilde{h}_{t, p}}^{2} \frac{\omega^{n}}{n!}=\int_{X}|S|_{h_{p}}^{2} \exp (-2 t p \eta \varrho) \frac{\omega^{n}}{n!} \geq\|S\|_{p}^{2}, \text { since } \varrho<0 .
$$

$\widetilde{P}_{t, p}:=$ Bergman kernel function of $H_{(2)}^{0}\left(X, L^{p}, \widetilde{h}_{t, p}\right)$.
$P_{0, p} \leq P_{p}=$ Bergman kernel function of $H^{0}\left(X, L^{p}\right) \geqslant H_{0}^{0}\left(X, L^{p}\right)$.

If $S \in H_{0}^{0}\left(X, L^{p}\right)$ and $\|S\|_{t, p}^{2} \leq 1$, then $\|S\|_{p}^{2} \leq 1$, so

$$
\begin{gathered}
|S|_{\tilde{h}_{t, p}}^{2}=|S|_{h_{p}}^{2} \exp (-2 t p \eta \varrho) \leq P_{0, p} \exp (-2 t p \eta \varrho), \\
\widetilde{P}_{t, p} \leq P_{0, p} \exp (-2 t p \eta \varrho) .
\end{gathered}
$$

Consequently we have shown:

$$
\widetilde{P}_{t, p} \exp (2 t p \eta \varrho) \leq P_{0, p} \leq P_{p} \text { on } X, \quad \widetilde{P}_{t, p} \leq P_{0, p} \leq P_{p} \text { near } K
$$

By Theorem 2, if $U_{t}:=\left\{x \in W:\left(A e^{\rho(x)}\right)^{t} e^{4\|h\|_{\infty}}<1\right\}$ then

$$
P_{0, p}(x) \leq\left[\left(A e^{\rho(x)}\right)^{t} e^{4\|h\|_{\infty}}\right]^{p}, \quad \forall x \in U_{t}, p>2 / t
$$

Setting $M:=e^{4\|h\|_{\infty}} A^{t}$ we obtain that

$$
M e^{t e(x)}<1, \quad P_{0, p}(x) \leq\left(M e^{t e(x)}\right)^{p}, \quad \forall x \in U_{t}, p>2 / t .
$$

Shrinking U_{t} we can assume that $\eta=1$ on U_{t}. By Theorem 5,

$$
\widetilde{P}_{t, p}(x) \geq\left(1-C p^{-1 / 8}\right) p^{n} \frac{c_{1}\left(L, \widetilde{h}_{t}\right)_{x}^{n}}{\omega_{x}^{n}}, \text { if } p \in \mathbb{N}, p \operatorname{dist}(x, \Sigma)^{8 / 3}>C
$$

Note that $c_{1}\left(L, \widetilde{h}_{t}\right)$ is smooth on $X \backslash \Sigma$, so $\frac{c_{1}\left(L, \widetilde{h}_{t}\right)^{n}}{\omega^{n}} \geq \delta^{n}$. Hence

$$
P_{0, p}(x) \geq \widetilde{P}_{t, p}(x) e^{2 t p \eta(x) \varrho(x)} \geq \frac{p^{n}}{C} e^{2 t p \varrho(x)}
$$

for $x \in U_{t}$ and $p>C \operatorname{dist}(x, \Sigma)^{-8 / 3}$.
Since $\widetilde{h}_{t}=h$ near K we have by the localization Theorem 7 which follows that $\widetilde{P}_{t, p}-P_{p}=O\left(p^{-\infty}\right)$ as $p \rightarrow \infty$, in any \mathscr{C}^{ℓ} topology on K.
As $\widetilde{P}_{t, p} \leq P_{0, p} \leq P_{p}$ near K we conclude that

$$
P_{0, p}(x)=P_{p}(x)+O\left(p^{-\infty}\right), \text { as } p \rightarrow \infty, \text { in any } \mathscr{C}^{\ell} \text { topology on } K .
$$

Theorem 7 (Hsiao-Marinescu)

Let (X, ω) be a compact Hermitian manifold and L be a holomorphic line bundle on X. Let h_{1} and h_{2} be singular Hermitian metrics on L which are smooth outside an analytic set $\Sigma \subset X$ and such that $c_{1}\left(L, h_{1}\right), c_{1}\left(L, h_{2}\right)$ are Kähler currents. Assume that $h_{1}=h_{2}$ on an open set $U \Subset X \backslash \Sigma$. If $P_{p}^{(j)}$ is the Bergman kernel function of $H^{0}\left(X, L^{p}, h_{j}^{\otimes p}, \omega^{n} / n!\right), j=1,2$, then $P_{p}^{(1)}-P_{p}^{(2)}=O\left(p^{-\infty}\right)$ on U in any \mathscr{C}^{ℓ}-topology, $\ell \in \mathbb{N}$, as $p \rightarrow \infty$.

