On the first order asymptotics of partial Bergman kernels

joint work with George Marinescu (University of Cologne)

Dan Coman

Department of Mathematics, Syracuse University Syracuse, NY 13244-1150, USA

Conference on Complex Geometry, Dynamical Systems and Foliation Theory

> Institute for Mathematical Sciences National University of Singapore May 15-19, 2017

- 4 同 6 4 日 6 4 日 6

Plan of the talk:

- 1. Singular Hermitian holomorphic line bundles
- 2. Exponential decay of the partial Bergman kernel near the zero locus
- 3. Bergman kernel of a singular metric with logarithmic poles
- 4. Estimates for the partial Bergman kernel

1. Singular Hermitian holomorphic line bundles

Let (X, ω) be a compact Hermitian manifold of dimension n and L be a holomorphic line bundle on X.

Then $X = \bigcup U_{\alpha}$, such that there exist $e_{\alpha} : U_{\alpha} \longrightarrow L$ local holomorphic frames, $e_{\beta} = g_{\alpha\beta}e_{\alpha}$, $g_{\alpha\beta} \in \mathcal{O}^*(U_{\alpha} \cap U_{\beta})$ are the transition functions.

 $H^0(X, L)$ denotes the space of global holomorphic sections $S : X \longrightarrow L$: $S|_{U_{\alpha}} = s_{\alpha}e_{\alpha}, s_{\alpha} \in \mathcal{O}(U_{\alpha}), s_{\alpha} = s_{\beta}g_{\alpha\beta} \text{ on } U_{\alpha} \cap U_{\beta}.$

Singular Hermitian metric h on L: collection $\{\varphi_{\alpha} \in L^{1}_{loc}(U_{\alpha}, \omega^{n})\}$, with $h(e_{\alpha}, e_{\alpha}) = |e_{\alpha}|^{2}_{h} = e^{-2\varphi_{\alpha}}, \ \varphi_{\alpha} = \varphi_{\beta} + \log |g_{\alpha\beta}| \text{ on } U_{\alpha} \cap U_{\beta}.$ If φ_{α} are locally bounded we say that h has *locally bounded weights*.

The curvature current $c_1(L, h)$ of h is defined by $c_1(L, h)|_{U_{\alpha}} = dd^c \varphi_{\alpha}$. Note $c_1(L, h) \ge 0$ if and only if each φ_{α} is psh on U_{α} .

- 31

イロト イポト イヨト イヨト

Suppose that h, h are singular Hermitian metrics on L such that h has locally bounded weights. Set $L^p := L^{\otimes p}$, $h_p := h^{\otimes p}$, $\tilde{h}_p := \tilde{h}^{\otimes p}$.

Bergman spaces of L²-holomorphic sections:

$$\begin{aligned} & H^0_{(2)}(X,L^p,h_p) &= \left\{ S \in H^0(X,L^p) : \, \|S\|_p^2 := \int_X |S|_{h_p}^2 \, \frac{\omega^n}{n!} < \infty \right\}, \\ & H^0_{(2)}(X,L^p,\widetilde{h}_p) &\subseteq \quad H^0_{(2)}(X,L^p,h_p) = H^0(X,L^p). \end{aligned}$$

 $P_p := (\text{full})$ Bergman kernel function of $H^0(X, L^p) = H^0_{(2)}(X, L^p, h_p)$ $\widetilde{P}_p :=$ Bergman kernel function of $H^0_{(2)}(X, L^p, \widetilde{h}_p)$

Note that $d_p := \dim H^0(X, L^p) < \infty$, since X is compact. If S_1, \ldots, S_{d_p} is an o.n. basis of $H^0(X, L^p)$ then P_p is defined by

$$P_{
ho}(x) = \sum_{j=1}^{d_{
ho}} |S_j(x)|^2_{h_{
ho}}, \ x \in X.$$

2. Exponential decay of the partial Bergman kernel near the zero locus

We consider the following setting:

(A) (X, ω) is a compact Hermitian manifold, dim X = n, Σ is a smooth complex hypersurface of X, and t > 0 is a fixed real number.

(B) (L, h) is a singular Hermitian holomorphic line bundle on X such that h has locally bounded weights.

Consider the subspace of holomorphic sections of L^p vanishing to order at least |tp| along Σ :

$$egin{aligned} &\mathcal{H}^0_0(X,L^p) &:= \mathcal{H}^0ig(X,L^p\otimes \mathcal{O}ig(-\lfloor tp
floor \Sigmaig)ig) \leqslant \mathcal{H}^0(X,L^p), \ &d_{0,p} &:= \dim \mathcal{H}^0_0(X,L^p) \leq d_p = \dim \mathcal{H}^0(X,L^p). \end{aligned}$$

イロト イポト イヨト イヨト 二日

Fix an o.n. basis $\{S_j^p : 1 \le j \le d_p\}$ of $H^0(X, L^p)$ such that $\{S_j^p : 1 \le j \le d_{0,p}\}$ is an o.n. basis of $H_0^0(X, L^p)$.

The partial Bergman kernel function $P_{0,p}$ of $H_0^0(X, L^p)$ is

$$P_{0,p}(x) = \sum_{j=1}^{d_{0,p}} |S_j^p(x)|_{h_p}^2, \ x \in X.$$

Then $P_{0,p}(x) \leq P_p(x)$ on X and

$$P_{0,p}(x) = \max\Big\{|S(x)|_{h_p}^2: S \in H_0^0(X, L^p), \ \|S\|_p^2 = \int_X |S|_{h_p}^2 \frac{\omega^n}{n!} = 1\Big\}.$$

Theorem 1

Assume that conditions (A)-(B) are fulfilled. Then there exist a neighborhood U_t of Σ and a constant $a_t \in (0,1)$ such that

$$P_{0,p}(x) \leq a_t^p$$
, for $x \in U_t$ and $p > 2/t$.

Let $S_{\Sigma} \in H^0(X, \mathcal{O}(\Sigma))$ be a canonical section vanishing to first order on Σ , and h_{Σ} be a smooth Hermitian metric on $\mathcal{O}(\Sigma)$ such that

$$\varrho := \log \left| S_{\Sigma} \right|_{h_{\Sigma}} < 0 \text{ on } X.$$

Fix an open cover $W = \{W_j\}_{1 \le j \le N}$ of Σ (compact), such that W_j are Stein contractible coordinate neighborhoods centered at $y_j \in \Sigma$, and

$$\Delta^n(y_j, 2) \subset W_j, \ \Sigma \subset W := \bigcup_{j=1}^N \operatorname{int} \Delta^n(y_j, 1),$$

 $\Sigma \cap W_j = \{z \in W_j : z_1 = 0\}, \text{ for } j = 1 \dots, N.$

Here $z = (z_1, \ldots, z_n)$ are the coordinates on W_j and

$$\Delta^n(\mathbf{y},\mathbf{r}) := \{ z \in W_j : |z_\ell - y_\ell| \le \mathbf{r}, \ \ell = 1, \dots, n \}$$

is the (closed) polydisk of radius r > 0 centered at $y \in W_j$.

Since $L|_{W_j}$ is trivial, let e_j be a holomorphic frame of $L|_{W_j}$ and let $|e_i|_h = e^{-\varphi_j}$. Set

$$\|\varphi_j\|_{\infty,W_j} = \sup \{|\varphi_j(w)|: w \in \Delta^n(y_j,2)\},\$$

$$\|h\|_{\infty}=\|h\|_{\infty,\mathcal{W}}:=\maxig\{\|arphi_j\|_{\infty,\mathcal{W}_j}:\,1\leq j\leq Nig\}.$$

Theorem 2

In the setting of Theorem 1, there exists ${\sf A}={\sf A}(
ho,{\mathcal W})\geq 1$ such that

$$P_{0,p}(x) \leq (Ae^{
ho(x)})^{2\lfloor tp
floor} e^{4p \Vert h \Vert_{\infty}}, \quad \forall x \in W, \ p \geq 1.$$

In particular, if $U_t:=\left\{x\in W: \, (Ae^{
ho(x)})^t\, e^{4\|h\|_\infty}<1
ight\}$ then

$$P_{0,p}(x) \leq \left[(Ae^{\rho(x)})^t e^{4\|h\|_{\infty}} \right]^p, \quad \forall x \in U_t, \ p > 2/t.$$

イロト イヨト イヨト イヨト

Lemma 3

If $k \ge 0$ and $f \in \mathcal{O}(\Delta(0, 2))$, where $\Delta(0, 2) \subset \mathbb{C}$ is the closed disk centered at 0 and of radius 2, then

$$\int_{\Delta(0,2)} |f(\zeta)|^2 \, dm(\zeta) \leq \frac{k+1}{2^{2k}} \int_{\Delta(0,2)} |\zeta|^{2k} |f(\zeta)|^2 \, dm(\zeta) \, .$$

Proof. Let $f(\zeta) = \sum_{j=0}^{\infty} a_j \zeta^j$ in $\Delta(0,2)$, so $\zeta^k f(\zeta) = \sum_{j=0}^{\infty} a_j \zeta^{j+k}$. Then

$$\int_{\Delta(0,2)} |f(\zeta)|^2 dm(\zeta) = 2\pi \sum_{j=0}^{\infty} |a_j|^2 \int_0^2 r^{2j+1} dr = 2\pi \sum_{j=0}^{\infty} \frac{2^{2j+2}}{2j+2} |a_j|^2,$$

$$\int_{\Delta(0,2)} |\zeta|^{2k} |f(\zeta)|^2 \, dm(\zeta) = 2\pi \sum_{j=0}^{\infty} \frac{2^{2j+2+2k}}{2j+2+2k} \, |a_j|^2$$

$$\geq \frac{2^{2k}}{k+1} 2\pi \sum_{j=0}^{\infty} \frac{2^{2j+2}}{2j+2} |a_j|^2 = \frac{2^{2k}}{k+1} \int_{\Delta(0,2)} |f(\zeta)|^2 dm(\zeta) . \Box$$

Proof of Theorem 2. Let $x \in \operatorname{int} \Delta^n(y_j, 1) \subset W$, for some $j \in \{1, \ldots, N\}$. If $S \in H_0^0(X, L^p)$ we write $S = se_j^{\otimes p}$, so $s(z) = z_1^{\lfloor tp \rfloor} \widetilde{s}(z)$, with $\widetilde{s} \in \mathcal{O}(W_j)$. Then by the sub-averaging inequality

$$egin{aligned} |S(x)|^2_{h_p} &= |x_1|^{2\lfloor tp
floor} |\widetilde{s}(x)|^2 e^{-2p arphi_j(x)} \ &\leq |x_1|^{2\lfloor tp
floor} e^{-2p arphi_j(x)} rac{1}{\pi^n} \int_{\Delta^n(x,1)} |\widetilde{s}(z)|^2 \, dm(z) \ &\leq |x_1|^{2\lfloor tp
floor} e^{-2p arphi_j(x)} \int_{\Delta^n(0,2)} |\widetilde{s}(z)|^2 \, dm(z) \,. \end{aligned}$$

We estimate

$$\int_{\Delta^n(0,2)} |\widetilde{s}(z)|^2 \, dm(z)$$

by using Fubini's theorem for the splitting $z = (z_1, z')$ and Lemma 3 for the variable z_1 .

イロト イポト イヨト イヨト 二日

$$\begin{split} \int_{\Delta^n(0,2)} |\widetilde{s}(z)|^2 \, dm(z) &= \int_{\Delta^{n-1}(0,2)} \int_{\Delta(0,2)} |\widetilde{s}(z_1,z')|^2 \, dm(z_1) dm(z') \\ &\leq \frac{\lfloor tp \rfloor + 1}{2^{2 \lfloor tp \rfloor}} \int_{\Delta^n(0,2)} |z_1|^{2 \lfloor tp \rfloor} |\widetilde{s}(z)|^2 \, dm(z) \\ &\leq C \, \exp\left(2p \sup_{\Delta^n(0,2)} \varphi_j\right) \int_{\Delta^n(0,2)} |s(z)|^2 e^{-2p\varphi_j(z)} \frac{\omega^n}{n!} \,, \end{split}$$

where $C = C(\mathcal{W}) \geq 1$ is such that $dm(z) \leq C\omega^n/n!$ on each $\Delta^n(y_j,2)$.

Since $|x_1| \leq A' e^{
ho(x)}$ on W, with A' = A'(
ho, W) > 1, we conclude that

$$egin{aligned} |S(x)|_{h_p}^2 &\leq C \, |x_1|^{2\lfloor tp
floor} \exp\left(2p \sup_{\Delta^n(0,2)} arphi_j - 2parphi_j(x)
ight) \|S\|_p^2 \ &\leq (Ae^{
ho(x)})^{2\lfloor tp
floor} e^{4p \|h\|_\infty} \|S\|_p^2 \,, \end{aligned}$$

where $A := A'C = A(\rho, W) > 1$.

Since $Ae^{\rho(x)} < 1$ for $x \in U_t$, and $2\lfloor tp \rfloor > 2tp - 2 > tp$ for p > 2/t, we get $|S(x)|_{h_p}^2 \leq \left[(Ae^{\rho(x)})^t e^{4\|h\|_{\infty}} \right]^p \|S\|_p^2$. \Box

A version of Theorem 2 in the case when X is not compact:

Theorem 4

Let (X, ω) be a Hermitian manifold of dimension n, Σ be a smooth complex hypersurface of X, t > 0 a fixed real number, and (L, h) a singular Hermitian holomorphic line bundle on X such that h has locally bounded weights. Then for any compact set $E \subset X$ there exists a neighborhood W of $\Sigma \cap E$ and a constant $A = A(\rho, W) \ge 1$, where $\rho := \log |S_{\Sigma}|_{h_{\Sigma}} < 0$ on E, such that

$$P_{0,p}(x) \leq (Ae^{
ho(x)})^{2\lfloor tp
floor} e^{4p \|h\|_{\infty}}, \quad \forall x \in W, \ p \geq 1.$$

イロト 不得下 イヨト イヨト

3. Bergman kernel of a singular metric with logarithmic poles

Recall that $\varrho := \log |S_{\Sigma}|_{h_{\Sigma}} < 0$ on X, and t > 0 is a fixed real number.

Suppose $\xi : X \to \mathbb{R} \cup \{-\infty\}$ is smooth on $X \setminus \Sigma$ and $\xi = t\rho$ in a neighborhood of Σ . Let $dist(\cdot, \cdot)$ be the distance on X induced by ω .

Theorem 5

Let $(X, \omega), (L, h), \Sigma$ be as in (A)-(B), and assume ω is Kähler and h is smooth. Consider the singular metric $\tilde{h} = he^{-2\xi}$ on L and assume that $c_1(L, \tilde{h}) \ge \varepsilon \omega$ for some constant $\varepsilon > 0$. Let \tilde{P}_p be the Bergman kernel function of $H^0_{(2)}(X, L^p, \tilde{h}_p)$. Then there exists a constant C > 1 such that for every $x \in X \setminus \Sigma$ and every $p \in \mathbb{N}$ with $p \operatorname{dist}(x, \Sigma)^{8/3} > C$ we have

(1)
$$\left|\frac{\widetilde{P}_{p}(x)}{p^{n}}\frac{\omega_{x}^{n}}{c_{1}(L,\widetilde{h})_{x}^{n}}-1\right|\leq Cp^{-1/8}.$$

Dan Coman

< 🗇 🕨

In the case of a *positive* line bundle (L, h) (i.e. h is smooth and $c_1(L, h)$ is a Kähler form) on a compact Kähler manifold (X, ω) , dim X = n, the first order asymptotics of the Bergman kernel P_p of $H^0(X, L^p, h_p, \omega^n/n!)$,

$$\left\|\frac{1}{p^n}P_p-\frac{c_1(L,h)^n}{\omega^n}\right\|_{\mathscr{C}^2(X)}\leq \frac{C}{p},$$

was first proved by Tian (1990).

Later generalizations by Catlin (1999), Zelditch (1998), Dai-Liu-Ma (2004), Ma-Marinescu (2004), ...

Interpretation of Theorem 5:

1. If $x \in K$, where $K \subset X \setminus \Sigma$ is compact, we have a concrete bound $p_0 = C \operatorname{dist}(K, \Sigma)^{-8/3}$ such that for $p > p_0$ the estimate (1) holds. By Hsiao-Marinescu (2014) \widetilde{P}_p has an asymptotic expansion

$$\widetilde{P}_p(x) = \sum_{r=0}^{\infty} \mathbf{b}_r(x) p^{n-r} + O(p^{-\infty}), \text{ locally uniformly on } X \setminus \Sigma.$$

In particular, there exist $p_0(K) \in \mathbb{N}$ and C_K such that for $p > p_0(K)$,

$$\left|\frac{\widetilde{P}_{p}(x)}{p^{n}}\frac{\omega_{x}^{n}}{c_{1}(L,\widetilde{h})_{x}^{n}}-1\right|\leq C_{K}p^{-1} \text{ on } K.$$

2. Theorem 5 gives a uniform estimate in p for P_p (C is independent of K) on compact sets whose distance to Σ decreases as $p^{-3/8}$. Indeed, the estimate (1) holds on $K_p := \{x \in X : \operatorname{dist}(x, \Sigma) \ge (C/p)^{3/8}\}$, for every p.

= nac

About the proof of Theorem 5. We use ideas of Berndtsson (2003) who gave a simple proof for the first order asymptotics of the Bergman kernel function in the case of powers of a positive line bundle.

Fix $x \in X \setminus \Sigma$, $0 < r_p < c \operatorname{dist}(x, \Sigma)$, such that

$$r_p^2
ightarrow 0 \,, \ pr_p^3
ightarrow 0 \,, \ r_p \sqrt{p}
ightarrow \infty.$$

If $S \in H^0_{(2)}(X, L^p, \widetilde{h}_p)$ by using the sub-averaging inequality one shows that

$$|S(x)|_{\widetilde{h}_{\rho}}^2 \leq \frac{p^n c_1(L,\widetilde{h})_x^n}{\omega_x^n} \left(1 + Cr_{\rho}^2\right) \left(1 + C\rho r_{\rho}^3\right) \left(1 + Ce^{-2\varepsilon \rho r_{\rho}^2}\right) \|S\|_{\rho}^2.$$

So

$$\frac{\widetilde{P}_{p}(x)}{p^{n}}\frac{\omega_{x}^{n}}{c_{1}(L,\widetilde{h})_{x}^{n}} \leq \left(1+Cr_{p}^{2}\right)\left(1+Cpr_{p}^{3}\right)\left(1+Ce^{-2\varepsilon pr_{p}^{2}}\right).$$

By solving $\overline{\partial}$ one constructs a section $S \in H^0_{(2)}(X, L^p, \widetilde{h}_p)$ such that

$$\begin{split} |S(x)|_{\widetilde{h}_{p}}^{2} &\geq 1 - \frac{C}{r_{p}\sqrt{p}}, \\ \|S\|_{p}^{2} &\leq \frac{\omega_{x}^{n}}{p^{n}c_{1}(L,\widetilde{h})_{x}^{n}} \left(1 + Cr_{p}^{2}\right) \left(1 + Cpr_{p}^{3}\right) \left(1 + \frac{C}{r_{p}\sqrt{p}}\right). \end{split}$$

So

$$\frac{\widetilde{P}_{\rho}(x)}{p^{n}} \frac{\omega_{x}^{n}}{c_{1}(L,\widetilde{h})_{x}^{n}} \geq \left(1 - Cr_{\rho}^{2}\right)\left(1 - C\rho r_{\rho}^{3}\right)\left(1 - \frac{C}{r_{\rho}\sqrt{\rho}}\right).$$

Choosing
$$r_p = p^{-3/8}$$
 we have $pr_p^3 = \frac{1}{r_p\sqrt{p}} = p^{-1/8}$, $r_p^2 = p^{-3/4}$, so

$$1-C\rho^{-1/8}\leq \frac{\widetilde{P}_{\rho}(x)}{\rho^n}\,\frac{\omega_x^n}{c_1(L,\widetilde{h})_x^n}\leq 1+C\rho^{-1/8},$$

provided that $p^{-3/8} < c \operatorname{dist}(x, \Sigma)$.

4. Estimates for the partial Bergman kernel

Let $(X, \omega), (L, h), \Sigma$ be as in (A)-(B), and assume ω is Kähler, h is smooth, and $c_1(L, h) \ge \varepsilon \omega$ for some constant $\varepsilon > 0$.

Recall that P_p denotes the (full) Bergman kernel function of $H^0(X, L^p)$. Given a compact set $K \subset X \setminus \Sigma$ we let

$$t_0(\mathcal{K}) := \sup\Big\{t > 0: \ \exists \ \eta \in \mathscr{C}^\infty(X, [0, 1]), \ \mathrm{supp} \ \eta \subset X \setminus \mathcal{K}, \ \eta = 1 \ \mathrm{near} \ \Sigma,$$

 $c_1(L, h) + t \ dd^c(\eta \varrho) \ \mathrm{is} \ \mathrm{a} \ \mathrm{K}$ a hler current on $X\Big\},$

where $\varrho := \log |S_{\Sigma}|_{h_{\Sigma}} < 0$ on X. Note ρ is a qpsh function. We fix now a compact set $K \subset X \setminus \Sigma$ and let $t \in (0, t_0(K))$.

Using Theorems 1 and 5 we show the following asymptotics of $P_{0,p}$:

Theorem 6

In the above setting, there exist constants C > 1, M > 1 and a neighborhood U_t of Σ , all depending on t, such that:

(2)
$$Me^{t\varrho(x)} < 1$$
 and $P_{0,p}(x) \leq (Me^{t\varrho(x)})^p$, for $x \in U_t$ and $p > 2/t$,

(3)
$$P_{0,p}(x) \geq \frac{p^n}{C} e^{2tp\varrho(x)}$$
, for $x \in U_t$ and $p \operatorname{dist}(x, \Sigma)^{8/3} > C$,

(4)
$$P_{0,p}(x) = P_p(x) + O(p^{-\infty})$$
, as $p \to \infty$, in any \mathscr{C}^{ℓ} topology on K.

In particular, $P_{0,p}(x) = \mathbf{b}_0(x)p^n + \mathbf{b}_1(x)p^{n-1} + O(p^{n-2})$, as $p \to \infty$, uniformly on K, where

$$\mathbf{b}_0 = \frac{c_1(L,h)^n}{\omega^n}, \ \mathbf{b}_1 = \frac{\mathbf{b}_0}{8\pi} \left(r^X - 2\Delta \log \mathbf{b}_0 \right),$$

and r^X , Δ , are the scalar curvature, respectively the Laplacian, of the Riemannian metric associated to $c_1(L, h)$.

Recall that $P_{0,p}(x) = P_p(x) + O(p^{-\infty})$ means that for every $\ell, N \in \mathbb{N}$ there exists $C_{\ell,N} > 0$ such that $\|P_{0,p} - P_p\|_{\mathscr{C}^{\ell}(K)} \leq C_{\ell,N}p^{-N}$ for all $p \geq 1$.

Remarks about Theorem 6:

(2) and (3) show that on U_t the exponential decay estimate for $P_{0,p}$ is sharp. By (4) $P_{0,p}$ has the same asymptotics on K as the full Bergman kernel P_p . However, in Theorem 6 we do not obtain a *partition* of X in two sets with different regimes since $U_t \cup K \neq X$.

Such a partition (a neighborhood $U(\Sigma)$ of Σ such that $P_{0,p} = O(p^{-\infty})$ on $U(\Sigma)$ and $P_{0,p}(x) = P_p(x) + O(p^{-\infty})$ on $X \setminus \overline{U}(\Sigma)$) was exhibited under further hypotheses by: Berman (2007), Pokorny-Singer (2014) for a toric variety X and a toric Σ , Ross-Singer (2013) and Zelditch-Zhou (2016) under the assumption that Σ is invariant under an S^1 -action. Moreover they study the asymptotics of the partial Bergman kernel on the interface region $\partial U(\Sigma)$ as well.

Proof of Theorem 6. There exist $\eta \in \mathscr{C}^{\infty}(X, [0, 1])$ and $\delta > 0$ such that $\eta = 0$ near K, $\eta = 1$ near Σ , $c_1(L, h) + tdd^c(\eta \varrho) \ge \delta \omega$. Define

$$\widetilde{h}_t = h \exp(-2t\eta \varrho), \ \ \widetilde{h}_{t, \mathcal{P}} = \widetilde{h}_t^{\otimes \mathcal{P}},$$

Thus: $\tilde{h}_t = h$ in a neighborhood of K, $\tilde{h}_t \ge h$ on X, $c_1(L, \tilde{h}_t) \ge \delta \omega$. As Σ is smooth, $H_0^0(X, L^p) = H_{(2)}^0(X, L^p, \tilde{h}_{t,p})$. Norm on $H_{(2)}^0(X, L^p, \tilde{h}_{t,p})$:

$$\|S\|_{t,p}^2 = \int_X |S|_{\tilde{h}_{t,p}}^2 \frac{\omega^n}{n!} = \int_X |S|_{h_p}^2 \exp(-2tp\eta\varrho) \frac{\omega^n}{n!} \ge \|S\|_p^2, \text{ since } \varrho < 0.$$

 $\widetilde{P}_{t,p} :=$ Bergman kernel function of $H^0_{(2)}(X, L^p, \widetilde{h}_{t,p})$. $P_{0,p} \leq P_p =$ Bergman kernel function of $H^0(X, L^p) \ge H^0_0(X, L^p)$. If $S \in H_0^0(X, L^p)$ and $||S||_{t,p}^2 \leq 1$, then $||S||_p^2 \leq 1$, so $|S|_{\widetilde{h}_{t,p}}^2 = |S|_{h_p}^2 \exp(-2tp\eta\varrho) \leq P_{0,p} \exp(-2tp\eta\varrho)$, $\widetilde{P}_{t,p} \leq P_{0,p} \exp(-2tp\eta\varrho)$.

Consequently we have shown:

$$\widetilde{P}_{t,p}\exp(2tp\eta\varrho)\leq P_{0,p}\leq P_p \text{ on }X\,,\quad \widetilde{P}_{t,p}\leq P_{0,p}\leq P_p \text{ near }K.$$

By Theorem 2, if
$$U_t := \left\{ x \in W : (Ae^{\rho(x)})^t e^{4\|h\|_{\infty}} < 1 \right\}$$
 then
 $P_{0,p}(x) \le \left[(Ae^{\rho(x)})^t e^{4\|h\|_{\infty}} \right]^p, \quad \forall x \in U_t, \ p > 2/t.$

Setting $M := e^{4\|h\|_{\infty}} A^t$ we obtain that

$$Me^{t\varrho(x)} < 1$$
, $P_{0,p}(x) \leq (Me^{t\varrho(x)})^p$, $\forall x \in U_t$, $p > 2/t$.

Shrinking U_t we can assume that $\eta = 1$ on U_t . By Theorem 5,

$$\widetilde{P}_{t,p}(x) \geq (1 - Cp^{-1/8})p^n \, rac{c_1(L, \widetilde{h}_t)_x^n}{\omega_x^n} \,, \, ext{ if } p \in \mathbb{N}, \, p \operatorname{dist}(x, \Sigma)^{8/3} > C.$$

Note that $c_1(L, \widetilde{h}_t)$ is smooth on $X \setminus \Sigma$, so $\frac{c_1(L, \widetilde{h}_t)^n}{\omega^n} \ge \delta^n$. Hence

$$\mathcal{P}_{0,p}(x) \geq \widetilde{\mathcal{P}}_{t,p}(x) e^{2tp\eta(x)\varrho(x)} \geq rac{p^n}{C} e^{2tp\varrho(x)},$$

for $x \in U_t$ and $p > C \operatorname{dist}(x, \Sigma)^{-8/3}$.

Since $\tilde{h}_t = h$ near K we have by the localization Theorem 7 which follows that $\tilde{P}_{t,p} - P_p = O(p^{-\infty})$ as $p \to \infty$, in any \mathscr{C}^{ℓ} topology on K. As $\tilde{P}_{t,p} \leq P_{0,p} \leq P_p$ near K we conclude that

 $P_{0,p}(x)=P_p(x)+O(p^{-\infty}), ext{ as } p o\infty, ext{ in any } \mathscr{C}^\ell ext{ topology on } K. \ \ \Box$

Theorem 7 (Hsiao-Marinescu)

Let (X, ω) be a compact Hermitian manifold and L be a holomorphic line bundle on X. Let h_1 and h_2 be singular Hermitian metrics on L which are smooth outside an analytic set $\Sigma \subset X$ and such that $c_1(L, h_1)$, $c_1(L, h_2)$ are Kähler currents. Assume that $h_1 = h_2$ on an open set $U \Subset X \setminus \Sigma$. If $P_p^{(j)}$ is the Bergman kernel function of $H^0(X, L^p, h_j^{\otimes p}, \omega^n/n!)$, j = 1, 2, then $P_p^{(1)} - P_p^{(2)} = O(p^{-\infty})$ on U in any \mathscr{C}^{ℓ} -topology, $\ell \in \mathbb{N}$, as $p \to \infty$.