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We present two problems in the complexification of real manifolds
where complex Hamiltonians play an important role.

1. A geometric construction for the Exponential map of the formal
complexification of the Hamiltonian di↵eomorphism group
proposed by Donaldson.

Motivated by semi-classical analysis

Related to recent work on non-unitary quantization

Joint work with Ernesto Lupercio and Alejandro Uribe.
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2. Determination of new invariants for the global properties of a
Grauert tube complexification beyond the known curvature
conditions.

Left-invariant metrics on SU(2) admit an invariant
holomorphic extension to the complex group SL(2,C ).

We study the geodesic flow on SL(2,C ) for this holomorphic
metric.

Key role played by complete integrability, coming from
classical mechanics.

Joint work with Vaqaas Aslam and Daniel Irvine.
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Part 1. gives a geometric interpretation of Donaldson’s geodesic
flow in the space of Kähler metrics, introduced to facilitate a
conjectured proof method for proving the existence of cscK
metrics. Our construction works until now only in the C! case. We
speculate about possible connections with the original purpose of
Donaldson’s construction.

Part 2. studies real analytic manifolds with “large”
complexifications, such as entire Grauert tubes. SU(2) has an
obvious large complexification, SL(2,C). We compare tubes for
left-invariant metrics onSU(2) to SL(2,C), and comment on a
larger framework.
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1. The Exponential map
for complex Hamiltonians
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Exp for Ham: Donaldson’s Proposal

Let (M,!, J) be a (compact) Kähler manifold, and let Ham denote
the group of hamiltonian symplectomorphisms of (M,!), with Lie
algebra C1(M,R)/R.

Ham is known to be “morally” an infinite-dimensional analogue of
a (compact) Lie group, and one can wonder whether it has a
complexification.

From a physical point of view this would correspond to finding a
sensible way to associate a dynamical system to a complex-valued
hamiltonian, h : M ! C, in a manner that extends the notion of
Hamilton flow in case h is real-valued.

Dan Burns University of Michigan Complexification & Hamiltonians
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This issue was raised and taken on by Donaldson in a series of
papers in connection with a set of important problems in Kähler
geometry, and has generated a lot of research.

From our point of view, the interest in finding a complexification
of Ham is based on the fact, discovered independently by Atiyah
and Guillemin and Sternberg, that if a compact Lie group acts in a
Hamiltonian fashion on a Kähler manifold then the action extends
to the complexified group in an interesting way that can be
understood.

Dan Burns University of Michigan Complexification & Hamiltonians
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Donaldson pointed out that Ham

acts on the infinite-dimensional space of Kähler potentials of
(M,!0),

and the moment map is the Hermitian scalar curvature.

The appeal of extending the finite-dimensional picture to this
infinite-dimensional setting of Kähler metrics is that it was hoped
to lead to a way of constructing extremal metrics.
We will not enter further into the connections with Kähler
geometry, other than to point out here that exponentiating
purely-imaginary hamiltonians leads to geodesics in the space of
Kähler potentials.
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Our focus is on the following issue:

Donaldson has put forward a notion of “formal Lie group” to
conceptualize his notion of a formal complexification of Ham.
Briefly, a formal Lie group with Lie algebra G is a “manifold” (the
notion is of interest only in infinite dimensions), G , together with a
trivialization of its tangent bundle of the form

TG ⇠= G ⇥G ,

such that the map

G 3 h 7! corresponding vector field h] on G

is a Lie algebra homomorphism (with respect to the commutator of
vector fields). The vector fields h] should be thought of as “left-
invariant”, though no group structure on G exists.

Dan Burns University of Michigan Complexification & Hamiltonians



Introduction
The exponential map of the complexification of Ham

Grauert tubes

Donaldson’s Proposal
The basic definition, geometry and motivation
Geodesics of the space of potentials
Global examples

In the present case
G = C!(M,C)/C,

and the exponential map in our title refers to the problem of
constructing the flow of the fields h]. The main Theorem 2 states
that the family of di↵eomorhpisms {ft} there “exponentiate” the
complex-valued hamiltonian h, in one of Donaldson’s models for
the complexification of G .1

1S. Donaldson, Symmetric spaces, Kähler geometry and Hamiltonian
dynamics. Northern California Symplectic Geometry Seminar, 13-33. Amer.
Math. Soc. Transl. Ser. 2, 196 (1999).
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Local existence and uniqueness

Our approach is based on the following simple existence result:

Proposition

Let (M, J,!) be a real analytic Kähler manifold of real dimension
2n. There exists a holomorphic complex symplectic manifold
(X , I ,⌦) of complex dimension 2n and an inclusion ◆ : M ,! X
such that ◆⇤⌦ = !, and with the following additional structure:

An anti-holomorphic involution ⌧ : X ! X whose fixed point
set is the image of ◆ and such that ⌧⇤⌦ = ⌦.

A holomorphic projection ⇧ : X ! M, ⇧ � ◆ = IdM , whose
fibers are holomorphic lagrangian submanifolds.

The germ of the structure above is unique.

Dan Burns University of Michigan Complexification & Hamiltonians



Introduction
The exponential map of the complexification of Ham

Grauert tubes

Donaldson’s Proposal
The basic definition, geometry and motivation
Geodesics of the space of potentials
Global examples

Local existence and uniqueness

Our approach is based on the following simple existence result:

Proposition

Let (M, J,!) be a real analytic Kähler manifold of real dimension
2n. There exists a holomorphic complex symplectic manifold
(X , I ,⌦) of complex dimension 2n and an inclusion ◆ : M ,! X
such that ◆⇤⌦ = !, and with the following additional structure:

An anti-holomorphic involution ⌧ : X ! X whose fixed point
set is the image of ◆ and such that ⌧⇤⌦ = ⌦.

A holomorphic projection ⇧ : X ! M, ⇧ � ◆ = IdM , whose
fibers are holomorphic lagrangian submanifolds.

The germ of the structure above is unique.

Dan Burns University of Michigan Complexification & Hamiltonians



Introduction
The exponential map of the complexification of Ham

Grauert tubes

Donaldson’s Proposal
The basic definition, geometry and motivation
Geodesics of the space of potentials
Global examples

Local existence and uniqueness

Our approach is based on the following simple existence result:

Proposition

Let (M, J,!) be a real analytic Kähler manifold of real dimension
2n. There exists a holomorphic complex symplectic manifold
(X , I ,⌦) of complex dimension 2n and an inclusion ◆ : M ,! X
such that ◆⇤⌦ = !, and with the following additional structure:

An anti-holomorphic involution ⌧ : X ! X whose fixed point
set is the image of ◆ and such that ⌧⇤⌦ = ⌦.

A holomorphic projection ⇧ : X ! M, ⇧ � ◆ = IdM , whose
fibers are holomorphic lagrangian submanifolds.

The germ of the structure above is unique.

Dan Burns University of Michigan Complexification & Hamiltonians



Introduction
The exponential map of the complexification of Ham

Grauert tubes

Donaldson’s Proposal
The basic definition, geometry and motivation
Geodesics of the space of potentials
Global examples

The local existence is simple:

We take X to be a neighborhood of the diagonal in M ⇥M,
with the complex structure I = (J,�J).

⌦ is the holomorphic extension of ! and ⌧(z ,w) = (w , z).

Finally, the projection is simply ⇧(z ,w) = z .

However there exist natural complexifications that make our results
below much more global in some cases. (The uniqueness cannot be
global, as is obvious from topological considerations in the
examples below.)

Dan Burns University of Michigan Complexification & Hamiltonians
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Some examples

1. The construction given above, with X = M ⇥M, I = (J,�J) is
global, as are ⇧ and ⌧ , but the form ⌦ is not.

Dan Burns University of Michigan Complexification & Hamiltonians
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1. The construction given above, with X = M ⇥M, I = (J,�J) is
global, as are ⇧ and ⌧ , but the form ⌦ is not.

2. Donaldson’s canonical complexification2 which is even compact,
with ⇧,X all global projective algebraic, ⌦ global and rational, but
⌧ not global, in general.

3. For M a co-adjoint orbit, all elements are global, and can be
compactified canonically algebraically in several ways (see below).

2Holomorphic disks and the complex Monge-Ampère equation, J. Symp.
Geom, 1, 171-196 (2002).
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The Definition

To describe our results we need some notation. Given a function
h : M ! C whose real and imaginary parts are real analytic, there
is a holomorphic extension H : X ! C perhaps only defined near
◆(M), but we will not make a notational distinction between X and
such a neighborhood, as our results are local in time.

Let h and H be as above. The fibers of ⇧ are the leaves of a
holomorphic foliation, F , of X . Denote by �t : X ! X the
Hamilton flow of <H (where <H is the real part of H) with
respect to the real part of ⌦. We denote by F t the image of the
foliation F under �t (so that F 0 = F ).

Dan Burns University of Michigan Complexification & Hamiltonians
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The Definition (cont)

We assume that there exists E ⇢ R an open interval containing
the origin such that 8t 2 E the leaves of F t are the fibers of a
projection ⇧t : X ! M (always true for M compact).

We will set
F x

t := ⇧�1
t (x),

the fiber of F t over x .

Let �t : M ! M be defined by

�t := ⇧t � �t � ◆. (1)

Dan Burns University of Michigan Complexification & Hamiltonians
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The Picture

We now explain the geometry behind the construction of �t
summarized by (1).

To find the image of x 2 M under �t one flows the leaf
F x

0 = ⇧�1(x) of the foliation F = F 0 by �t , and intersects the
image leaf with M.

In other words, (1) can be stated equivalently as:

{�t(x)} = �t

�
⇧�1(x)

�
\M. (2)

Dan Burns University of Michigan Complexification & Hamiltonians
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The definition of � is summarized in the following figure, where
F y

t := ⇧�1
t (y).
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Motivation/Interpretation

The present construction is motivated by semiclassical analysis.

Ignoring domain issues, the notion of the exponential of a
non-hermitian quantum hamiltonian is clear, if M is compact and
Planck’s constant is fixed: this amounts to exponentiating a
matrix. Therefore a very natural approach to exponentiating a
non-hermitian classical hamiltonian is to first quantize it,
exponentiate it on the quantum side, and then take the
semiclassical limit. This approach has been developed by
Rubinstein and Zelditch, and raises a number of interesting but
di�cult analytical questions.
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In our construction we bypass these analytic di�culties by
considering the following geometric remnants of quantization:

1. Each leaf of the foliation F 0 corresponds to a quantum state
(element of the projectivization of the quantum Hilbert space)
represented by a coherent state centered at a point on the leaf,
that is, an element in the Hilbert space that semiclassically
concentrates at the intersection of the leaf with M.

2. The fact that ⇧ is holomorphic says the the coherent states are
associated to the metric of (M, J,!).

3. On the quantum side the evolution of a coherent state remains
a coherent state, whose lagrangian is simply the image of the one
at time t = 0 by the complexified classical flow.

Dan Burns University of Michigan Complexification & Hamiltonians
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Theorem

Let �t ,E ⇢ R be as above. Then, 8t 2 E :

1 There is a complex structure Jt : TM ! TM such that
Jt � d⇧t = d⇧t � I (and J0 = J).

2 �t : (M, J) ! (M, Jt) is holomorphic ( Jt � d�t = d�t � J).
3 The infinitesimal generator of �t is the (time dependent)

vectorfield
�̇t � ��1

t = ⌅!
<h + Jt (⌅

!
=h) (3)

where ⌅!
<h, denotes the Hamilton vector field of <h with

respect to !, etc.

Dan Burns University of Michigan Complexification & Hamiltonians
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Remarks on the Main Theorem

1. Graefe and Schubert have given a very clear and detailed
account of the case when M is equal to R2n ⇠= Cn, h is a quadratic
complex hamiltonian, and the lagrangian foliations are by
complex-linear positive subspaces, corresponding to standard
Gaussian coherent states with possibly complex centers. (See
below.)

By explicit calculations on both quantum and classical sides, they
show that the evolution of a coherent state centered at x is
another coherent state whose center may be complex, but that
represents the same quantum state as a suitable Gaussian coherent
state centered at �t(x).
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Remarks (cont.)

2. Conditions (2) and (3) (together with the initial condition
�0 = IdM) characterize the family {�t} (Cauchy-Kowalewski).

3. Suppose G is a compact Lie group acting on M in a
Hamiltonian fashion and preserving J. Then the action extends as
a holomorphic action to the complexification GC. The extended
action is as follows:
If a, b : C1(M) ! R are two components of the moment map of
the G action, then the infinitesimal action corresponding to a+ ib
is the vector field

⌅!
a + J(⌅!

b ).
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Remarks (cont.)

The corresponding 1-p.g. of di↵eomorphisms, 't : M ! M,
satisfies (2) and (3) of Theorem 2, with Jt = J0 for all t, so we
must have 't = �t . In other words, our construction is an
extension of the process of complexifying the action of a compact
group of symmetries of (M,!, J).
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Sketch of Proof

We have h = f + ig the complex Hamiltonian on M, and
H = F + iG its holomorphic extension to X . ! extends
holomorphically to ⌦ = !1 + i!2. ⇠ is the !1 Hamilton field of F ,
and �t its flow.

Lemma 1: �t is holomorphic.

This is because ⌦,H are holomorphic.

Lemma 2: If h is real, then ⇠ is tangent to M along M.

You check how ⌧ operates on H,⌦ and hence ⇠ to get d⌧⇤⇠ = ⇠.
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Lemma 3. �̇t(x) = d⇧y ,⇤(⇠y ), where ⇧t(y) = x .

Mainly the chain rule.

For the main theorem:

1. & 2. By lemma 1 above, we have the foliations F t , and
assuming transversality along M, we have a Jt which makes ⇧t

and �t holomorphic.

3. To show:
�̇t � ��1

t = ⇠!f + Jt
�
⇠!g

�
,

which is linear in h. For h real, this is what has been shown above.
For h imaginary, one checks that I (⇠) is the !1-Hamilton field of
-G , which is tangent to M. This gives �̇t � ��1

t = Jt⇠!t .
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The space of potentials

Consider the space

H := {a : M ! R ; !a = ! + i @̄@a > 0}/R

of Kähler potentials for Kähler forms in the same cohomology class
as !.

H has a natural Riemannian metric:

k�ak2 =
Z

M
|�a|2dµa.
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How the “exponential” interacts with H :

Given h = f + ig : M ! C, let ft be its exponential. Notice that !
is of type (1,1) for Jt – this is because F t is ⌦-Lagrangian.

Let !t be the symplectic form defined by f ⇤t ! = !t , and write
!t = ! + i @̄@at , where the at are taken modulo constants. Then

ȧt = 2f ⇤t G . (4)
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The geodesic equations

One can check that the geodesic equation for H is given by

ä = �1

2
|raȧ|2a,

where the super/subscripts “a” mean computed in the Kaehler
metric corresponding to a.

Theorem

Let h = ig be purely imaginary. Then the exponential of ig is the
geodesic with initial conditions a = 0 and ȧt(0) = 2g .
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Coadjoint orbits

Construction Example:

For G compact, and � 2 g ⇤ the orbit O � is a symplectic manifold
with form !�(⇠, ⌘) = �([⇠, ⌘]).

The GC-orbit of � in g ⇤
C is a complex symplectic manifold O �,C.

One can define a complex structure on O � using the roots of g ,
and this is a Kähler manifold. ⌧ above is just the usual conjugation
fixing g ⇤. The leaves of F are given by unipotent subgroups of GC.

Think of the group G = SO(3), M = O � = S2 and O �,C is an
a�ne quadric, and F and ⌧(F ) are given by the two rulings of
O �,C.
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A global example: incomplete geodesics in H (S2)

Any linear function (C-valued) on O �,C ⇢ g ⇤
C is the Hamiltonian

on O �,C for a 1-p.g. from GC, and in particular is complete.

Let h be such a function. Then any function F (h) also generates a
complete flow on O �,C, since it has the same flow curves but
reparametrizes by a constant factor on each flow line.

If we take M = S2 and then � = N 2 R3 then h(x , y , z) =
p
�1z2

has a complete flow �t on O �,C. Note that since the leaves of the
foliation are closed and proper, by topology, if the leaves F t are
transverse to M, then �t is globally defined on M. Thus, this
transversality is the only thing obstructing the existence of the �t
for all t.
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Incomplete geodesics in H (S2)

However, this fails in finite (imaginary) time. (Easy to solve ODE.)
This gives C ! geodesics which are incomplete in the space H .

Earlier such examples were given by Lempert-Vivas (local, via
HCMA formulation), others in non-smooth cases.
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Open Questions:

Can one use, say, microlocal analysis to describe the map �t
above?

Does the solution of the cscK metric problem o↵er any
insights about quantization of complex Hamiltonians?
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2. Grauert tubes and
large complexifications
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Complexifications and tubes: definitions

If M is a real manifold, then a complexification is a complex
manifold MC � M, usually with an anti-holomorphic involution �
such M = Fix(�). Abstractly, the germ of MC around M is
uniquely defined if M is C! (Bruhat-Whitney).

If the complexification is “big” is it special: a�ne algebraic,
homogeneous, etc.?

Leads to function theory questions and restricted Levi
problems (functions with growth conditions).
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Both Lempert-Szőke and Guillemin-Stenzel gave a canonical
method for complexifying a real analytic, Riemannian manifold M.
This is, in general, defined on an open subset of the tangent
bundle containing the 0-section M, and we call the resultant
manifold the Grauert tube associated to the metric g . If the
complex structure is defined on all of TM, we call the tube entire.
Entire tubes posses s.p.s.h. exhaustions ⌧ for which ⌧ := eu on
TM \M, where u = |v | is the length function on TM.
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These are considered “big” as loosely stated earlier, and one
natural question is whether these are a�ne algebraic.

Entire tubes appear to be rare, and almost all constructions of
them so far are closely related to homogeneous examples. Lempert
and Szőke have shown that a necessary condition for the tube of
M, g to be entire is that the sectional curvatures of g be
non-negative. This is far from su�cient, however.

Dan Burns University of Michigan Complexification & Hamiltonians



Introduction
The exponential map of the complexification of Ham

Grauert tubes

Complexification and Tubes: definitions
Examples of entire tubes
Left invariant metrics on SU(2)
Scarcity of entire tubes: can we classify them?

Examples of entire tubes

Examples

If M is a Riemannian submersion of a compact symmetric
space, the tube of M is entire, and ⌦ 6= 0. It is known by
other means that X = the entire tube of M is a�ne algebraic.
This uses Peter-Weyl theory.

Szőke showed there is a one parameter family of distinct
surfaces of revolution which have entire tubes. None but the
round metric has ⌦⌦2 holomorphic. Explicitly, these are

ds2� = d 2 +
sin2  

1 + � sin2  
d✓2,

where � 2 [0,+1) is a real parameter. � = 0 is the round
sphere.
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Aguilar’s examples

Aguilar found a method based on symplectic reduction to generate
twisted forms of a metric with infinite tube in such a way as to
create a new entire tube metric. The Szőke spheres are special
cases. In fact, all known entire tubes arise in this fashion from
symmetric spaces (i.e., by quotients and twists).

For M of two dimensions, Aguilar has found a sequence of
conditions generalizing that of Lempert-Szőke to higher order
invariants which give necessary and su�cient conditions that a
tube be entire. Unfortunately, these are very di�cult to interpret in
particular examples. In particular, it is not known whether the
conditions are e↵ectively finite, i.e., are redundant after a certain
degree.
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Left invariant metrics on SU(2)

One of the problems in estimating whether a given metric has an
entire tube is that the complex structure on the tube viewed as a
subset of the tangent bundle TM is not very explicit, and while the
original real manifold may have an obvious “large” complexification
which presents itself as a natural guess for an entire tube
complexification, it is hard to say how far out in such a complex
manifold the tube’s structures extend: for example, the solution u
of HCMA. For example, any metric on Sn has a tube locally inside
Qn, the a�ne quadric in Cn+1, but it is not known how many
extend to all of the quadric.
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Recently, Vaqaas Aslam , Daniel Irvine and I have examined closely
the situation of left-invariant (but not necessarily bi-invariant)
metrics on SU(2) ⇠= S3. Here the obvious “large” complexification
would be Q3 ⇠= SL(2,C). For such metrics, the natural geometric
tensors have SL(2,C)-invariant, holomorphic extensions to
SL(2,C). The question of whether the tube structure extends to
all of SL(2,C) concerns whether the MA foliation and the HCMA
solution extends to all of Q3.

We convert this to a geometric problem. Its solution, however,
depends on classical mechanics, namely, the complete integrability
of the spinning top equations in three dimension.
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Recently, Vaqaas Aslam , Daniel Irvine and I have examined closely
the situation of left-invariant (but not necessarily bi-invariant)
metrics on SU(2) ⇠= S3. Here the obvious “large” complexification
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tensors have SL(2,C)-invariant, holomorphic extensions to
SL(2,C). The question of whether the tube structure extends to
all of SL(2,C) concerns whether the MA foliation and the HCMA
solution extends to all of Q3.
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Another reason for studying these examples is that the “entire”
property of the Grauert tube construction depends, in principle, on
two elements: behavior of the complexified geodesics on M in the
complex domain, but also whether the metric, etc., converge
rapidly enough to admit an entire extension. In order to answer
this, one has to have an a priori notion of how to measure extension
in the complex manifold, other than by the HCMA solution.
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Lemma

If g is a left-invariant metric on a compact Lie group G , and its
Grauert tube is entire, then that tube is (equivariantly)
biholomorphic to GC.

Given the lemma, we can convert our problem to a question of
focal points for the holomorphic exponential map for gC on GC.

Lemma

Consider M = G ⇢ GC, and identify TG = NG ⇢ TCGC. Then the
tube of the left invariant metric g is entire i↵ ExpgC : NG ! GC
is a di↵eomorphism.
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Given these lemmas, we can prove that the tube of g is not entire
by showing that a complexified geodesic with initial condition in
NG is not an entire function of one complex variable. To see this,
we restrict to the case of G = SU(2).
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The role of classical mechanics

Fix the bi-invariant metric (·, ·) on su(2) = TeSU(2). For any
positive definite, symmetric linear transformation A of su(2) to
itself, let �1  �2  �3 be its eigenvalues. For our question, we
can ignore an overall scale factor. If exactly two of the e.v.’s are
equal, these are Berger spheres: this is the case when the isometry
group is of dimension 4. For certain �’s, the metric g has negative
sectional (even scalar) curvature, so those do not have entire tubes
(Lempert-Szőke). Any complexified geodesic �C of g (holomorphic
geodesic of gC)) gives a holomorphic map of
C � U ! GC ⇥ sl(2,C) ! sl(2,C). This map must be an entire
function for the tube of g to be entire. But this is what
integrability obstructs.
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The geodesic flow on SU(2) is completely integrable. If ⇠1, ⇠2, ⇠3 is
an o.n.basis for su(2), which we consider a frame for TSU(2), then
the left invariant integrals are

I1(⇠) = �1a
2 + �2b

2 + �3c
2

and
I2(⇠) = �21a

2 + �22b
2 + �23c

2,

where ⇠ = a⇠1 + b⇠2 + c⇠3. These are the total energy and angular
momentum for a spinning top. The third integral is any
Hamiltonian for the action of any ⌘ 2 su(2).
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We write �̇(t) 2 su(2) expressed in the invariant frame. Then
I1(�̇), I2(�̇) are constant, as are I1(�̇C), I2(�̇C) along the
holomorphic geodesic. The constants are determined by the (real)
initial conditions of �.

Given the initial conditions, we have a curve

{I1(z) = s1, I2(z) = s2} ⇢ sl(2,C) ⇠= C3 ⇢ P3.

Let Cs1,s2 denote its closure in P3.
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Lemma

If the initial conditions are generic, and the �’s distinct, then
Cs1,s2 ⇢ P3 is non-singular, of genus 1.

From this we get an immediate corollary.

Corollary

�̇C cannot be entire, if the �’s are distinct. As a result, if the �’s
are distinct, the tube of g cannot be entire.

This is because �̇C maps into the a�ne part of Cs1,s2 , which is a
hyperbolic Riemann surface, and �̇C must be constant. But not all
geodesics have constant �̇C.
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Remarks:

For �i distinct, all close to 1, the metric g has positive
curvature, so this is a condition distinct from the
Lempert-Szőke condition.

For any invariant metric, this gives implicitly a bound on the
|Im ⇣| for which �̇C may be defined (Schottky).
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Now we are reduced to considering the Berger spheres, and we will
describe the metrics in the form g = ds2 = !2

1 + !2
2 + �!2

3, where
� > 0. Note: we have normalized (·, ·), i.e., the case � = 1, so that
this metric is round with K ⌘ +1. There are three relevant
intervals of � values for the question at hand.

� 2 (0, 1]: in this case, we have that g is a twisted version of
the round metric on S3. By a result of Aguilar, it has an
entire tube, via a quotient construction.

� > 4
3 : here the Lempert-Szőke result applies and gives a

bound on the complexification radius.

� 2 (1, 43 ]: here we compute the Jacobi fields explicitly to
show the complex Exp has singularities.
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Scarcity of entire tubes

There are very few examples of entire tubes, though we cannot
state simply that they are all a�ne algebraic. The underlying
complex manifolds and a�ne varieties seem very rigid, and one
suspects that they might depend on only a finite number of
parameters. To focus on the case of M = S2, we first have the
following theorem:

Theorem

(Totaro; Aguilar-B.) Let X be an a�ne, surface over C, with X
di↵eomorphic to TS2. (Such would be the case for any
algebraicized entire tube over S2.) Then X is algebraically
equivalent to the standard a�ne quadric

Q = {z21 + z22 + z23 = 1} ⇢ C3.
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Remarks on uniqueness

Remarks

If all entire tubes on S2 were algebraic, this says these a�ne
varieties are all just Q.

All canonical Riemannian tensors, or at least powers of them,
are extendible to the entire tube as meromorphic tensors, and
if the tube is algebraic, these tensors are rational. If these all
live on the same quadric, the real metric might be determined
by some tensors living in a finite dimensional space. This
would require showing something like a bound on the order of
poles of these rational tensors.
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Thanks for your attention!
Thanks to the organizers!
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