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Classical mechanics and variational principles
(17th and 18th)

◮ Newton’s law of motion in classical mechanics is

F = mq̈

where t → q(t) is the physical path of a particle, F is the force acting on it, m
is its mass, and q̈ is its acceleration.

◮ This gives rise to a “principle of least action” and Lagrangian mechanics. Let M
be the configuration space of points q. Then the physical path is a stationary
point of an action functional defined in the space of paths t → q(t) in M,

I =

∫

(
1

2
mq̇(t)2 − V (q(t)))dt

where V (q) is the potential, and the force F given by F = −∂V /∂q. The
expression L(q, q̇) = 1

2
mq̇2 − V (q) is a function on the cotangent bundle

T (M) = {(q, q̇)} called the Lagrangian, and its integral I is the action of the
path t → q(t).



Gauge theories and general relativity (19th-20th centuries)

◮ In electromagnetism, the electric and magnetic fields ~E and ~B can be unified in
a single field F , which is the curvature F = dA of a U(1) connection. The
action is I =

∫

|F |2, and its critical points, combined with the equation dF = 0,
reproduce the system of Maxwell’s equations for the electric and magnetic fields.
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◮ The weak and strong interactions of particle physics are described similarly by a
connection A on a vector bundle E , which is valued in a suitable non-abelian
gauge group depending on the interaction. The field is described again by the
curvature F = dA+ A ∧ A, and the action is the Yang-Mills action

I (A) = −
∫

Tr(F ∧ ⋆F )

Maxwell’s equations generalize to the Yang-Mills equation and the Bianchi
identity

d
†
A
F = 0, dAF = 0

When the vector bundle E is a holomorphic vector bundle over a Kähler
manifold (X , ω) and the curvature F is a (1, 1)-form, the first equation is

equivalent to g j k̄Fk̄ j be covariantly constant, or for some constant µ,

ω2 ∧ F = µI ω3
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◮ In general relativity, the field is a metric gij (x), the action is the Einstein-Hilbert
action, I (gij ) =

∫

R
√
g and the critical points are given by Einstein’s equation,

Rij −
1

2
gijR = 0
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◮ A supersymmetric theory will contain pairs of bosonic fields and their fermionic
partners. Supergravity theories are supersymmetric theories which contain a
graviton, whose field is a metric gMN , and its partner, which is called the
gravitino, and whose field χM

α is a one-form valued in the bundle of spinors.

◮ Some basic facts about spinors: the Clifford algebra in n dimensions is the
associative algebra generated by elements γM , 1 ≤ M ≤ n, satisfying the
relation

γMγN + γNγM = 2δMN I

If the Clifford algebra can be realized as a space of endomorphisms of a vector
space S, then the elements of S are called spinors.
The point of the above relations is that the Dirac operator D defined as
Dψ = γM∂Mψ will be a square root of the Laplacian

D2ψ =
1

2
(γMγN + γNγM)∂M∂Nψ = ∆ψ

More generally, on curved Riemannian manifolds, we obtain spin bundles by
choosing an orthonormal frame and letting S be the fiber at each point. A
spinor field is a section of the corresponding bundle S, and the Levi-Civita
connection extends naturally to a covariant derivative on spinor fields,

∇Jψ = ∂Jψ +
1

2
ωJMNγ

MγNψ



◮ The infinitesimal generator of supersymmetry transformations is a spinor field
ψα. Its action on the gravitino field is of the form

δχM = ∇Mψ + HMN1···Np
γ[N1 · · · γNp ]ψ

where γN are Dirac γ-matrices, and H is another field in the theory which is a
(p+1)-form. It is for example a 3-form called the Kalb-Ramond field in the case
of the heterotic string, and a 4-form in the case of 11-dimensional supergravity.
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◮ The above supersymmetry transformations can be viewed as the supersymmetric
partner of infinitesimal diffeomorphisms, whose infinitesimal generators are
vector fields VN , and whose action on metrics is given by

δgMN = ∇{MVN}

◮ The condition that the vacuum state is supersymmetric translates into the
condition

δχM
α = 0

Thus supersymmetry requires a spinor field ǫα which is covariantly constant
with respect to the connection ∇M + HM , whose torsion can be identified with
the Kalb-Ramond field H.

◮ In the mathematics literature, the existence of a covariant constant spinor is
characteristic of reduced holonomy and special geometry. Such problems go
back to works of Berger, Lichnerowicz, et al. Here physics has provided
supersymmetry as motivation, and also introduced the possibility of other
connections than the Levi-Civita connection, which are characterized by an
additional field, such as the Kalb-Ramond field.



◮ For compactifications, we assume that the space-time of the vacuum state is of
the form, e.g., M3,1 × K , where M3,1 is 4-dimensional Minkowski space-time,
and K is an intermediate space. We are then interested in the additional
geometric structure on K which follows from the existence of a covariantly
constant spinor ψ.
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◮ A famous example is obtained in the heterotic string, with the Kalb-Ramond
field taken to be 0, and the covariantly constant spinor implying that the
internal manifold K has SU(3) holonomy. More concretely, it leads to two
conjugate covariantly constant spinors η± on K , and an integrable complex
structure can be constructed out of bilinears in η±,

Jm
n = iη†+γm

nη+ = −iη†−γm
nη−

Thus the internal manifold is in fact, a Calabi-Yau manifold. This construction
goes back to the foundational work of Candelas, Horowitz, Strominger, and
Witten.



◮ For compactifications, we assume that the space-time of the vacuum state is of
the form, e.g., M3,1 × K , where M3,1 is 4-dimensional Minkowski space-time,
and K is an intermediate space. We are then interested in the additional
geometric structure on K which follows from the existence of a covariantly
constant spinor ψ.

◮ A famous example is obtained in the heterotic string, with the Kalb-Ramond
field taken to be 0, and the covariantly constant spinor implying that the
internal manifold K has SU(3) holonomy. More concretely, it leads to two
conjugate covariantly constant spinors η± on K , and an integrable complex
structure can be constructed out of bilinears in η±,

Jm
n = iη†+γm

nη+ = −iη†−γm
nη−

Thus the internal manifold is in fact, a Calabi-Yau manifold. This construction
goes back to the foundational work of Candelas, Horowitz, Strominger, and
Witten.

However, supersymmetry allows H not to be 0, as long as the metric on the
internal manifold K satisfies some specific torsion condition. This is the essence
of the Hull-Strominger system, which will be discussed at length in this lecture.



◮ For compactifications, we assume that the space-time of the vacuum state is of
the form, e.g., M3,1 × K , where M3,1 is 4-dimensional Minkowski space-time,
and K is an intermediate space. We are then interested in the additional
geometric structure on K which follows from the existence of a covariantly
constant spinor ψ.

◮ A famous example is obtained in the heterotic string, with the Kalb-Ramond
field taken to be 0, and the covariantly constant spinor implying that the
internal manifold K has SU(3) holonomy. More concretely, it leads to two
conjugate covariantly constant spinors η± on K , and an integrable complex
structure can be constructed out of bilinears in η±,

Jm
n = iη†+γm

nη+ = −iη†−γm
nη−

Thus the internal manifold is in fact, a Calabi-Yau manifold. This construction
goes back to the foundational work of Candelas, Horowitz, Strominger, and
Witten.

However, supersymmetry allows H not to be 0, as long as the metric on the
internal manifold K satisfies some specific torsion condition. This is the essence
of the Hull-Strominger system, which will be discussed at length in this lecture.

◮ Similarly, for 11-dimensional supergravity, the existence of a covariantly constant
spinor implies that the holonomy of the internal space must be G2. By work of
Bär (1993), such a structure is closely related to that of an almost Kähler
structure.
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Let Y be a 3-dimensional compact complex manifold Y , equipped with a nowhere
vanishing holomorphic 3-form Ω, and let E → Y be a holomorphic vector bundle over
Y .

The Hull-Strominger system is the following system of equations for a Hermitian
metric ω on Y and a Hermitian metric Hᾱβ on E ,

F 2,0 = F 0,2 = 0, ω2 ∧ F 1,1 = 0

i∂∂̄ω − α′

4
(Tr(Rm ∧ Rm)− Tr(F ∧ F )) = 0

d†ω = i(∂̄ − ∂) log ‖Ω‖ω
Here α′ is the slope parameter. The expressions Rm and F are the curvatures of the
metrics ω and Hᾱβ , viewed as a (1, 1)-forms valued in End(T 1,0(Y )) and in End(E)
respectively. The norm ‖Ω‖ω is defined by

‖Ω‖2ω = iΩ ∧ Ωω−3.
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◮ The first equation is just the usual Hermitian-Einstein equation.
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M. Green and J. Schwarz (1984).
◮ The third condition is a torsion constraint, more explicitly, if we set T = i∂ω,

then
g j k̄Tk̄ jm = ∂m log ‖Ω‖ω

.



◮ Because ω is not necessarily Kähler, there are many natural unitary connections
associated to it. The most familiar one is the Chern unitary connection, defined
by

∇j̄V
k = ∂j̄V

k , ∇jV
k = g j p̄∂j (gp̄mV

m).

In this case, the Riemann curvature tensor is given by,

Rm = Rk̄ j
p
qdz

j ∧ dz̄k , Rk̄ j
p
q = −∂k̄(gpm̄∂jgm̄q),

with a similar expression for the curvature F of Hᾱβ , F = Fk̄ j
α
βdz

j ∧ dz̄k ,

Fk̄ j
α
β = −∂k̄(Hαγ̄∂jHγ̄β). But one can define another line of unitary

connections ∇(κ), called the Gauduchon line, by

∇(κ)
j

V k = ∇jV
k − κT k

jmV
m

The connection with κ = 1 seems to have been introduced first by Yano, and
was subsequently rediscovered by Bismut. That connection with κ = 1/2 is the
Lichnerowicz connection.

◮ As shown by C. Hull, the anomaly cancellation mechanism does not require a
specific unitary connection for ω. In this work, we shall mostly restrict ourselves
to the choice of the Chern unitary connection, and discuss only one example with
Yano-Bismut connections, namely the case of unimodular Lie groups suggested
by Biswas and Mukherjee, Andreas and Garcia-Fernandez, and Fei and Yau.



◮ The Hull-Strominger system is a generalization of a system of equations
proposed by Candelas, Horowitz, Strominger, and Witten for compactifications
of the heterotic string to 4-d spacetime which preserve supersymmetry.

A well-known solution is to take Y Kähler, set E = T 1,0(Y ), Hᾱβ = ω. Then
dω = 0, Rm = F , and the second equation is automatically satisfied. Next,

ω ∧ F = ω2 ∧ Rm = 3Ric(ω)

(viewed as an endomorphism of T 1,0(M)), and thus the first equation reduces
to the condition of vanishing Ricci curvature

Ric(ω) = 0.

As conjectured by Calabi, and proved by Yau, metrics satisfying this condition
can be found in any given Kähler class, as long as c1(Y ) = 0, which is the case
here, because we have assumed the existence of a nowhere vanishing
holomorphic 3-form Ω.

Finally, we have, directly from the definition of the Ricci curvature,

Ric(ω) = ∂∂̄ log ‖Ω‖2

and thus ‖Ω‖ is constant. The torsion condition follows then from the Kähler
condition,

d†ω = − ⋆ d ⋆ ω = − ⋆ dω2 = 0.

These “Calabi-Yau solutions” have had an enormous influence on both
geometry and physics for the last 30 years or so.
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◮ Canonical metrics in non-Kähler geometry: in Kähler geometry, a canonical
metric is usually defined by a cohomological condition (e.g. dω = 0), and by a
curvature condition (e.g. ω has constant scalar curvature). As pointed out by J.
Li and S.T. Yau, the third equation in Strominger systems is equivalent to the
following “conformally balanced” condition

d(‖Ω‖ωω2) = 0

so the last two equations in Strominger systems can be viewed (for given F ) as
a generalization of the notion of canonical metric on X to the non-Kähler
setting. The notion of balanced metric, i.e. d(ω2) = 0, was introduced in
mathematics by Michelsohn (1981). The existence of a balanced metric is a
property invariant under birational transformations (Alessandrini-Bassanelli).
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◮ Quadratic curvature conditions: the expression Tr(Rm ∧ Rm), which is
fundamental for the Green-Schwarz anomaly cancellation in string theory, does
not seem to have been studied before as a curvature condition in complex
differential geometry. Clearly, it leads to a class of fully non-linear equations
which is new in the theory of partial differential equations.
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◮ Quadratic curvature conditions: the expression Tr(Rm ∧ Rm), which is
fundamental for the Green-Schwarz anomaly cancellation in string theory, does
not seem to have been studied before as a curvature condition in complex
differential geometry. Clearly, it leads to a class of fully non-linear equations
which is new in the theory of partial differential equations.

◮ Geometric flows: We shall see shortly that there are compelling reasons for
studying Hull-Strominger systems as the fixed points of a geometric flow.
Remarkably, even though this flow is a flow of (2, 2)-forms, it will turn out to
have some strong resemblance with the Ricci flow (or RG flow for sigma
models), although it will of course be more complicated. As such, it should
provide a good model for the development of new flows, in particular of
(n − 1, n − 1)-forms.



Some special solutions of Strominger systems

◮ By now, a very large number of solutions of the Hull-Strominger system have
been found, either by perturbations from Calabi-Yau solutions, or by duality
arguments from string theory, or in highly symmetric situations such as complex
Lie groups, or by geometric constructions building on earlier constructions of
Calabi-Eckmann and Calabi-Gray.
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Riemann surfaces, and which are of an infinite number of distinct topological
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◮ But the first non-perturbative, non-Kähler solutions was found by PDE methods
by Fu and Yau (2006) on certain toric fibrations π : Y → X over K3 surfaces
constructed by Goldstein and Prokushkin, building on earlier ideas of Calabi and
Eckmann. It turned out that, in this case, the Hull-Strominger system can be
reduced to a single non-linear PDE of Monge-Ampère type on the
two-dimensional base X ,

i∂∂̄(euω − α′e−uρ) + α′i∂∂̄u ∧ i∂∂̄u + µ = 0.

Here ρ and µ are given smooth (1, 1) and (2, 2) forms respectively, with µ
satisfying the integrability condition

∫

X

µ = 0.

The existence of solutions to equations of this type was shown by Fu and Yau
in two separate papers, for α′ > 0 and α′ < 0 respectively. Analytically, the two
cases are quite different.
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Difficulties with the balanced condition

◮ Even if the holomorphic vector bundle E → Y and the Hermitian-Einstein
metric Hᾱβ are known (say by the Donaldson-Uhlenbeck-Yau theorem, if the
conformal class of ω is known), the Hull-Strominger system is still difficult
because the metric ω has to satisfy two simultaneous conditions, namely the
anomaly cancellation condition and the conformally balanced condition.
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◮ Even if the holomorphic vector bundle E → Y and the Hermitian-Einstein
metric Hᾱβ are known (say by the Donaldson-Uhlenbeck-Yau theorem, if the
conformal class of ω is known), the Hull-Strominger system is still difficult
because the metric ω has to satisfy two simultaneous conditions, namely the
anomaly cancellation condition and the conformally balanced condition.

◮ Balanced metrics have been constructed by many authors, e.g. Gauduchon,
Tosatti-Weinkove, Teng Fei et al. One possible strategy is to select some way of
deforming a given one while preserving the balanced condition, and then try to
find a solution of the anomaly equation among the deformed metrics.

◮ For Kähler metrics, this works well because if ω0 is Kähler, then any Kähler
metric ω in the same class must be of the form

ω = ω0 + i∂∂̄ϕ

for a scalar function u uniquely determined up to an additive constant.

◮ However, there is no such simple characterization known for balanced metrics.
For example, if ω0 is balanced (dω2

0 = 0), then an analogue of the above
deformation may be a metric ω defined by

ω2 = ω2
0 + i∂∂̄(ϕω̃)

which is automatically balanced for any scalar function ϕ and ω̃ any (1, 1)-form
which keeps ω2 positive. The drawback is that no particular deformation seems
more compelling than the others, and the resulting equations all seem very
complicated and unnatural.
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The key idea is to address the conformally balanced condition by introducing the
following flow of (2, 2)-forms, whose stationary points are solutions of the
Hull-Strominger system,

∂t(||Ω||ωω2) = i∂∂̄ω − α′

4
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H−1 ∂tH = −3
ω2 ∧ F
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with ω = ω0 when t = 0, where ω0 is a balanced metric. We can also consider the
flow of ω alone, for a given (2, 2)-form Tr(F ∧ F ). We call all these flows “Anomaly
flows”, in reference to the Green-Schwarz anomaly cancellation mechanism.
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From now on, we report on joint work with Sebastien Picard (Columbia) and
Xiangwen Zhang (Univ. of California, Irvine).

The key idea is to address the conformally balanced condition by introducing the
following flow of (2, 2)-forms, whose stationary points are solutions of the
Hull-Strominger system,

∂t(||Ω||ωω2) = i∂∂̄ω − α′

4
(Tr(Rm ∧ Rm)−Tr(F ∧ F ))

H−1 ∂tH = −3
ω2 ∧ F

ω3

with ω = ω0 when t = 0, where ω0 is a balanced metric. We can also consider the
flow of ω alone, for a given (2, 2)-form Tr(F ∧ F ). We call all these flows “Anomaly
flows”, in reference to the Green-Schwarz anomaly cancellation mechanism.

Theorem 1 The above flow of positive (2, 2)-forms defines a vector field on the space
of positive (1, 1)-forms.
(a) The corresponding flow preserves the balanced property of the metric ω(t).
(b) Clearly its stationary points are solutions of the Hull-Strominger system.
(c) The flow exists at least for a short time, assuming that |α′Rm(ω)| is small enough.



◮ It had been shown a while ago by Michelsohn that, given a positive
(n− 1, n− 1)-form Ψ, there is a unique positive (1, 1)-form ω so that ωn−1 = Ψ.
It turns out that ω can be expressed algebraically in Ψ. In fact, ⋆ω = Ψ.
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After this most basic issue of short-time existence has been settled, the next concern
is that Anomaly flows may turn out to be prohibitively messy, due to the fact that we
have to deduce ∂tω from ∂t(‖Ω‖ω2), and to the profusion of notions of Ricci
curvature for general Hermitian metrics
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p
p , R̃k̄j = Rp

pk̄j , R′
k̄j

= Rk̄
p
pj , R′′

k̄j
= Rp

jk̄p

and consequently also of scalar curvatures
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k̄ j
, R′′ = g j k̄R′′
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After this most basic issue of short-time existence has been settled, the next concern
is that Anomaly flows may turn out to be prohibitively messy, due to the fact that we
have to deduce ∂tω from ∂t(‖Ω‖ω2), and to the profusion of notions of Ricci
curvature for general Hermitian metrics
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p
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k̄j
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R = g j k̄Rk̄ j , R̃ = g j k̄ R̃k̄ j , R′ = g j k̄R′
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The saving feature is that the conformally balanced condition d(‖Ω‖ω2) = 0, which is
by design preserved by the Anomaly flows, turns out to be surprisingly powerful, as it
implies that

R′
k̄j

= R′′
k̄ j

=
1

2
Rk̄ j , R̃k̄ j =

1

2
Rk̄ j +∇mTk̄ jm

R = R̃, R′ = R′′ =
1

2
R



Theorem 2 Consider the anomaly flow with a conformally balanced initial metric.
Then the flow is given by

∂tgk̄ j =
1

2‖Ω‖ω

{

− R̃k̄ j + g sr̄gpq̄Tq̄sj T̄pr̄ k̄ − α′g sr̄ (R[k̄s
α
βRr̄ j ]

β
α − Φk̄sr̄ j )

}

Here R̃k̄ j = gpq̄Rq̄pk̄j is the Chern-Ricci tensor, i∂ω = 1
2
Tk̄ jmdz

m ∧ dz j ∧ dz̄k is the

torsion tensor, and we have set Φ = Tr(F ∧ F ). The bracket [, ] denote
anti-symmetrization in each of the two sets of barred and unbarred indices.
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Thus, although its original motivation is rather different, the Anomaly flow appears to
be a higher order version of the well-known Kähler-Ricci flow defined by

∂tgk̄ j = −Rk̄ j

However, it does have a number of complicating features:
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torsion tensor, and we have set Φ = Tr(F ∧ F ). The bracket [, ] denote
anti-symmetrization in each of the two sets of barred and unbarred indices.

Thus, although its original motivation is rather different, the Anomaly flow appears to
be a higher order version of the well-known Kähler-Ricci flow defined by

∂tgk̄ j = −Rk̄ j

However, it does have a number of complicating features:

◮ The appearance of ‖Ω‖−1, torsions, and quadratic terms in the curvature tensor;
◮ The resulting complication in the flow for the curvature. For example, the flow

of the curvatures in the Ricci flow is given by

∂tR = ∆R + Rk̄ jR
j k̄ , ∂tRk̄ j = ∆Rk̄j + Rk̄mp̄qR

qp̄m
j

Thus the diffusion operator is ∆ = gpq̄∇p∇q̄. For the Anomaly flow, we find

∂tRk̄j
ρ
λ =

1

2‖Ω‖ω
(∆Rk̄ j

ρ
λ − α′

2
gρµ̄g sr̄R[r̄λ

β
α∇s∇µ̄]Rk̄ j

α
β) + · · ·

and hence the diffusion operator is now

δRk̄ j
ρ
λ → 1

2‖Ω‖
(∆(δRk̄ j

ρ
δ) +

α′

2
gρµ̄g sr̄R[r̄λ

β
α∇s∇µ̄]δRk̄ j

α
β)



◮ The Kähler-Ricci flow preserves the Kähler property, so that Tk̄ jm = 0 for all
time. The torsion does evolve in the Anomaly flow, and we find

∂tTp̄jq =
1

2‖Ω‖ω
[

∆Tp̄jq +
α′

2
g sr̄ (∇j (R[p̄s

α
βRr̄ q]

β
α)−∇q(R[p̄s

α
βR

α
r̄ j ]β)

]

+ · · ·

There is no obvious analogy with either the Kähler-Ricci case, or with the flow
for the curvature tensor.
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◮ In the Kähler-Ricci case, because [Ric(ω)] = c1(Y ) for any Kähler metric ω, we
find that along the flow

[ω(t)] = [ω(0)] − t c1(X )

as long as the (1, 1)-class on the right hand side is > 0. The analogous
statement in the Anomaly flow is

[‖Ω‖ω2] = [‖Ω‖ω(0)ω(0)2] − tα′(c2(X )− c2(E))

But the positivity of a (2, 2)-form appears to provide a lot less information as
the positivity of a (1, 1)-form.
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◮ In the Kähler-Ricci case, because [Ric(ω)] = c1(Y ) for any Kähler metric ω, we
find that along the flow

[ω(t)] = [ω(0)] − t c1(X )

as long as the (1, 1)-class on the right hand side is > 0. The analogous
statement in the Anomaly flow is

[‖Ω‖ω2] = [‖Ω‖ω(0)ω(0)2] − tα′(c2(X )− c2(E))

But the positivity of a (2, 2)-form appears to provide a lot less information as
the positivity of a (1, 1)-form.

◮ At this moment, we do not know of a canonical way of choosing a
representative in the (2, 2)-class [‖Ω‖ω2] whose evolution would be the analogue
of the Kähler-Ricci flow on potentials, which is a parabolic Monge-Ampère
equation and a very powerful tool.



Some Immediate Questions for Anomaly Flows

◮ A first major concern is, is the Anomaly flow the right parabolic flow for the
Hull-Strominger system ?

In general, for a given elliptic equation, say F (D2u) = eψ, there are an infinite
number of possible parabolic equations, for example

∂tu = F (D2u)− eψ or ∂tu = log F (D2u)− ψ.

However, they can behave quite differently. A well-known example is the
Monge-Ampère equation, with F (D2u) = detD2u, where the equation with
log F (D2u) is much better behaved, because of concavity properties.
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is dictated by the need to preserve the conformally balanced condition. Thus it
is a particularly important issue to find out whether the anomaly flow is
well-behaved.
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◮ A first major concern is, is the Anomaly flow the right parabolic flow for the
Hull-Strominger system ?

In general, for a given elliptic equation, say F (D2u) = eψ, there are an infinite
number of possible parabolic equations, for example

∂tu = F (D2u)− eψ or ∂tu = log F (D2u)− ψ.

However, they can behave quite differently. A well-known example is the
Monge-Ampère equation, with F (D2u) = detD2u, where the equation with
log F (D2u) is much better behaved, because of concavity properties.

◮ In the present case of Hull-Strominger systems, our choice of parabolic equation
is dictated by the need to preserve the conformally balanced condition. Thus it
is a particularly important issue to find out whether the anomaly flow is
well-behaved.

◮ For example, there should be simple criteria for the development of singularities
in a well-behaved parabolic flow. The solutions of the elliptic equation should be
stationary points of the flow with a good basin of attraction.



Illustrative Special Cases of the Anomaly Flow

◮ The case α′ = 0: The most difficult quadratic terms in the curvature tensor
won’t occur. But the flow still presents the difficulties involving ‖Ω‖ω and
non-vanishing torsion, and it appears still at least as complicated as the Ricci
flow. Interestingly, its fixed points satisfy the combined equations

i∂∂̄ω = 0, d(‖Ω‖ω2) = 0

which can be easily seen to imply that ω is Kähler. Thus this flow could answer
the question of whether a given conformally balanced metric can be deformed to
a Kähler metric.
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◮ The case of Calabi-Eckmann-Goldstein-Prokushkin fibrations: this is the case
where the elliptic equation was solved by Fu and Yau. So it is important to find
out whether the anomaly flow can at least recapture this case. We shall see that
it can, and even though it requires a different set of techniques, it will prove in a
way to be even more robust than the Monge-Ampère equations techniques used
by Fu and Yau.
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out whether the anomaly flow can at least recapture this case. We shall see that
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way to be even more robust than the Monge-Ampère equations techniques used
by Fu and Yau.

◮ The case of SL(2,C): This case allows a detailed analysis of dependence on
initial data, as the invariance reduces the Anomaly flow to a system of ODE’s.
In particular, it is instructive to determine for which initial data will the flow
converge to the solution found by Fei and Yau.
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◮ The case α′ = 0: The most difficult quadratic terms in the curvature tensor
won’t occur. But the flow still presents the difficulties involving ‖Ω‖ω and
non-vanishing torsion, and it appears still at least as complicated as the Ricci
flow. Interestingly, its fixed points satisfy the combined equations

i∂∂̄ω = 0, d(‖Ω‖ω2) = 0

which can be easily seen to imply that ω is Kähler. Thus this flow would
provide a way of deforming a conformally balanced metric to a Kähler metric.

◮ The case of Calabi-Eckmann-Goldstein-Prokushkin fibrations: this is the case
where the elliptic equation was solved by Fu and Yau. So it is important to find
out whether the anomaly flow can at least recapture this case. We shall see that
it can, and even though it requires a different set of techniques, it will prove to
be even more powerful then the Monge-Ampère equations techniques used by
Fu and Yau.

◮ The case of unimodular Lie groups: This case allows a detailed analysis of
dependence on initial data, as the invariance reduces the Anomaly flow to a
system of ODE’s. In particular, it is instructive to determine for which initial
data will the flow converge to the solution found by Fei and Yau.
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Theorem 3 Assume that the flow exists for t ∈ [0, 1
A
] and that

|Rm|+ |DT |+ |T |2 ≤ A, z ∈ X .

Then for any k ∈ N, there exists a constant Ck depending on a uniform lower bound
for ‖Ω‖ω so that

|DkRm| ≤ CkAt
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2 , |Dk+1T | ≤ CkAt
− k
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Theorem 3 Assume that the flow exists for t ∈ [0, 1
A
] and that

|Rm|+ |DT |+ |T |2 ≤ A, z ∈ X .

Then for any k ∈ N, there exists a constant Ck depending on a uniform lower bound
for ‖Ω‖ω so that
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This implies that the flow exists for all time t ≥ 0, unless there is a finite time T and
a sequence (zj , tj ) with tj → T , and either ‖Ω(zj , tj )‖ωj → 0, or

(|Rm|+ |DT |+ |T |2)(zj , tj ) → ∞.



The case of CEGP fibrations

Basic facts about Calabi-Eckmann-Goldstein-Prokushkin fibrations

Let (X , ω̂) be a Calabi-Yau surface, with Ricci-flat metric ω̂, and holomorphic form Ω
normalized so that ‖Ω‖2ω̂ = 1. Given any two forms ω1, ω2 ∈ 2πH2(X ,Z) with
ω1 ∧ ω̂ = ω2 ∧ ω̂ = 0, Goldstein and Prokushkin (2004) construct a toric fibration
π : Y → X , equipped with a (1, 0)-form θ on Y satisfying ∂θ = 0, ∂̄θ = π∗(ω1 + iω2).
Furthermore, the form

ΩY =
√
3Ω ∧ θ

is a holomorphic nowhere vanishing (3, 0)-form on Y , and for any scalar function u

on X , the (1, 1)-form
ωu = π∗(eu ω̂) + iθ ∧ θ̄

is a conformally balanced metric on Y .
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Let (X , ω̂) be a Calabi-Yau surface, with Ricci-flat metric ω̂, and holomorphic form Ω
normalized so that ‖Ω‖2ω̂ = 1. Given any two forms ω1, ω2 ∈ 2πH2(X ,Z) with
ω1 ∧ ω̂ = ω2 ∧ ω̂ = 0, Goldstein and Prokushkin (2004) construct a toric fibration
π : Y → X , equipped with a (1, 0)-form θ on Y satisfying ∂θ = 0, ∂̄θ = π∗(ω1 + iω2).
Furthermore, the form

ΩY =
√
3Ω ∧ θ

is a holomorphic nowhere vanishing (3, 0)-form on Y , and for any scalar function u

on X , the (1, 1)-form
ωu = π∗(eu ω̂) + iθ ∧ θ̄

is a conformally balanced metric on Y .

The Fu-Yau equation
Look now for a solution of the Strominger system on Y , π∗(E) under the form
(ωu , π∗(H)), where H is a Hermitian-Einstein metric on a stable vector bundle
E → (X , ω̂). Then the only equation left to solve is the anomaly equation,

i∂∂ωu − α′

4
Tr(Rm(ωu) ∧ Rm(ωu)− F ∧ F ) = 0.

In a key calculation, Fu and Yau (2006) showed that this equation descends to an
equation on X , which they showed can be solved if and only if

∫

X
µ = 0,

i∂∂̄(eu ω̂ − e−uρ) +
α′

4
i∂∂̄u ∧ i∂∂̄u + µ = 0.



Theorem 4 Consider the anomaly flow

∂t(‖Ω‖χχ2) = i∂∂̄χ− α′

4
Tr(Rm(χ) ∧ Rm(χ)− F ∧ F )

on a Calabi-Eckmann-Goldstein-Prokushkin fibration π : Y → X , with initial data
χ(0) = π∗(Mω̂) + iθθ̄, where M is a positive constant. Assume the integrability
condition on µ (which depends only on the Calabi-Eckmann-Goldstein-Prokushkin
data). Then there exists M0 > 0, so that for all M ≥ M0, the flow exists for all time,
and converges to a metric ω∞ with (ω∞, π∗(H)) satisfying the Strominger system.
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This theorem holds for α′ > 0 and α′ < 0. We formulated it in terms of flows on the
3-fold Y . But of course the advantage of Goldstein-Prokushkin fibrations is that it
descends to a flow on the surface X , and the theorem which is equivalent to Theorem
5 and that we shall actually prove is the following:
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This theorem holds for α′ > 0 and α′ < 0. We formulated it in terms of flows on the
3-fold Y . But of course the advantage of Goldstein-Prokushkin fibrations is that it
descends to a flow on the surface X , and the theorem which is equivalent to Theorem
5 and that we shall actually prove is the following:

Theorem 4’ Let (X ω̂) be a Calabi-Yau surface, with a Ricci-flat metric ω̂ and a
holomorphic (2, 0)-form Ω normalized to ‖Ω‖ω̂ = 1. Consider the flow

∂tω = − 1

2‖Ω‖ω
(
R

2
− |T |2 − α′

4
σ2(iRicω) + 2α′ i∂∂̄(‖Ω‖ωρ)

ω2
− 2

µ

ω2
)ω

with an initial metric of the form ω(0) = Mω̂. Assume the integrability condition on
µ. Then there exists a constant M0 so that, for all M ≥ M0, the flow exists for all
time and converges exponentially fast to a metric ω∞ satisfying the Fu-Yau equation

i∂∂̄(ω∞ − α′

4
‖Ω‖ω∞

ρ)− α′

8
Ricω∞

∧ Ricω∞
+ µ = 0.



General remarks about the proof

◮ We assume that |α′Ricω | << 1, so that the diffusion operator

∆F = F pq̄∇p∇q̄, F pq̄ = gpq̄ + α′‖Ω‖3ω ρ̃pq̄ − α′

2
(Rgpq̄ − Rpq̄)

is positive definite. Of course, an important and difficult step will be to prove
that this condition is preserved along the flow.
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geometric setting, and work directly with the evolving metric ω, instead of the
conformal factor u. Also, no assumption on the sign of α′ is necessary.
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2
(Rgpq̄ − Rpq̄)

is positive definite. Of course, an important and difficult step will be to prove
that this condition is preserved along the flow.

◮ It turns out that, except for the C0 estimate, it is important not to lose the
geometric setting, and work directly with the evolving metric ω, instead of the
conformal factor u. Also, no assumption on the sign of α′ is necessary.

◮ The C0 estimates, showing that the metrics gk̄ j (t) are uniformly equivalent in
size, are obtained by Moser iteration.

◮ The estimates for the curvature, torsion, and their higher order derivatives are
obtained by applying the maximum principle to suitable barrier functions. The
computations are necessarily very complicated, but here the key feature of
CEGP fibrations is that they are all governed by the same leading diffusion
operator, which is the operator ∆F defined above.



The Anomaly Flow on Unimodular Lie Groups

For simplicity, we consider now Y = SL(2,C), with ea a basis for its Lie algebra, and
cd ab the structure constants

[ea, eb ] = cd abed

If ea is the dual basis of left-invariant holomorphic forms on Y , then Ω = e1 ∧ e2 ∧ e3

is a nowhere vanishing holomorphic 3-form. Furthermore, if ω =
∑

a igābe
b ∧ ea, then

‖Ω‖ is constant, and dω2 = 0. Thus if we let E be a flat holomorphic vector bundle
over Y , then the Hull-Strominger system reduces to the single equation

i∂∂̄ω − α′

4
Tr(Rm ∧ Rm) = 0.

Using an ansatz of Biswas-Mukherjee and Andreas-Garcia-Fernandez, Fei and Yau
were able to find a solution of this equation under the form

gāb = 2β δab , β =
1

2
α′κ2(2κ− 1)

if the connection is taken to be any connection ∇(κ) on the Gauduchon line, but the
Chern and the Lichnerowicz connections. A key step in their arguments is to show
that, even though Rm is not an End(T 1,0(Y ))-valued (1, 1)-form, nevertheless the
expression Tr(Rm ∧ Rm) is a (2, 2)-form.



We would like to examine the behavior of the Anomaly flow

∂t(‖Ω‖ω2) = ±
(

i∂∂̄ω − α′

4
Tr(Rm ∧ Rm)

)

in this setting, especially the dependence of the flow on the initial data. (Both signs
are allowed, because this is an ODE system, and parabolicity is not relevant. We shall
actually state our results with the sign −, as they are simpler to state.) Consider an
initial data in the diagonal form gāb = λaδab , λa > 0. Then this form is preserved
along the flow, and the flow can be expressed as

∂tλ1 =
(λ1λ2λ3)

1
2

2

(

β(
2

λ1
+
λ1

λ22
+
λ1

λ23
)− λ2

λ3
− λ3

λ2

)

with similar equations for λ2 and λ3. We have
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λ22
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with similar equations for λ2 and λ3. We have

Theorem 5 (a) The flow admits a unique stationary point, which is the one found by
Fei and Yau, λ1 = λ2 = λ3 = 2β.
(b) The stationary point is hyperbolic, with eigenvalues +1,+1,−2. In particular, the
flow is not asymptotically stable.
(c) Initial data of the form λ1(0) = λ2(0) = λ3(0) are preserved, and the flow
converges then to the fixed stationary point.
(d) If say, λ1 > λ2 and λ1 > β, then the ratio λ1/λ2 is actually monotone increasing,
and the flow cannot converge.

(e) If β < 0, then the flow terminates in finite time T < (2|β|)−1λ1(0)
1
2 .


