The Squeezing Function

Erlend Fornæss Wold The University of Oslo Department of Mathematics erlendfw@math.uio.no

03.05.2017

Singapore-May 3-2017

-1-

Squeezing Function

◆□ ▶ ◆□ ▶ ◆ □ ▶ ◆ □ ▶ ● ● ● ● ●

 Given a bounded domain in Cⁿ, let g_C, g_K and g_B the metrics of Carathéodory, Kobayashi and Bergman respectively.

- Given a bounded domain in Cⁿ, let g_C, g_K and g_B the metrics of Carathéodory, Kobayashi and Bergman respectively.
- K. Liu, X. Sun and S. T. Yau wanted to compare these metrics (and other metrics) on Teichmüller spaces of compact Riemann surfaces.

- Given a bounded domain in Cⁿ, let g_C, g_K and g_B the metrics of Carathéodory, Kobayashi and Bergman respectively.
- K. Liu, X. Sun and S. T. Yau wanted to compare these metrics (and other metrics) on Teichmüller spaces of compact Riemann surfaces.

Theorem

(Liu-Sun-Yau and Yeung) Let $T_{g,n}$ denote the Teichmüller space of compact Riemann surfaces of genus g with n punctures. Then g_C, g_K and g_B are all quasi-isometric on $T_{g,n}$.

-2-

◆□▶ ◆□▶ ▲□▶ ▲□▶ □ のQ@

▲□▶ ▲□▶ ▲□▶ ▲□▶ ▲□ ● のへぐ

Proof. Bers' embedding theorem: there are constants $0 < a < b < \infty$ such that given a point $p \in \Omega := \mathcal{T}_{g,n}$, there exists an embedding $\phi : \mathcal{T}_{g,n} \to \mathbb{C}^n$ such that

Proof. Bers' embedding theorem: there are constants $0 < a < b < \infty$ such that given a point $p \in \Omega := \mathcal{T}_{g,n}$, there exists an embedding $\phi : \mathcal{T}_{g,n} \to \mathbb{C}^n$ such that (i) $\phi(p) = 0$

-3-

Proof.

Bers' embedding theorem: there are constants $0 < a < b < \infty$ such that given a point $p \in \Omega := \mathcal{T}_{g,n}$, there exists an embedding $\phi : \mathcal{T}_{g,n} \to \mathbb{C}^n$ such that

-3-

(i)
$$\phi(p) = 0$$

(ii) $\mathbb{B}^n_a \subset \phi(\Omega) \subset \mathbb{B}^n_b$.

Proof.

Bers' embedding theorem: there are constants $0 < a < b < \infty$ such that given a point $p \in \Omega := \mathcal{T}_{g,n}$, there exists an embedding $\phi : \mathcal{T}_{g,n} \to \mathbb{C}^n$ such that (i) $\phi(p) = 0$

(ii)
$$\mathbb{B}^n_a \subset \phi(\Omega) \subset \mathbb{B}^n_b$$

Definition

(Lin-Sun-Yau) Let $\Omega \subset \mathbb{C}^n$ be a bounded domain. If for any $p \in \Omega$ there exists an embedding $\phi : \Omega \to \mathbb{C}^n$ satisfying (i) and (ii), then Ω is said to be *holomorphic homogenous regular*.

-3-

S. K. Yeung refered so such domains as being *uniformly squeezing* and gave the following additional examples:

S. K. Yeung refered so such domains as being *uniformly squeezing* and gave the following additional examples:

(i) bounded homogenous domains,

S. K. Yeung refered so such domains as being *uniformly squeezing* and gave the following additional examples:

- (i) bounded homogenous domains,
- (ii) bounded strongly convex domains, and

S. K. Yeung refered so such domains as being *uniformly squeezing* and gave the following additional examples:

- (i) bounded homogenous domains,
- (ii) bounded strongly convex domains, and
- (iii) bounded domains which universally cover compact Kähler manifolds.

S. K. Yeung refered so such domains as being *uniformly squeezing* and gave the following additional examples:

- (i) bounded homogenous domains,
- (ii) bounded strongly convex domains, and
- (iii) bounded domains which universally cover compact Kähler manifolds.

He also proved that for a uniformly squeezing domain $\boldsymbol{\Omega}$

S. K. Yeung refered so such domains as being *uniformly squeezing* and gave the following additional examples:

- (i) bounded homogenous domains,
- (ii) bounded strongly convex domains, and
- (iii) bounded domains which universally cover compact Kähler manifolds.

He also proved that for a uniformly squeezing domain $\boldsymbol{\Omega}$

-4-

(iv) Ω is pseudoconvex (in fact, even hyperconvex), and

S. K. Yeung refered so such domains as being *uniformly squeezing* and gave the following additional examples:

- (i) bounded homogenous domains,
- (ii) bounded strongly convex domains, and
- (iii) bounded domains which universally cover compact Kähler manifolds.

He also proved that for a uniformly squeezing domain $\boldsymbol{\Omega}$

- (iv) Ω is pseudoconvex (in fact, even hyperconvex), and
- (v) g_K, g_C and g_B are complete.

S. K. Yeung refered so such domains as being *uniformly squeezing* and gave the following additional examples:

- (i) bounded homogenous domains,
- (ii) bounded strongly convex domains, and
- (iii) bounded domains which universally cover compact Kähler manifolds.

He also proved that for a uniformly squeezing domain $\boldsymbol{\Omega}$

- (iv) Ω is pseudoconvex (in fact, even hyperconvex), and
- (v) g_K, g_C and g_B are complete.

Problem

Which (pseudoconvex) domains in \mathbb{C}^n are uniformly squeezing?

◆□▶ ◆□▶ ▲□▶ ▲□▶ □ のQ@

Some positive results

(i) bounded convex domains (K. T. Kim and L. Zhang),

Some positive results

- (i) bounded convex domains (K. T. Kim and L. Zhang),
- (ii) more generally, C-convex domains (L. Andreev and N. Nikolov),

Some positive results

- (i) bounded convex domains (K. T. Kim and L. Zhang),
- (ii) more generally, C-convex domains (L. Andreev and N. Nikolov),
- (iii) strongly pseudoconvex domains (F. Deng, Q. Guan, L. Zhang and K. Diederich, J. E. Fornæss, E. F. Wold)

(i) K. Diederich and J. E. Fornæss have given an example of a smooth pseudoconvex domain in \mathbb{C}^3 such that the quotient g_B/g_K is not uniformly bounded from below.

- (i) K. Diederich and J. E. Fornæss have given an example of a smooth pseudoconvex domain in C³ such that the quotient g_B/g_K is not uniformly bounded from below.
- (ii) J. E. Fornæss and F. Rong have given an example of a smooth finite type domain in \mathbb{C}^3 that fails to be uniformly squeezing.

-6-

- (i) K. Diederich and J. E. Fornæss have given an example of a smooth pseudoconvex domain in C³ such that the quotient g_B/g_K is not uniformly bounded from below.
- (ii) J. E. Fornæss and F. Rong have given an example of a smooth finite type domain in \mathbb{C}^3 that fails to be uniformly squeezing.

Problem

Let $\Omega \subset \mathbb{C}^2$ be a smooth pseudoconvex domain. Is Ω uniformly squeezing?

- (i) K. Diederich and J. E. Fornæss have given an example of a smooth pseudoconvex domain in C³ such that the quotient g_B/g_K is not uniformly bounded from below.
- (ii) J. E. Fornæss and F. Rong have given an example of a smooth finite type domain in \mathbb{C}^3 that fails to be uniformly squeezing.

Problem

Let $\Omega \subset \mathbb{C}^2$ be a smooth pseudoconvex domain. Is Ω uniformly squeezing?

Problem

Let $\Omega \subset \mathbb{C}^2$ be a Diederich-Fornæss Worm-domain. Is Ω uniformly squeezing?

◆□ ▶ ◆□ ▶ ◆ □ ▶ ◆ □ ▶ ◆ □ ▶ ◆ □ ▶ ◆ □ ▶ ◆ □ ▶

The squeezing function

Given a bounded domain $\Omega \subset \mathbb{C}^n$ and a point $z \in \Omega$ there is clearly an embedding ϕ into \mathbb{C}^n and numbers $0 < a < b < \infty$ such that

$$\phi(z) = 0 \text{ and } \mathbb{B}^n_a \subset \phi(\Omega) \subset \mathbb{B}^n_b.$$
 (1)

The squeezing function

Given a bounded domain $\Omega \subset \mathbb{C}^n$ and a point $z \in \Omega$ there is clearly an embedding ϕ into \mathbb{C}^n and numbers $0 < a < b < \infty$ such that

$$\phi(z) = 0 \text{ and } \mathbb{B}^n_a \subset \phi(\Omega) \subset \mathbb{B}^n_b. \tag{1}$$

Definition

(Deng-Guan-Zhang) The squeezing function $S_{\Omega}(z)$ is the supremum of all ratios a/b.

-7-

The squeezing function

Given a bounded domain $\Omega \subset \mathbb{C}^n$ and a point $z \in \Omega$ there is clearly an embedding ϕ into \mathbb{C}^n and numbers $0 < a < b < \infty$ such that

$$\phi(z) = 0 \text{ and } \mathbb{B}^n_a \subset \phi(\Omega) \subset \mathbb{B}^n_b.$$
 (1)

Definition

(Deng-Guan-Zhang) The squeezing function $S_{\Omega}(z)$ is the supremum of all ratios a/b.

Theorem

(Deng-Guan-Zhang and Fornæss-Wold) Let $\Omega \subset \mathbb{C}^n$ be a strongly pseudoconvex domain. Then

$$\lim_{z \to b\Omega} S_{\Omega}(z) = 1.$$
 (2)

Squeezing Function

◆□▶ ◆□▶ ▲□▶ ▲□▶ □ のQ@

Zimmer's gap theorem

・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・

Zimmer's gap theorem

Theorem

(Zimmer) For all $n \in \mathbb{N}$ and $\alpha > 0$ there exists a constant $\epsilon = \epsilon(n, \alpha)$ such that the following holds: if $\Omega \subset \mathbb{C}^n$ is a bounded $C^{2,\alpha}$ -smooth convex domain and if $S_{\Omega}(z) \ge 1 - \epsilon$ for $z \in \Omega \setminus K$, with $K \subset \Omega$ compact, then Ω is strictly psedoconvex.

-8-

Zimmer's gap theorem

Theorem

(Zimmer) For all $n \in \mathbb{N}$ and $\alpha > 0$ there exists a constant $\epsilon = \epsilon(n, \alpha)$ such that the following holds: if $\Omega \subset \mathbb{C}^n$ is a bounded $C^{2,\alpha}$ -smooth convex domain and if $S_{\Omega}(z) \ge 1 - \epsilon$ for $z \in \Omega \setminus K$, with $K \subset \Omega$ compact, then Ω is strictly psedoconvex.

Theorem

(Zimmer) Let $\Omega_1 \subset \mathbb{C}^n$ be strictly pseudoconvex, and let Ω_2 be a convex domain with $C^{2,\alpha}$ -smooth boundary. Then if Ω_1 is biholomorphic to Ω_2 we have that Ω_2 is strictly pseudoconvex.

-8-

(ロ)、(型)、(E)、(E)、 E) のQの

Problem

Is there a gap theorem or a limit theorem for domains in \mathbb{C}^n with $C^{2,\alpha}$ -boundary?

Problem

Is there a gap theorem or a limit theorem for domains in \mathbb{C}^n with $C^{2,\alpha}$ -boundary?

Theorem

(Fornæss-Wold) There exists a convex domain $\Omega \subset \mathbb{C}^2$ with C^2 -smooth boundary, such that $\lim_{z\to b\Omega} S_{\Omega}(z) = 1$, but Ω is not strictly pseudoconvex.

Problem

Is there a gap theorem or a limit theorem for domains in \mathbb{C}^n with $C^{2,\alpha}$ -boundary?

Theorem

(Fornæss-Wold) There exists a convex domain $\Omega \subset \mathbb{C}^2$ with C^2 -smooth boundary, such that $\lim_{z\to b\Omega} S_{\Omega}(z) = 1$, but Ω is not strictly pseudoconvex.

Theorem

(Kim-Joo) If $\Omega \subset \mathbb{C}^2$ is a C^{∞} -smooth boundary of finite type, and if $\lim_{z\to b\Omega} S_{\Omega}(z) = 1$, then Ω is strictly pseudoconvex.

(ロ)、(型)、(E)、(E)、 E) のQの

Problem

Let $\Omega_1 \subset \mathbb{C}^n$ be a strictly pseudoconvex domain, and let $\Omega_2 \subset \mathbb{C}^n$ be a domain of class $C^{2,\alpha}$ for $\alpha \ge 0$. If Ω_2 is biholomorphic to Ω_1 , is Ω_2 strictly pseudoconvex?

-10-

(ロ) (同) (三) (三) (三) (○) (○)

Problem

Let $\Omega_1 \subset \mathbb{C}^n$ be a strictly pseudoconvex domain, and let $\Omega_2 \subset \mathbb{C}^n$ be a domain of class $C^{2,\alpha}$ for $\alpha \ge 0$. If Ω_2 is biholomorphic to Ω_1 , is Ω_2 strictly pseudoconvex?

Problem

If $\Omega \subset \mathbb{C}^n$ is a C^{∞} -smooth boundary of finite type, and if $\lim_{z \to b\Omega} S_{\Omega}(z) = 1$, is it true that Ω is strictly pseudoconvex?

We now consider again the Kobayashi and Carathéodory metrics g_K and g_C on a bounded domain Ω . Then

◆□ ▶ ◆□ ▶ ◆ □ ▶ ◆ □ ▶ ● ● ● ● ●

We now consider again the Kobayashi and Carathéodory metrics g_K and g_C on a bounded domain Ω . Then

•
$$g_C(z,v) \leq g_K(z,v) \leq S_\Omega(z)^{-1} \cdot d_C(z,v).$$

◆□ ▶ ◆□ ▶ ◆ □ ▶ ◆ □ ▶ ● ● ● ● ●

We now consider again the Kobayashi and Carathéodory metrics g_K and g_C on a bounded domain Ω . Then

• $g_C(z,v) \leq g_K(z,v) \leq S_\Omega(z)^{-1} \cdot d_C(z,v).$

Theorem

(Fornæss-Wold) If Ω is strictly pseudoconvex with C^4 -smooth boundary, then

-11-

$$S_{\Omega}(z) \ge 1 - C \cdot \operatorname{dist}(z, b\Omega).$$
 (3)

◆□▶ ◆□▶ ▲□▶ ▲□▶ □ のQ@

We now consider again the Kobayashi and Carathéodory metrics g_K and g_C on a bounded domain Ω . Then

• $g_C(z,v) \leq g_K(z,v) \leq S_\Omega(z)^{-1} \cdot d_C(z,v).$

Theorem

(Fornæss-Wold) If Ω is strictly pseudoconvex with C^4 -smooth boundary, then

$$S_{\Omega}(z) \ge 1 - C \cdot \operatorname{dist}(z, b\Omega).$$
 (3)

Corollary

(Fornæss-Wold)

$$\frac{g_C(z,v)}{g_K(z,v)} \ge 1 - C \cdot \operatorname{dist}(z,b\Omega). \tag{4}$$

Squeezing Function

◆□▶ ◆□▶ ▲□▶ ▲□▶ □ のQ@

Singapore-May 3-2017

A "defect" of the squeezing function

Squeezing Function

A "defect" of the squeezing function

Theorem (Wold) In the normal direction we have that

$$\frac{g_C(z,v)}{g_K(z,v)} \ge 1 - C \cdot \operatorname{dist}^2(z,b\Omega). \tag{5}$$

-12-

◆□▶ ◆□▶ ◆ □▶ ◆ □▶ ─ □ ─ つへぐ

A "defect" of the squeezing function

Theorem (Wold) In the normal direction we have that

$$\frac{g_C(z,v)}{g_K(z,v)} \ge 1 - C \cdot \operatorname{dist}^2(z,b\Omega). \tag{5}$$

Theorem

(Diederich-Fornæss-Wold) Let $\Omega \subset \mathbb{C}^n$ be a C^2 -smooth domain. Then if there is a sequence of points $z_j \to b\Omega$ and a sequence $\epsilon_j \to 0$, with

$$S_{\Omega}(z_j) \ge 1 - \epsilon_j \cdot \operatorname{dist}(z, b\Omega),$$
 (6)

then Ω is biholomorphic to the unit ball.

Singapore-May 3-2017

◆□▶ ◆□▶ ▲□▶ ▲□▶ ■ ののの

Final Problems

Singapore-May 3-2017

Squeezing Function

(ロ)、

Final Problems

Problem Let $\Omega \subset \mathbb{C}^n$ ($n \ge 2$) be a $C^{k,\alpha}$ -smooth strictly pseudoconvex domain, $k \ge 2, \alpha \ge 0$. What is the optimal estimate for

$$\lim_{z \to b\Omega} S_{\Omega}(z)? \tag{7}$$

-13-

Final Problems

Problem Let $\Omega \subset \mathbb{C}^n$ ($n \ge 2$) be a $C^{k,\alpha}$ -smooth strictly pseudoconvex domain, $k \ge 2, \alpha \ge 0$. What is the optimal estimate for

$$\lim_{z \to b\Omega} S_{\Omega}(z)? \tag{7}$$

Problem Let $A = A(a, b) = \{z \in \mathbb{C} : a < |z| < b\}$ for $0 < a < b < \infty$. Find a precise formula for $S_A(z) = S_A(|z|)$.

Singapore-May 3-2017

-13-

Squeezing Function

◆□▶ ◆□▶ ▲□▶ ▲□▶ □ のQ@

Singapore-May 3-2017

Squeezing Function

-13-

####