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Complex contact manifolds

Kobayashi 1959 A complex contact manifold is a pair (X , ξ) where:

• X is a complex manifold of odd dimension 2n+ 1 ≥ 3,

• ξ is a holomorphic hyperplane subbundle of the tangent bundle TX
which is maximally nonintegrable, in the sense that the O’Neill tensor

O : ξ × ξ → TX/ξ = L, (v ,w) 7→ [v ,w ] mod ξ

(also called the Frobenius obstruction) is nondegenerate.

• Equivalently, every point p ∈ X admits an open neighborhood U ⊂ X
such that

ξ|U = ker α,

where α is a holomorphic 1-form on U satisfying

α ∧ (dα)n 6= 0.

Such ξ is a holomorphic contact structure, and α is a contact form.



Darboux’s theorem and stability results

Two complex contact manifolds (X , ξ) and (X ′, ξ ′) are said to be
contactomorphic if there exists a biholomorphism F : X → X ′ satisfying

dFx (ξx ) = ξ ′F (x) for all x ∈ X .

Example (Model complex contact space)

(C2n+1, ξ0 = ker α0), α0 = dz +
n

∑
j=1

xjdyj .

Darboux 1882; Moser 1965 Every complex contact manifold
(X 2n+1, ξ) is locally contactomorphic to (C2n+1, ξ0).

Gray 1959 If (X , ξ) is a compact contact manifold then any small
contact perturbation ξ ′ of ξ is contactomorphic to ξ.

LeBrun & Salamon 1994 Any two complex contact structures on a
simply connected compact complex manifold are contactomorphic.



The normal bundle of a contact structure

A holomorphic 1-form α with ξ = ker α is determined up to a nowhere
vanishing multiplier f ; note that f α ∧ (d(f α))n = f n+1α ∧ (dα)n.
Thus, (X , ξ) admits a complex contact atlas {(Uj , αj )} with
αi = fi ,jαj on Ui ,j = Ui ∩Uj .

LeBrun & Salamon 1994 The collection (αj ) determines a holomorphic

1-form α ∈ Γ(X , Ω1(L)) given by the tautological projection

TX
α−→ L := TX/ξ the normal bundle.

From d(f α) = df ∧ α + fdα we see that

dα is a section of Λ2(ξ∗)⊗ L.

Thus, letting KX = Λ2n+1(T ∗X ) (the canonical bundle), we see that

α ∧ (dα)n 6= 0 is a section of KX ⊗ L⊗(n+1).

This provides a holomorphic line bundle isomorphism

L⊗(n+1) ∼= K−1X = Λ2n+1(TX ).



The space of complex contact structures

Conversely, assume X 2n+1 is a complex manifold with H1(X , Zn+1) = 0
and c1(TX ) divisible by n+ 1. Then there exists the line bundle

L = K
−1/(n+1)
X , L⊗(n+1) ∼= K−1X .

Given a holomorphic 1-form α ∈ Γ(X , Ω1(L)), consider

α ∧ (dα)n ∈ Γ(X , Ω2n+1(K−1X )) = Γ(X , O).

If X is compact then Γ(X , O) = C. The map

Γ(X , Ω1(L)) 3 α 7→ α ∧ (dα)n ∈ C

is homogeneous of degree n+ 1. Hence, if X admits a complex contact
structure, then the set of all such structures is the complement of a
degree n+ 1 hypersurface in P(Γ(X , Ω1(L))) (a complex manifold).



A contact structure on CP2n+1

Let z1, . . . , z2n+2 be complex coordinates on C2n+2 and

θ = z1dz2 − z2dz1 + · · ·+ z2n+1dz2n+2 − z2n+2dz2n+1.

Let θj (j = 1, . . . , 2n+ 2) be the pull-back of θ to the affine hyperplane

C2n+1 ∼= Hj = {zj = 1} ⊂ C2n+2.

For example,
θ1 = dz2 + z3dz4 − z4dz3 + · · · .

Then (Hj , θj ) is contactomorphic to (C2n+1, α0) for each j , and this

collection defines a contact structure on X = CP2n+1. We have

K−1X = OX (2n+ 2), L = K
−1/(n+1)
X = OX (2),

α ∈ Γ(CP2n+1, Ω1(2)).



Contact hypersurfaces in complex symplectic manifolds

Let (Z , ω) be a holomorphic symplectic manifold, dimZ = 2n+ 2 ≥ 4;
ω a holomorphic 2-form on Z ,

dω = 0, ωn+1 6= 0.

A holomorphic vector field V on Z is a Liouville vector field (for ω) if

LV ω = ω ⇐⇒ d(iV ω) = ω.

In this case, the holomorphic 1-form

θ = iV ω = V cω

induces a holomorphic contact form α = θ|TX on any complex
hypersurface X ⊂ Z transverse to V . Indeed:

θ ∧ (dθ)n = iV ω ∧ωn =
1

n+ 1
iV (ω

n+1)

which is a volume form on X provided that V is transverse to X .

The converse process is the symplectization of a contact manifold (X , α):

Z = C× X , ω = d(etα) = et (dt ∧ α + dα) , i∂t ω|t=0 = α.



Examples in C2n+2

Example: C2n+2, ω = ∑n
j=0 dζj ∧ dzj ,

V =
n

∑
j=0

ζj∂ζj , θ = iV ω =
n

∑
j=0

ζjdzj , dθ = ω;

W =
n

∑
j=0

ζj∂ζj + zj∂zj , θ = iW ω =
n

∑
j=0

ζjdzj − zjdζj , dθ = 2ω.

Any complex hypersurface X ⊂ C2n+2 transverse to V or W carries the
complex contact structure ker θ ∩ TX .

An example is the special complex linear group

SL2(C) =

{(
z11 z12
z21 z22

)
: z11z22 − z21z12 = 1

}
⊂ C4

with the holomorphic contact form

θ = z11dz22 − z21dz12.



Contact structure on the projectivized cotangent bundle

Let Zn+1 be a complex manifold. The holomorphic cotangent bundle
T ∗Z carries the tautological 1-form θ defined by

θ(u) = v(dπ(u)), u ∈ Tv (T
∗Z ),

where π : T ∗Z → Z is the natural projection and dπ its differential.

In local coordinates z0, . . . , zn on Z and the induced fiber coordinates
ζ0, . . . , ζn on T ∗Z , we have

θ = ζ0dz0 + . . . + ζndzn (= pdq in classical notation).

Then, θ determines a contact structure ξ on the projectivised cotangent
bundle X = P(T ∗Z ). On the affine chart {ζj = 1} we have

ξ = ker
(
dzj + ∑

i 6=j

ζidzi
)
.

Note that dθ = dζ ∧ dz = ω is the canonical symplectic form on T ∗Z ,
and θ = iV ω where V = ∑n

j=0 ζj∂ζj is the Euler vector field.



Isotropic and Legendrian submanifolds

A smooth map F : M → (X , ξ) is said to be isotropic if

dFp(TpM) ⊂ ξF (p), p ∈ M.

An isotropic immersion is Legendrian if dimR M = 2n is maximal.
If ξ = ker α then F : M → X is isotropic iff F ∗α = 0.

Lemma
If dimX = 2n+ 1 and F is an isotropic immersion, then dimR M ≤ 2n; if
dimR M = 2n then F (M) is an immersed complex submanifold of X .

Proof.

Note that ω := dα|ξ is a holomorphic symplectic form on ξ = ker α.
Isotropic subspaces U ⊂ ξx (x ∈ X ) are characterized by the condition
U ⊂ U⊥ω . Note that U⊥ω is a complex subspace of ξx , so we also have
UC := SpanC(U) ⊂ U⊥ω . From dimC UC + dimC U⊥ω = 2n we get the

result. Note that dimR U = 2n iff U = UC = U⊥ω , so U is complex.
Hence, if dimR M = 2n then dFp(TpM) ⊂ ξF (p) is a complex subspace

for every p ∈ M, so F (M) is a complex submanifold.



How many Legendrian submanifolds are there?

Problem

What can be said about the existence of (proper) complex isotropic and
Legendrian submanifolds of a complex contact manifold (X , ξ)?

Example

Let (C2n+1, ξ0 = ker α0) with α0 = dz + ∑n
j=1 xjdyj . Given a

holomorphic function z = z(y1, . . . , yn), the formula

dz −
n

∑
j=1

∂z

∂yj
dyj = 0

shows that y 7→ (−∂z/∂y , y , z(y)) is a Legendrian submanifold.

Segre 1926, Bryant 1981 Every compact Riemann surface embeds as a
complex Legendrian curve in CP3.

Merkulov 1994 Deformation theory of compact isotropic submanifolds
in compact complex contact manifolds.



Proper Legendrian curves in (C2n+1, ξ0)

In this talk, we mainly consider isotropic holomorphic curves and call
them (holomorphic) Legendrian curves.

Theorem (Alarcón, F., López, Compositio Math., in press)

Let M be an open Riemann surface and K ⊂ M be a compact set in M
whose complement has no relatively compact connected components.

Then every holomorphic Legendrian curve F : K → C2n+1 (n ∈N) on
an open neighborhood of K can be approximated uniformly on K by
proper holomorphic Legendrian embeddings F̃ : M ↪→ C2n+1.

Furthermore, given a pair of indices {i , j} ⊂ {1, 2, . . . , 2n+ 1} with

i 6= j , we may choose F̃ = (F̃1, F̃2, . . . , F̃2n+1) as above such that

(F̃i , F̃j ) : M → C2 is a proper map.

Example: If (x , y) : C→ C2 is a proper holomorphic immersion and

z(ζ) := z0 −
∫ ζ

0
x(t)dy(t), ζ ∈ C,

then F = (x , y , z) : C→ C3 is a proper Legendrian immersion.



Proof, 1: The basic scheme

Consider C3
(x,y ,z) with the contact form α0 = dz + xdy .

A holomorphic map (x , y , z) : M → C3 is Legendrian iff xdy is an exact
1-form and

z = −
∫ ·

xdy .

The construction proceeds by inductively enlarging the domain of the
Legendrian curve. Let ρ : M → R+ be a strongly subharmonic Morse
exhaustion function. We must consider two cases:

The noncritical case: Let D ⊂ D ′ be Runge domains in M of the form

D = {ρ < c}, D ′ = {ρ < c ′}, dρ 6= 0 on D
′ \D.

The critical case: ρ has a single critical point p ∈ D ′ \D.
The (only) nontrivial case is when the Morse index of p is equals one
(critical points of Morse index zero are local minima of ρ).



Proof, 2: The period map

The noncritical case: Let C1, . . . ,C` ⊂ D be closed curves forming a
basis of the homology group H1(D; Z) ∼= H1(D

′; Z) = Z` such that⋃`
j=1 Cj is Runge in M. Consider the period map

P = (P1, . . . ,P`) : A 1(D)2 → C`

Pj (x , y) =
∫
Cj

x dy , x , y ∈ A 1(D), j = 1, . . . , `.

We may assume that y ∈ A 1(D) is nonconstant. We find a holomorphic
spray X (· , ζ) : D → C (ζ ∈ C`) of class A 1(D) and of the form

X (u, ζ) = x(u) +
`

∑
k=1

ζk gk (u), u ∈ D, ζ ∈ C`.

such that X (· , 0) = x and

∂

∂ζ

∣∣∣∣
ζ=0

P(X (· , ζ), y) : C` −→ C` is an isomorphism.



Proof, 3: Sprays and Runge’s theorem

By Runge’s theorem we can find holomorphic maps

x̃(· , · ) : M ×C` → C, ỹ : M → C

approximating X , y (respectively) in C 1(D).

Since P(X (· , 0), y) = 0, the period domination condition implies (by the
implicit function theorem) that there is ζ0 ∈ C` close to 0 such that

P(x̃(· , ζ0), ỹ) = 0.

Hence, the 1-form x̃(· , ζ0)dỹ is exact on D
′
. Fix a point p0 ∈ D and set

z̃(p) = z(p0)−
∫ p

p0
x̃(· , ζ0)dỹ , p ∈ D ′.

The Legendrian curve

(x̃(· , ζ0), ỹ , z̃) : D ′ → C3

approximates (x , y , z) in C 1(D). This establishes the noncritical case.



Proof, 4: The critical case

The critical case: This amounts to a change of topology of the sublevel
set. The new bigger domain D ′ ⊂ M deformation retracts onto D ∪ E ,
where E is a smooth arc attached to D with its endpoints a, b ∈ bD.

Let (x , y , z) : D → C3 be a Legendrian curve. We extend the functions
x , y to smooth functions x̃ , ỹ : D ∪ E → C such that∫

E
x̃d ỹ = z(b)− z(a).

This ensures that the extended function

z̃(p) = z(a) +
∫ p

a
x̃d ỹ , p ∈ D ∪ E ⊂ M

is well defined and matches the function z on D.

Hence, (x̃ , ỹ , z̃) : D ∪ E → C3 is a generalized Legendrian curve.

Now, use period dominating sprays and Mergelyan approximation
theorem to conclude the proof similarly as before.



Proof, 5: How to ensure properness of (x , y) : M → C2

Assume max{|x |, |y |} > m on bD. Subdivide bD into arcs αl ,a such that
on each of them, one of the functions |x |, |y | is > m. Assume that
|x | > m on αl ,a. Extend x smoothly to the arcs γl ,a and γl ,a+1 such that
|x | > m, and |x | > m+ 1 at the outer endpoints of these two arcs.
Apply Mergelyan to approximate x on D ∪ γl ,a ∪ γl ,a+1 by x̃ ∈ O(M).

Choose the disc Υl ,a ⊂ Ωl ,a such that |x̃ | > m on Ωl ,a \ Υl ,a. Use
Mergelyan to approximate y on D by ỹ ∈ O(M) such that |ỹ | > m+ 1
on Υl ,a. Apply the analogous procedure on every Ωl ,a. Then,

max{|x̃ |, |ỹ |} > m+ 1 on bD ′ and > m on D
′ \D.



A hyperbolic contact structure on C2n+1

The situation may be radically different for nonstandard contact
structures on C2n+1. The Kobayashi pseudometric associated to a
contact structure is defined by using holomorphic Legendrian discs.

Theorem (F., J. Geom. Anal. 2017)

For any n ≥ 1 there exists a holomorphic contact structure ξ on C2n+1

which is Kobayashi hyperbolic and isotopic to ξ0. In particular, every
holomorphic Legendrian curve C→ (C2n+1, ξ) is constant.

Idea of proof: We take α = Φ∗α0 where α0 = dz + ∑n
j=1 xjdyj and

Φ : C2n+1 −→ Ω ⊂ C2n+1 is a Fatou-Bieberbach map whose image Ω
avoids the union of countably many cylinders

K =
∞⋃

N=1

2N−1bD2n
(x,y ) × CNDz .

Assuming that CN ≥ n23N+1 for all N ∈N,

C2n+1 \K is α0-hyperbolic; hence, (C2n+1, α = Φ∗α0) is hyperbolic.



On α0-hyperbolicity of C3 \ K

Let α0 = dz + xdy in C3.

Lemma

Assume that CN ≥ 23N+1 for every N ∈N and let

K =
∞⋃

N=1

2N−1bD2
(x,y ) × CNDz ⊂ C3

For every holomorphic α0-horizontal disk

f (ζ) = (x(ζ), y(ζ), z(ζ)) ∈ C3 \K , ζ ∈ D

with f (0) ∈ 2N0D3 for some N0 ∈N we have the estimates

|x ′(0)| < 2N0+1, |y ′(0)| < 2N0+1, |z ′(0)| < 22N0+1.



Oka principle for holomorphic Legendrian curves in C2n+1

Let M be an open Riemann surface. We can describe the rough shape of
the space L (M, C2n+1) of all holomorphic Legendrian immersions
M → (C2n+1, ξ0) into the model contact space.

Fix a nowhere vanishing holomorphic 1-form θ on M. To each
holomorphic Legendrian immersion

f = (x , y , z) : M → (C2n+1, ξ0)

(not necessarily proper) we associate the map

φ(f ) = (dx/θ, dy/θ) : M → C2n
∗ → S4n−1.

Theorem (Lárusson and F., Math. Z., in press)

The map φ : L (M, C2n+1)→ C (M,S4n−1) into the space of
continuous maps M → S4n−1 is a weak homotopy equivalence, and is a
homotopy equivalence when M has finite topological type.



Homotopy groups of L (M , C2n+1)

The proof combines methods explained above and the parametric version
of Gromov’s convex integration lemma. Since M has the homotppy type
of a bouquet of ` circles, where H1(M; Z) = Z`, we get

Corollary (Lárusson and F., Math. Z., in press)

Let M be a connected open Riemann surface with H1(M; Z) = Z`,
` ∈ Z+. For each n ≥ 1, the space L (M, C2n+1) is weakly homotopy
equivalent to the free `-loop space L`S4n−1 of the sphere S4n−1, and is
homotopy equivalent to it of ` < ∞.

It follows that L (M, C2n+1) is path connected and simply connected,
and for each k ≥ 2 we have

πk (L (M, C2n+1)) = πk (S
4n−1)× πk+1(S

4n−1)`.

In particular, L (M, C2n+1) is (4n− 3)-connected.



Complete bounded Legendrian curves in (C2n+1, ξ0)

Mart́ın-Umehara-Yamada 2014 Do there exists complete bounded
holomorphic Legendrian curves in C3? Can they have Jordan boundaries?
(Analogue of the Calabi-Yau problem in the theory of minimal surface.)

Theorem (Alarcón, F., López, Compositio Math., in press)

Let M be a compact bordered Riemann surface. Every Legendrian curve
M → C2n+1 of class A 1(M) can be uniformly approximated by
topological embeddings F : M → C2n+1 such that F |M̊ : M̊ → C2n+1 is
a complete Legendrian embedding.

Besides the methods explained above, we use the following

Riemann-Hilbert lemma for Legendrian curves: given a Legendrian
immersion f : M → C2n+1 and a continuous family of Legendrian discs
F (u, · ) : D→ C2n+1 with F (u, 0) = f (u) for all u ∈ bM, there is a
Legendrian approximate solution H : M → C2n+1 to the Riemann-Hilbert
boundary value problem.



The Riemann-Hilbert problem for Legendrian curves

Theorem (Alarcón, F., López, Compositio Math.)

Assume that M is a compact bordered Riemann surface, I ⊂ bM is an arc
which is not a boundary component of M, f = (x , y , z) : M → C2n+1 is
a Legendrian map of class A 1(M), and for every point u ∈ bM the map

D 3 v 7−→ F (u, v) =
(
X (u, v),Y (u, v),Z (u, v)

)
∈ C2n+1

is a Legendrian disk of class A 1(D), depending continuously on
u ∈ bM, such that F (u, 0) = f (u) for all u ∈ bM and F (u, v) = f (u)
for all u ∈ bM \ I and v ∈ D. Given a number ε > 0 and a
neighborhood U ⊂ M of the arc I , there exist a holomorphic Legendrian
map h : M → C2n+1 and a neighborhood V b U of I with a smooth
retraction ρ : V → V ∩ bM such that the following conditions hold:

(i) sup{|h(u)− f (u)| : u ∈ M \ V } < ε,

(ii) dist(h(u),F (u, T)) < ε for all u ∈ bM, and

(iii) dist(h(u),F (ρ(u), D)) < ε for all u ∈ V .



Outline of proof

1 The main point is to solve the problem on the disc D = {|ζ| ≤ 1}.
Indeed, we then obtain a solution on a small closed disc D ⊂ M
containing the arc I ⊂ bM in its boundary, and we glue it with the
Legendrian immersion f : M → X by using period dominating sprays.

2 By the standard Riemann-Hilbert method we obtain a sequence of
analytic (non-Legendrian) discs hN : D→ C2n+1 (N ∈N) which
satisfy the stated conditions for big enough N ∈N.

3 Write hN = (xN , yN , zN ). A calculation shows that

zN (ζ) +
∫ ζ

0
xNdyN → zN (0) uniformly on ζ ∈ D as N → ∞.

Set
z̃N (ζ) = zN (0)−

∫ ζ

0
xNdyN , ζ ∈ D.

The disc h̃N = (xN , yN , z̃N ) is then Legendrian and |z̃N − zN | → 0
as N → ∞. Hence, h = h̃N solves the problem for big enough N.



Darboux charts around immersed Legendrian curves

Theorem (Alarcón & F., Preprint 2017)

Assume that

(X , ξ) is a complex contact manifold,

R is an open Riemann surface,

x1 : R → C is a holomorphic immersion, and

f : R → (X , ξ) is a holomorphic Legendrian immersion.

Given a relatively compact domain U b R there exists a holomorphic
immersion F : U ×B2n → X such that F (· , 0) = f and

F ∗ξ = ker
(
dz +

n

∑
j=1

xjdyj
)

on U ×B2n,

where x2, . . . , xn, y1, . . . , yn, z are Euclidean coordinates on C2n.

This is proved by standardizing the contact structure ξ ⊂ TX along the
Legendrian curve f (R) and applying Moser’s method.



Two consequences of the existence of Darboux charts

Corollary (Alarcón & F. 2017)

Assume that

(X , ξ) is a complex contact manifold,

R is an open Riemann surface,

f : R → (X , ξ) is a holomorphic Legendrian immersion, and

M ⊂ R is a smoothly bounded compact domain.

Then f |M can be uniformly approximated by topological embeddings
f̃ : M → X such that f̃ |M̊ : M̊ → X is a complete Legendrian embedding.

Corollary (Deformation theory for Legendrian curves)

(Assumptions as above.) The space of all small Legendrian deformations
of f |M : M → (X , ξ) can be identified with an open set in a complex
Banach space which can be explicitly described (as in the standard case
when (X , ξ) is the model contact space (C2n+1, ξ0)).



A few open problems

1 How many contact structures are there on C3? On C2n+1?
How can one distinguish them?
Is there an analogue of the tight/overtwisted phenomenon from
smooth contact geometry (Eliashberg)?

2 Does every Stein manifold X 2n+1 satisfying LeBrun-Salamon
condition (the canonical bundle KX has (n+ 1)-st root) admit a
contact structure?

Note that a generic holomorphic 1-form on a Stein manifold is
contact on the complement of a complex hypersurface.

3 Does the Runge approximation theorem hold for holomorphic
contact structures? In particular, is it possible to approximate a
holomorphic contact form on a convex set in C2n+1 by a contact
form on all of C2n+1?

4 Does every Stein contact manifold (X , ξ) admit proper holomorphic
Legendrian curves normalized by any bordered Riemann surface?
We have a positive answer for pseudoconvex domains in the model
contact space (C2n+1, α0).


