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Introduction

X : cx. mfd., Ω ⋐ X : domain, ∂Ω = M: smooth real hypersurface.

Levi problem in a generalized sense

What kinds of geometry of M control holomorphic functions on Ω?

Classical results:
(Oka, Bremermann, Norguet) X = Cn, M: ψc =⇒ Ω is Stein.
(Grauert) M: sψc =⇒ Ω is a proper modification of a Stein space.

M: Levi-flat, i.e., foliated by cx. hypersurfaces of X (Levi foliation).

Levi problem for domains with Levi-flat boundary

What kinds of dynamical property of the Levi foliation control
holomorphic functions on Ω?

Let us see an example.
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Holomorphic disk bundles and flat circle bundles

Σ: closed Riemann surface of genus ≥ 2. Fix its uniformization
Σ ≃ D/π1(Σ). Take a representation ρ : π1(Σ) → Aut(D) ⊂ Aut(CP1),
Diffeo+(S1).

Definition (suspension)

Xρ := Σ×ρ CP1 := D× CP1/(z ,w) ∼ (γz , ρ(γ)w) for γ ∈ π1(Σ).
Ωρ := Σ×ρ D := D× D/π1(Σ).
Mρ := Σ×ρ S

1 := D× S1/π1(Σ).

We regard Xρ, Ωρ, Mρ as CP1-bundle, D-bundle, S1-bundle over Σ
respectively by first projection. They are flat bundles in the sense
that horizontal disks D× {t} (t ∈ CP1) give a holomorphic foliation
Fρ by Riemann surfaces on Xρ and preserve Ωρ and Mρ. Hence, Mρ

is a Levi-flat real hypersurface.
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Theorem of Grauert, Diederich–Ohsawa

Σ, ρ: as before. New representations called conjugation are given
by π1(Σ) → Aut(D), γ 7→ α ◦ ρ(γ) ◦ α−1 for each α ∈ Aut(D).
Conjugations do not change complex/CR str. of Xρ, Ωρ, Mρ.

Theorem (Grauert, Diederich–Ohsawa)

1 ρ is not to conjugate to rotations

=⇒ Ωρ is a proper modification of a Stein space.

2 ρ is conjugate to rational rotations

=⇒ Ωρ is holomorphically convex, but not Stein.

3 ρ is conjugate to rotations including an irrational rotation

=⇒ dimO(Ωρ) = 1.

Examples

1 ρ(γ) = γ (Deck transformation), [ρ] ∈ T (Σ) (Teichmüller space).

2 ρ(γ) ≡ idD =⇒ Ωρ = Σ× D. O(Ωρ) = O(D).
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General Problem

Σ, ρ: as before.

Problem

Study what kinds of dynamical property of ρ control holomorphic
functions on Ωρ and CR functions on Mρ with growth and regularity
conditions respectively.

Motivated by (A.–Brinkschulte): a curvature restriction for
hypothetical smooth closed Levi-flat in CP2 was obtained by
studying the Bergman space of its complement.

Today’s goal

Study the weighted Bergman / Hardy spaces for the case ρ0(γ) = γ
(Deck transformation).
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Bergman space

Ω ⋐ X , M = ∂Ω: smooth. dV : volume form on X .
δ : X → R, Ω = {δ > 0}, dδ ̸= 0 on ∂Ω. α ≥ −1.

Definition (Weighted Bergman space, Hardy space)

A2
α(Ω) := {f ∈ O(Ω) | ⟨f , f ⟩α <∞},

⟨f , g⟩α :=

{∫
Ω f gδαdV /Γ(α+ 1) for α > −1,

limα↘−1⟨f , g⟩α for α = −1.

The Hardy space (α = −1) is the space of holomorphic functions
which have L2 boundary value. The boundary values are CR
functions on M.
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CR functions on Levi-flats

(M,F): compact Lev-flat CR manifold, i.e.,
M: compact real manifold, F : real codimension one non-singular
foliation by complex manifolds.

Definition (CR function)

A CR function is a function which are holomophic along F .

Note that transverse regularity are not guaranteed.

(Inaba) Any continuous CR function on M are leafwise constant.
Hence, continuous CR functions are constant if F has a dense leaf.

(Ohsawa–Sibony, Hsiao–Marinescu; A.) The finite/infinite
dimensionality of the space of CR sections of a fixed smooth CR
line bundle depend on transverse regularity we require.
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Liouvilleness
Σ: as before, ρ0 : π1(Σ) → Aut(D), γ 7→ γ (Deck transformation).
X := Xρ0, Ω := Ωρ0, M := Mρ0, Ω

′ := Xρ0 \ Ωρ0, F := Fρ0.

Corollary of E. Hopf’s ergodicity theorem

Ω, Ω′ are Liouville, i.e., dimO ∩ L∞(Ω) = dimO ∩ L∞(Ω′) = 1.

Proof.

Let f ∈ O ∩ L∞(Ω) or O ∩ L∞(Ω′). Consider the boundary value
of f , which is leafwise holomorphic.

M is diffeomorphic to the unit tangent bundle of Σ, and F is
isomorphic to the unstable foliation of geodesic flows of Σ.

The ergodicity of geodesic flow w.r.t. the Lebesgue measure
implies that any bounded leafwise harmonic function is a.e.
constant. Hence, f is constant.

Refinement of E. Hopf’s ergodicity theorem by L. Garnett gives
dimA2

−1(Ω) = dimA2
−1(Ω

′) = 1. Another proof based on a property of

3F2 will be given later.
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Hardy space and weighted Bergman spaces of Ω

O(Ω) ≃ {f ∈ O(D× D) | f (z ,w) = f (γz , γw), γ ∈ π1(Σ)}.

O(Ω′) ≃ {f ∈ O(D× D) | f (z ,w) = f (γz , γw), γ ∈ π1(Σ)}.

Corollary of the technique of Berndtsson–Charpentier

dimA2
α(Ω) = dimA2

α(Ω
′) = ∞, ∀α > −1/2.

(Fu–Shaw, A.–Brinkschulte; A) The 1/2 is the Diederich–Fornaess
index of Ω and Ω′, and the best possible as the DF index.

(A.) The 1/2 roughly corresponds to the fact that the foliated
harmonic measure of the Levi foliation belongs to the Lebesgue
measure class, from which the ergodicity follows.
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Main result

Main result (A., arXiv:1703.08165 + in preparation.)

∃I :
∞⊕
n=0

H0(Σ,K⊗n
Σ ) ↪→ O(Ω), ∃I ′ :

∞⊕
n=0

Ker(∆− λnI ) ↪→ O(Ω′)

where ∆ is the Laplace–Beltrami operator of Σ w.r.t. Poincaré
metric, and

H0(Σ,K⊗n
Σ ) := {holomorphic n-differential on Σψ = ψ(τ)(dτ)⊗n},

Ker(∆− λnI ) := {f : Σ → C | ∆f = λnf }.

The images of I and I ′ are dense in compact open topology, and,
moreover, contained in A2

α(Ω) and A2
α(Ω

′) resp. for ∀α > −1.
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Construction of I and I ′

Ω contains a divisor D = {(z , z) | z ∈ D}/π1(Σ) ≃ Σ.

Ω′ contains a totally real D ′ := {(z , z) | z ∈ D}/π1(Σ) ≈ Σ, and
Ω′ is characterized as the Grauert tube of maximal radius.

I :
⊕∞

n=0 H
0(Σ,K⊗n

Σ ) ↪→ O(Ω) is given by

I (ψ)(z ,w) :=

∫ w

z

1

B(n, n)

(
(w − τ)(τ − z)

(w − z)dτ

)⊗(n−1)

ψ(τ)(dτ)⊗n

for ψ ∈ H0(Σ,K⊗n
Σ ), n ≥ 1, where we write ψ = ψ(τ)(dτ)⊗n on the

uniformizing coordinate τ ∈ D. The well-definedness follows from a
property of cross ratios.

I ′ :
⊕∞

n=0Ker(∆− λnI ) ↪→ O(Ω′) is given by the analytic continuation
of f ∈ Ker(∆− λnI ) regarded as a real-analytic function on D ′ to
D× D. The well-definedness follows from a known fact on PDE.
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Outline of proof of integrability
I is obtained by optimal L2-jet extension from D to Ω. We may
regard ψ ∈ H0(Σ,K⊗n

Σ ) as an n-th order jet of holo func along D via

KΣ ≃ T ∗
Σ ≃ T ∗

D ≃ N∗
D/Ω, D = {(z , z) | z ∈ D}/π1(Σ) ⊂ Ω,

Step 1. We work on a non-holomorphic coordinate of Dz ×Dw given
by (z , t), t := (w − z)(1− zw)−1. Expand f = f (z ,w) ∈ O(Ω)π1(Σ) as
f =

∑∞
n=0 fn(z)t

n, then {fn} enjoys

∂fn
∂z

+
nz

1− |z |2
fn +

n − 1

1− |z |2
fn−1 = 0.

Put φn := fn(z)
( √

2dz
1−|z|2

)⊗n
∈ C (0,0)(Σ,Kn

Σ). Then {φn} satisfy

∂φ0 = 0, ∂φn = −n − 1√
2
φn−1 ⊗ ω (n ≥ 1)

where ω = 2dz ⊗ dz/(1− |z |2)2.
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Outline of proof of integrability – continued

Step 2. Let ψ ∈ H0(Σ,K⊗N
Σ ). Putφn := 0 for n < N and φN := ψ.

We pick the L2 minimal solution to

∂φn = −n − 1√
2
φn−1 ⊗ ω

inductively and determine φn for n > N. The spectral decomposition
of the complex laplacian tells us the L2 minimal solutions are

φN+m = ∂
∗
N+mG

(1)
N+m

(
−N +m − 1√

2
φN+m−1 ⊗ ω

)
= −

√
2(N +m − 1)

m(2N +m − 1)
∂
∗
N+m (φN+m−1 ⊗ ω)

where ∂
∗
n is the formal adjoint of ∂ : C (0,0)(Σ,K⊗n

Σ ) → C (0,1)(Σ,K⊗n
Σ )

and G
(1)
n is the Green operator on C (0,1)(Σ,K⊗n

Σ ).
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Outline of proof of integrability – continued3

Step 3. For α > −1, the convergence of f =
∑∞

n=0 fn(z)t
n,

φn = fn(z)
( √

2dz
1−|z|2

)⊗n
in L2α(Ω) follows from

∥f ∥2α = π

∞∑
n=0

∥φn∥2
Γ(n + 1)

Γ(n + α+ 2)

= π
∞∑

m=0

∥φN+m∥2
Γ(N +m + 1)

Γ(N +m + α+ 2)

= π∥ψ∥2
∞∑

m=0

Γ(N +m + 1)

Γ(N +m + α+ 2)

(2N − 1)!

{(N − 1)!}2
{(N +m − 1)!}2

m!(2N +m − 1)!

= π∥ψ∥2 Γ(N + 1)

Γ(N + 2 + α)
3F2

(
N + 1,N,N

2N,N + 2 + α
; 1

)
<∞

where we used δ := 1−
∣∣∣ w−z
1−zw

∣∣∣2, dV = 4
|1−zw |4

i
2dz ∧ dz ∧ i

2dw ∧ dw .

Similar computation shows f ∈ O(Ω), and the Liouvilleness of Ω.
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Outline of proof of integrability – continued4

Step 4. Want to show

∞∑
n=0

fn(z)t
n =

∫ w

z

1

B(N,N)

(
(w − τ)(τ − z)

(w − z)dτ

)⊗(N−1)

ψ(τ)(dτ)⊗N .

Enough to show the desired equality on {0} × D.

∞∑
n=0

fn(0)t
n =

(2N − 1)!

(N − 1)!

∞∑
m=0

(N +m − 1)!

(2N +m − 1)!

1

m!

∂mψ

∂zm
(0)tN+m

=
(2N − 1)!

(N − 1)!
tN

∫ 1

0
dtN . . .

∫ t3

0
dt2

∫ t2

0
tN−1
1 ψ(tt1)dt1

=
(2N − 1)!

(N − 1)!
tN

∫ 1

0

tN−1
1 (1− t1)

N−1

(N − 1)!
ψ(tt1)dt1

=

∫ t

0

1

B(N,N)

(
(t − τ)τ

t

)(N−1)

ψ(τ)dτ.
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A Forelli–Rudin construction
The reproducing kernel Bα of A2

α is called the weighted Bergman
kernel. Bα(z ,w) =

∑∞
j=1 ej(z)ej(w) for any orthonormal basis of A2

α

{e1, e2, . . . }.

Corollary

The weighted Bergman kernel of Ω is

Bα((z ,w); (z ′,w ′)) =
Γ(α+ 2)

π2(4g − 4)
+

1

π

∞∑
n=1

1

cn,α

1

B(n, n)2

∫
τ∈zw

∫
τ ′∈z ′w ′

Bn(τ, τ
′)(dτ ⊗ dτ ′)⊗n

([w , τ, z ]⊗ [w ′, τ ′, z ′])⊗(n−1)
.

where g is the genus of Σ, Bn(τ, τ
′)(dτ ⊗ dτ)⊗n is the Bergman

kernel of holomorphic n-differentials, i.e. of H0(Σ,K⊗n
Σ ), and

cn,α =
Γ(n + 1)

Γ(n + 2 + α)
3F2

(
n + 1, n, n

2n, n + 2 + α
; 1

)
, [w , τ, z ] =

(w − z)dτ

(w − τ)(τ − z)
.
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