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Introduction

X: cx. mfd., Q € X: domain, 02 = M: smooth real hypersurface.

Levi problem in a generalized sense
What kinds of geometry of M control holomorphic functions on Q7

Classical results:
(Oka, Bremermann, Norguet) X = C", M: ¢yc = Q is Stein.
(Grauert) M: siyy)c = Q is a proper modification of a Stein space.

M: Levi-flat, i.e., foliated by cx. hypersurfaces of X (Levi foliation).

Levi problem for domains with Levi-flat boundary

What kinds of dynamical property of the Levi foliation control
holomorphic functions on Q7

Let us see an example.
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Holomorphic disk bundles and flat circle bundles

> : closed Riemann surface of genus > 2. Fix its uniformization
Y ~D/m1(X). Take a representation p: 1 (X) — Aut(D) C Aut(CP!),
Diffeo™ (S?).

Definition (suspension)

X, =L x,CPl :=DxCP/(z,w) ~ (vz, p(7)w) for v € m1(Z).
Q, =X x,D =D x D/m1(X).
M, =% x,5 :=DxSm().

We regard X,, Q,, M, as CP'-bundle, D-bundle, S*-bundle over
respectively by first projection. They are flat bundles in the sense
that horizontal disks D x {t} (t € CP!) give a holomorphic foliation
F, by Riemann surfaces on X, and preserve €2, and M,. Hence, M,
is a Levi-flat real hypersurface.
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Theorem of Grauert, Diederich—Ohsawa

>, p: as before. New representations called conjugation are given
by 71(X) — Aut(D), v+ aop(y) oa~! for each o € Aut(D).
Conjugations do not change complex/CR str. of X,, Q,, M,.

Theorem (Grauert, Diederich—-Ohsawa)
@ p is not to conjugate to rotations
—> (1, is a proper modification of a Stein space.
@ p is conjugate to rational rotations
= (2, is holomorphically convex, but not Stein.
© p is conjugate to rotations including an irrational rotation
= dimO(Q,) = 1.

Examples
@ p(v) = v (Deck transformation), [p] € T(X) (Teichmiiller space).
Q p(y)=idp = Q, =X xD. O(2,) = O(D).
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General Problem

Y, p: as before.

Problem

Study what kinds of dynamical property of p control holomorphic
functions on €, and CR functions on M, with growth and regularity
conditions respectively.

Motivated by (A.—Brinkschulte): a curvature restriction for
hypothetical smooth closed Levi-flat in CP? was obtained by
studying the Bergman space of its complement.

Today's goal

Study the weighted Bergman / Hardy spaces for the case po(v) = v
(Deck transformation).
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Bergman space

Qe X, M=09Q: smooth. dV: volume form on X.
d: X =R, Q={6>0}, dd #0on 9. o > —1.

Definition (Weighted Bergman space, Hardy space)

ANQ) = {f € O(Q) | (f, Fa < 00},

Jo fgodV/T(a+1) for o> —1,
<f7g>oc = .
limo —1(f, 8)a for o = —1.
The Hardy space (« = —1) is the space of holomorphic functions

which have [? boundary value. The boundary values are CR
functions on M.
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CR functions on Levi-flats

(M, F): compact Lev-flat CR manifold, i.e.,

M: compact real manifold, F: real codimension one non-singular
foliation by complex manifolds.

Definition (CR function)

A CR function is a function which are holomophic along F.

Note that transverse regularity are not guaranteed.

(Inaba) Any continuous CR function on M are leafwise constant.
Hence, continuous CR functions are constant if 7 has a dense leaf.

(Ohsawa—Sibony, Hsiao—Marinescu; A.) The finite/infinite
dimensionality of the space of CR sections of a fixed smooth CR
line bundle depend on transverse regularity we require.
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Liouvilleness

Y: as before, pg: m1(X) — Aut(D),~ — 7 (Deck transformation).
X=Xy Q:=Qpp, M= My, Q= Xy \ Qpor F := Fpy.
Corollary of E. Hopf's ergodicity theorem

Q, Q' are Liouville, i.e., dim O N L>®(Q) =dimONL>®(Q) = 1.

Proof.

o Let f € ONL>(Q) or ONL>®(Q). Consider the boundary value
of f, which is leafwise holomorphic.

o M is diffeomorphic to the unit tangent bundle of ¥, and F is
isomorphic to the unstable foliation of geodesic flows of .

o The ergodicity of geodesic flow w.r.t. the Lebesgue measure
implies that any bounded leafwise harmonic function is a.e.
constant. Hence, f is constant. L]

Refinement of E. Hopf’s ergodicity theorem by L. Garnett gives
dim A2 (Q) = dim A%2,(Q') = 1. Another proof based on a property of

3F> will be given later.
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Hardy space and weighted Bergman spaces of 2

OQ)={feODxD)]|f(z,w) = f(yz,yw),y € m1(X)}.
O(Q)~={feODxD)| f(z,w) = f(yz,yw),y € m1(X)}.

Corollary of the technique of Berndtsson—Charpentier

dim A2(Q) = dim A2(Q) = 00, Vo > —1/2.

(Fu=Shaw, A.-Brinkschulte; A) The 1/2 is the Diederich—Fornaess
index of Q and €/, and the best possible as the DF index.

(A.) The 1/2 roughly corresponds to the fact that the foliated
harmonic measure of the Levi foliation belongs to the Lebesgue
measure class, from which the ergodicity follows.
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Main result
Main result (A., arXiv:1703.08165 + in preparation.)

3 @G HUZ KE™) = 0(Q),  T1': @) Ker(A — \l) < O(Q)
n=0 n=0

where A is the Laplace—Beltrami operator of > w.r.t. Poincaré
metric, and

HO(Z, KE™) := {holomorphic n-differential on L1/ = ¢(7)(d7)*"},
Ker(A = Mpl):={f: X = C| Af = \pf}.

The images of / and /I’ are dense in compact open topology, and,
moreover, contained in A2(Q) and A2(Q) resp. for Va > —1.
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Construction of / and /'

e Q) contains a divisor D = {(z,z) | z € D}/m(X) ~ ¥.

e ' contains a totally real D' := {(z,Z) | z € D}/m(X) = X, and
Q) is characterized as the Grauert tube of maximal radius.

[+ @D, HUZ, KE") — O(Q) is given by

@ = [ g (DT e

n,n) (w—2)

for ¢ € HO(Z, K2"), n > 1, where we write ¢ = ¢)(7)(d7)®" on the
uniformizing coordinate 7 € D. The well-definedness follows from a
property of cross ratios.

I': @,> o Ker(A—X,l) — O() is given by the analytic continuation
of f € Ker(A — \,/) regarded as a real-analytic function on D’ to
D x D. The well-definedness follows from a known fact on PDE.
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Outline of proof of integrability

| is obtained by optimal L?-jet extension from D to Q. We may
regard ¢ € HO(Z, KZ") as an n-th order jet of holo func along D via

Ky =Ty = Tp=Npg, D={(z,2)]zeD}/m(X)CQ,

Step 1. We work on a non-holomorphic coordinate of D, x D,, given
by (z,t), t := (w—z)(1 —zw)~!. Expand f = f(z,w) € O(Q)™*) as
f=3%120f(z)t", then {f,} enjoys

ofy nz n—1

Al f
5z 1P T 1o

fo_1=0.

Xn
Put ¢, == f,(2) (fljfz) e COO(S, K2). Then {p,} satisfy
— — n—1
dpg =0, 0Op,= _W(pn_l ®w (n>1)

where w = 2dz ® dz/(1 — |z[?).
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Outline of proof of integrability — continued

Step 2. Let ¢ € HO(X, KEN). Puty, := 0 for n < N and ¢y := .
We pick the [? minimal solution to

8 = —— ®
Y2 Pn— w
" \/§ -1

inductively and determine ¢, for n > N. The spectral decomposition
of the complex laplacian tells us the L? minimal solutions are

(_ N+m-—1 - w)
\/i PN+m—1

T m@N+m—1) NEm (Prsm—1 ® )

. 1
ON+m = Ongm G/(\/J)rm

where 0, is the formal adjoint of 9 : COO(T, KE™) — CO(T, KE™)
and GV is the Green operator on CON(Z, KE™).
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Outline of proof of integrability — continued?

Step 3. For o > —1, the convergence of f =) " f(z)t",
®n

@n:ﬁxﬂ<‘6ﬂ) in L2(Q) follows from

1—|z|2

n+1
1712 —wZHwnIIQ )

r(n+a+2)
MN+m+1)
— 2
WHz N+m+1) (2N —1)! {(N+m—1)1}2
I'N+m+a+2){(N—1)!}2m!(2N+m—1)!
’ (N+U N+1,N,N
— 1
[l (/\/+2+) 2N, N +2 + o' =

2
where we used § :=1 — ‘{’Sﬁv) , dV =

|1 [1-zw[*2
Similar computation shows € O(Q2), and the Llouwlleness of Q.

ldz ANdZ A L dW/\dW.
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Outline of proof of integrability — continued*
Step 4. Want to show

oo

n=0

Enough to show the desired equality on {0} x D.

- n —1) s (N+m—1)! 1 0™ m
nz_ofn(())t —1)! Z (2N—|—m—1)'m| 8zm(0)tN+
_ 1
— ((2,0'_ 11))|'t'" i dty .. / dt2/ P(tty)dty
(2N —1)! LN=1(1 — )N
~IN— 1) tN/O : (N—ll)! v(th)dt

_ / B(Ai . ((r —:)r)(”‘”wmdr O

w w— 1)1 — 2)\ 2V
S0 = [ g (Vo) e,
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A Forelli-Rudin construction

The reproducing kernel B, of A2 is called the weighted Bergman

kernel. B.(z,w) =32, ¢(z)ej(w) for any orthonormal basis of A2
{e1,e,...}.

Corollary

The weighted Bergman kernel of  is

Bal(z Wi (2. w) = e 2

(4g
l / / (r,7)(dT ® dT)®"
CnOc n I'I TEZW J T

rezlw’ ([W T, Z]®[W il Z’])®(” 1)’

where g is the genus of ¥, B,(7,7')(dT ® d7)®" is the Bergman
kernel of holomorphic n-differentials, i.e. of H(X, KZ"), and

M(n+1) n—|—1,n,n.1 w7, 2] = (w—z)dT
F(n+2+a)32 2n,n+2+a' ") (w—T1)(T - 2)°

Cn7a ==
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