# Weighted Bergman spaces of domains with Levi-flat boundary: two case studies (arXiv:1703.08165) 

Masanori Adachi

Tokyo University of Science

May 4, 2017

## Introduction

$X$ : cx. mfd., $\Omega \Subset X$ : domain, $\partial \Omega=M$ : smooth real hypersurface.
Levi problem in a generalized sense
What kinds of geometry of $M$ control holomorphic functions on $\Omega$ ?
Classical results:
(Oka, Bremermann, Norguet) $X=\mathbb{C}^{n}, M: \psi c \Longrightarrow \Omega$ is Stein. (Grauert) $M: \mathbf{s} \psi \mathbf{c} \Longrightarrow \Omega$ is a proper modification of a Stein space.
$M$ : Levi-flat, i.e., foliated by cx. hypersurfaces of $X$ (Levi foliation).
Levi problem for domains with Levi-flat boundary
What kinds of dynamical property of the Levi foliation control holomorphic functions on $\Omega$ ?

Let us see an example.

## Holomorphic disk bundles and flat circle bundles

$\Sigma$ : closed Riemann surface of genus $\geq 2$. Fix its uniformization $\Sigma \simeq \mathbb{D} / \pi_{1}(\Sigma)$. Take a representation $\rho: \pi_{1}(\Sigma) \rightarrow \operatorname{Aut}(\mathbb{D}) \subset \operatorname{Aut}\left(\mathbb{C P}^{1}\right)$, Diffeo $^{+}\left(S^{1}\right)$.

Definition (suspension)

$$
\begin{array}{ll}
X_{\rho}:=\Sigma \times_{\rho} \mathbb{C P}^{1} & :=\mathbb{D} \times \mathbb{C P}^{1} /(z, w) \sim(\gamma z, \rho(\gamma) w) \text { for } \gamma \in \pi_{1}(\Sigma) . \\
\Omega_{\rho}:=\Sigma \times_{\rho} \mathbb{D} & :=\mathbb{D} \times \mathbb{D} / \pi_{1}(\Sigma) . \\
M_{\rho}:=\Sigma \times_{\rho} S^{1} & :=\mathbb{D} \times S^{1} / \pi_{1}(\Sigma) .
\end{array}
$$

We regard $X_{\rho}, \Omega_{\rho}, M_{\rho}$ as $\mathbb{C P}^{1}$-bundle, $\mathbb{D}$-bundle, $S^{1}$-bundle over $\Sigma$ respectively by first projection. They are flat bundles in the sense that horizontal disks $\mathbb{D} \times\{t\}\left(t \in \mathbb{C P}^{1}\right)$ give a holomorphic foliation $\mathcal{F}_{\rho}$ by Riemann surfaces on $X_{\rho}$ and preserve $\Omega_{\rho}$ and $M_{\rho}$. Hence, $M_{\rho}$ is a Levi-flat real hypersurface.

## Theorem of Grauert, Diederich-Ohsawa

$\Sigma, \rho$ : as before. New representations called conjugation are given by $\pi_{1}(\Sigma) \rightarrow \operatorname{Aut}(\mathbb{D})$, $\gamma \mapsto \alpha \circ \rho(\gamma) \circ \alpha^{-1}$ for each $\alpha \in \operatorname{Aut}(\mathbb{D})$. Conjugations do not change complex/CR str. of $X_{\rho}, \Omega_{\rho}, M_{\rho}$.

## Theorem (Grauert, Diederich-Ohsawa)

(1) $\rho$ is not to conjugate to rotations
$\Longrightarrow \Omega_{\rho}$ is a proper modification of a Stein space.
(2) $\rho$ is conjugate to rational rotations
$\Longrightarrow \Omega_{\rho}$ is holomorphically convex, but not Stein.
(3) $\rho$ is conjugate to rotations including an irrational rotation
$\Longrightarrow \operatorname{dim} \mathcal{O}\left(\Omega_{\rho}\right)=1$.
Examples
(1) $\rho(\gamma)=\gamma$ (Deck transformation), $[\rho] \in \mathcal{T}(\Sigma)$ (Teichmüller space).
(2) $\rho(\gamma) \equiv \mathrm{id}_{\mathbb{D}} \Longrightarrow \Omega_{\rho}=\Sigma \times \mathbb{D} \cdot \mathcal{O}\left(\Omega_{\rho}\right)=\mathcal{O}(\mathbb{D})$.

## General Problem

$\Sigma, \rho$ : as before.

## Problem

Study what kinds of dynamical property of $\rho$ control holomorphic functions on $\Omega_{\rho}$ and CR functions on $M_{\rho}$ with growth and regularity conditions respectively.

Motivated by (A.-Brinkschulte): a curvature restriction for hypothetical smooth closed Levi-flat in $\mathbb{C P}^{2}$ was obtained by studying the Bergman space of its complement.

Today's goal
Study the weighted Bergman / Hardy spaces for the case $\rho_{0}(\gamma)=\gamma$ (Deck transformation).

## Bergman space

$\Omega \Subset X, M=\partial \Omega$ : smooth. $d V$ : volume form on $X$.
$\delta: X \rightarrow \mathbb{R}, \Omega=\{\delta>0\}, d \delta \neq 0$ on $\partial \Omega . \alpha \geq-1$.
Definition (Weighted Bergman space, Hardy space)

$$
\begin{aligned}
A_{\alpha}^{2}(\Omega) & :=\left\{f \in \mathcal{O}(\Omega) \mid\langle f, f\rangle_{\alpha}<\infty\right\}, \\
\langle f, g\rangle_{\alpha} & := \begin{cases}\int_{\Omega} f \bar{g} \delta^{\alpha} d V / \Gamma(\alpha+1) & \text { for } \alpha>-1 \\
\lim _{\alpha \searrow-1}\langle f, g\rangle_{\alpha} & \text { for } \alpha=-1\end{cases}
\end{aligned}
$$

The Hardy space ( $\alpha=-1$ ) is the space of holomorphic functions which have $L^{2}$ boundary value. The boundary values are CR functions on $M$.

## CR functions on Levi-flats

$(M, \mathcal{F})$ : compact Lev-flat CR manifold, i.e., $M$ : compact real manifold, $\mathcal{F}$ : real codimension one non-singular foliation by complex manifolds.

## Definition (CR function)

A CR function is a function which are holomophic along $\mathcal{F}$.
Note that transverse regularity are not guaranteed.
(Inaba) Any continuous CR function on $M$ are leafwise constant. Hence, continuous CR functions are constant if $\mathcal{F}$ has a dense leaf.
(Ohsawa-Sibony, Hsiao-Marinescu; A.) The finite/infinite dimensionality of the space of CR sections of a fixed smooth CR line bundle depend on transverse regularity we require.

## Liouvilleness

$\Sigma$ : as before, $\rho_{0}: \pi_{1}(\Sigma) \rightarrow \operatorname{Aut}(\mathbb{D}), \gamma \mapsto \gamma$ (Deck transformation). $X:=X_{\rho_{0}}, \Omega:=\Omega_{\rho_{0}}, M:=M_{\rho_{0}}, \Omega^{\prime}:=X_{\rho_{0}} \backslash \overline{\Omega_{\rho_{0}}}, \mathcal{F}:=\mathcal{F}_{\rho_{0}}$.

## Corollary of E. Hopf's ergodicity theorem

$\Omega, \Omega^{\prime}$ are Liouville, i.e., $\operatorname{dim} \mathcal{O} \cap L^{\infty}(\Omega)=\operatorname{dim} \mathcal{O} \cap L^{\infty}\left(\Omega^{\prime}\right)=1$.

## Proof.

- Let $f \in \mathcal{O} \cap L^{\infty}(\Omega)$ or $\mathcal{O} \cap L^{\infty}\left(\Omega^{\prime}\right)$. Consider the boundary value of $f$, which is leafwise holomorphic.
- $M$ is diffeomorphic to the unit tangent bundle of $\Sigma$, and $\mathcal{F}$ is isomorphic to the unstable foliation of geodesic flows of $\Sigma$.
- The ergodicity of geodesic flow w.r.t. the Lebesgue measure implies that any bounded leafwise harmonic function is a.e. constant. Hence, $f$ is constant.
Refinement of E. Hopf's ergodicity theorem by L. Garnett gives $\operatorname{dim} A_{-1}^{2}(\Omega)=\operatorname{dim} A_{-1}^{2}\left(\Omega^{\prime}\right)=1$. Another proof based on a property of ${ }_{3} F_{2}$ will be given later.


## Hardy space and weighted Bergman spaces of $\Omega$

$$
\begin{aligned}
& \mathcal{O}(\Omega) \simeq\left\{f \in \mathcal{O}(\mathbb{D} \times \mathbb{D}) \mid f(z, w)=f(\gamma z, \gamma w), \gamma \in \pi_{1}(\Sigma)\right\} . \\
& \mathcal{O}\left(\Omega^{\prime}\right) \simeq\left\{f \in \mathcal{O}(\mathbb{D} \times \mathbb{D}) \mid f(z, w)=f(\gamma z, \bar{\gamma} w), \gamma \in \pi_{1}(\Sigma)\right\} .
\end{aligned}
$$

Corollary of the technique of Berndtsson-Charpentier

$$
\operatorname{dim} A_{\alpha}^{2}(\Omega)=\operatorname{dim} A_{\alpha}^{2}\left(\Omega^{\prime}\right)=\infty, \quad \forall \alpha>-1 / 2 .
$$

(Fu-Shaw, A.-Brinkschulte; A) The $1 / 2$ is the Diederich-Fornaess index of $\Omega$ and $\Omega^{\prime}$, and the best possible as the DF index.
(A.) The $1 / 2$ roughly corresponds to the fact that the foliated harmonic measure of the Levi foliation belongs to the Lebesgue measure class, from which the ergodicity follows.

## Main result

Main result (A., arXiv:1703.08165 + in preparation.)

$$
\exists I: \bigoplus_{n=0}^{\infty} H^{0}\left(\Sigma, K_{\Sigma}^{\otimes n}\right) \hookrightarrow \mathcal{O}(\Omega), \quad \exists I^{\prime}: \bigoplus_{n=0}^{\infty} \operatorname{Ker}\left(\Delta-\lambda_{n} I\right) \hookrightarrow \mathcal{O}\left(\Omega^{\prime}\right)
$$

where $\Delta$ is the Laplace-Beltrami operator of $\Sigma$ w.r.t. Poincaré metric, and
$H^{0}\left(\Sigma, K_{\Sigma}^{\otimes n}\right):=\left\{\right.$ holomorphic $n$-differential on $\left.\Sigma \psi=\psi(\tau)(d \tau)^{\otimes n}\right\}$,
$\operatorname{Ker}\left(\Delta-\lambda_{n} I\right):=\left\{f: \Sigma \rightarrow \mathbb{C} \mid \Delta f=\lambda_{n} f\right\}$.
The images of $I$ and $I^{\prime}$ are dense in compact open topology, and, moreover, contained in $A_{\alpha}^{2}(\Omega)$ and $A_{\alpha}^{2}\left(\Omega^{\prime}\right)$ resp. for $\forall \alpha>-1$.

## Construction of $I$ and $I^{\prime}$

- $\Omega$ contains a divisor $D=\{(z, z) \mid z \in \mathbb{D}\} / \pi_{1}(\Sigma) \simeq \Sigma$.
- $\Omega^{\prime}$ contains a totally real $D^{\prime}:=\{(z, \bar{z}) \mid z \in \mathbb{D}\} / \pi_{1}(\Sigma) \approx \Sigma$, and $\Omega^{\prime}$ is characterized as the Grauert tube of maximal radius.

I: $\bigoplus_{n=0}^{\infty} H^{0}\left(\Sigma, K_{\Sigma}^{\otimes n}\right) \hookrightarrow \mathcal{O}(\Omega)$ is given by

$$
I(\psi)(z, w):=\int_{z}^{w} \frac{1}{B(n, n)}\left(\frac{(w-\tau)(\tau-z)}{(w-z) d \tau}\right)^{\otimes(n-1)} \psi(\tau)(d \tau)^{\otimes n}
$$

for $\psi \in H^{0}\left(\Sigma, K_{\Sigma}^{\otimes n}\right)$, $n \geq 1$, where we write $\psi=\psi(\tau)(d \tau)^{\otimes n}$ on the uniformizing coordinate $\tau \in \mathbb{D}$. The well-definedness follows from a property of cross ratios.
$I^{\prime}: \bigoplus_{n=0}^{\infty} \operatorname{Ker}\left(\Delta-\lambda_{n} I\right) \hookrightarrow \mathcal{O}\left(\Omega^{\prime}\right)$ is given by the analytic continuation of $f \in \operatorname{Ker}\left(\Delta-\lambda_{n} I\right)$ regarded as a real-analytic function on $D^{\prime}$ to $\mathbb{D} \times \mathbb{D}$. The well-definedness follows from a known fact on PDE.

## Outline of proof of integrability

$I$ is obtained by optimal $L^{2}$-jet extension from $D$ to $\Omega$. We may regard $\psi \in H^{0}\left(\Sigma, K_{\Sigma}^{\otimes n}\right)$ as an $n$-th order jet of holo func along $D$ via

$$
K_{\Sigma} \simeq T_{\Sigma}^{*} \simeq T_{D}^{*} \simeq N_{D / \Omega}^{*}, \quad D=\{(z, z) \mid z \in \mathbb{D}\} / \pi_{1}(\Sigma) \subset \Omega
$$

Step 1 . We work on a non-holomorphic coordinate of $\mathbb{D}_{z} \times \mathbb{D}_{w}$ given by $(z, t), t:=(w-z)(1-\bar{z} w)^{-1}$. Expand $f=f(z, w) \in \mathcal{O}(\Omega)^{\pi_{1}(\Sigma)}$ as $f=\sum_{n=0}^{\infty} f_{n}(z) t^{n}$, then $\left\{f_{n}\right\}$ enjoys

$$
\frac{\partial f_{n}}{\partial \bar{z}}+\frac{n z}{1-|z|^{2}} f_{n}+\frac{n-1}{1-|z|^{2}} f_{n-1}=0
$$

Put $\varphi_{n}:=f_{n}(z)\left(\frac{\sqrt{2} d z}{1-|z|^{2}}\right)^{\otimes n} \in C^{(0,0)}\left(\Sigma, K_{\Sigma}^{n}\right)$. Then $\left\{\varphi_{n}\right\}$ satisfy

$$
\bar{\partial} \varphi_{0}=0, \quad \bar{\partial} \varphi_{n}=-\frac{n-1}{\sqrt{2}} \varphi_{n-1} \otimes \omega(n \geq 1)
$$

where $\omega=2 d z \otimes d \bar{z} /\left(1-|z|^{2}\right)^{2}$.

## Outline of proof of integrability - continued

Step 2. Let $\psi \in H^{0}\left(\Sigma, K_{\Sigma}^{\otimes N}\right)$. Put $\varphi_{n}:=0$ for $n<N$ and $\varphi_{N}:=\psi$. We pick the $L^{2}$ minimal solution to

$$
\bar{\partial} \varphi_{n}=-\frac{n-1}{\sqrt{2}} \varphi_{n-1} \otimes \omega
$$

inductively and determine $\varphi_{n}$ for $n>N$. The spectral decomposition of the complex laplacian tells us the $L^{2}$ minimal solutions are

$$
\begin{aligned}
\varphi_{N+m} & =\bar{\partial}_{N+m}^{*} G_{N+m}^{(1)}\left(-\frac{N+m-1}{\sqrt{2}} \varphi_{N+m-1} \otimes \omega\right) \\
& =-\frac{\sqrt{2}(N+m-1)}{m(2 N+m-1)} \bar{\partial}_{N+m}^{*}\left(\varphi_{N+m-1} \otimes \omega\right)
\end{aligned}
$$

where $\bar{\partial}_{n}^{*}$ is the formal adjoint of $\bar{\partial}: C^{(0,0)}\left(\Sigma, K_{\Sigma}^{\otimes n}\right) \rightarrow C^{(0,1)}\left(\Sigma, K_{\Sigma}^{\otimes n}\right)$ and $G_{n}^{(1)}$ is the Green operator on $C^{(0,1)}\left(\Sigma, K_{\Sigma}^{\otimes n}\right)$.

## Outline of proof of integrability - continued ${ }^{3}$

Step 3. For $\alpha>-1$, the convergence of $f=\sum_{n=0}^{\infty} f_{n}(z) t^{n}$, $\varphi_{n}=f_{n}(z)\left(\frac{\sqrt{2} d z}{1-|z|^{2}}\right)^{\otimes n}$ in $L_{\alpha}^{2}(\Omega)$ follows from

$$
\begin{aligned}
\|f\|_{\alpha}^{2} & =\pi \sum_{n=0}^{\infty}\left\|\varphi_{n}\right\|^{2} \frac{\Gamma(n+1)}{\Gamma(n+\alpha+2)} \\
& =\pi \sum_{m=0}^{\infty}\left\|\varphi_{N+m}\right\|^{2} \frac{\Gamma(N+m+1)}{\Gamma(N+m+\alpha+2)} \\
& =\pi\|\psi\|^{2} \sum_{m=0}^{\infty} \frac{\Gamma(N+m+1)}{\Gamma(N+m+\alpha+2)} \frac{(2 N-1)!}{\{(N-1)!\}^{2}} \frac{\{(N+m-1)!\}^{2}}{m!(2 N+m-1)!} \\
& =\pi\|\psi\|^{2} \frac{\Gamma(N+1)}{\Gamma(N+2+\alpha)}{ }_{3} F_{2}\left(\begin{array}{c}
N+1, N, N \\
2 N, N+2+\alpha
\end{array} 1\right)<\infty
\end{aligned}
$$

where we used $\delta:=1-\left|\frac{w-z}{1-\bar{z} w}\right|^{2}, d V=\frac{4}{|1-\bar{z} w|^{4}} \frac{i}{2} d z \wedge d \bar{z} \wedge \frac{i}{2} d w \wedge d \bar{w}$. Similar computation shows $f \in \mathcal{O}(\Omega)$, and the Liouvilleness of $\Omega$.

## Outline of proof of integrability - continued ${ }^{4}$

Step 4. Want to show

$$
\sum_{n=0}^{\infty} f_{n}(z) t^{n}=\int_{z}^{w} \frac{1}{B(N, N)}\left(\frac{(w-\tau)(\tau-z)}{(w-z) d \tau}\right)^{\otimes(N-1)} \psi(\tau)(d \tau)^{\otimes N} .
$$

Enough to show the desired equality on $\{0\} \times \mathbb{D}$.

$$
\begin{aligned}
\sum_{n=0}^{\infty} f_{n}(0) t^{n} & =\frac{(2 N-1)!}{(N-1)!} \sum_{m=0}^{\infty} \frac{(N+m-1)!}{(2 N+m-1)!} \frac{1}{m!} \frac{\partial^{m} \psi}{\partial z^{m}}(0) t^{N+m} \\
& =\frac{(2 N-1)!}{(N-1)!} t^{N} \int_{0}^{1} d t_{N} \ldots \int_{0}^{t_{3}} d t_{2} \int_{0}^{t_{2}} t_{1}^{N-1} \psi\left(t t_{1}\right) d t_{1} \\
& =\frac{(2 N-1)!}{(N-1)!} t^{N} \int_{0}^{1} \frac{t_{1}^{N-1}\left(1-t_{1}\right)^{N-1}}{(N-1)!} \psi\left(t t_{1}\right) d t_{1} \\
& =\int_{0}^{t} \frac{1}{B(N, N)}\left(\frac{(t-\tau) \tau}{t}\right)^{(N-1)} \psi(\tau) d \tau . \quad \square
\end{aligned}
$$

## A Forelli-Rudin construction

The reproducing kernel $B_{\alpha}$ of $A_{\alpha}^{2}$ is called the weighted Bergman kernel. $B_{\alpha}(z, w)=\sum_{j=1}^{\infty} e_{j}(z) e_{j}(w)$ for any orthonormal basis of $A_{\alpha}^{2}$ $\left\{e_{1}, e_{2}, \ldots\right\}$.

## Corollary

The weighted Bergman kernel of $\Omega$ is

$$
\begin{aligned}
& B_{\alpha}\left((z, w) ;\left(z^{\prime}, w^{\prime}\right)\right)=\frac{\Gamma(\alpha+2)}{\pi^{2}(4 g-4)}+ \\
& \frac{1}{\pi} \sum_{n=1}^{\infty} \frac{1}{c_{n, \alpha}} \frac{1}{B(n, n)^{2}} \int_{\tau \in \overline{z w}} \int_{\tau^{\prime} \in \overline{z^{\prime} w^{\prime}}} \frac{B_{n}\left(\tau, \tau^{\prime}\right)\left(d \tau \otimes \overline{d \tau^{\prime}}\right)^{\otimes n}}{\left([w, \tau, z] \otimes \overline{\left[w^{\prime}, \tau^{\prime}, z^{\prime}\right]}\right)^{\otimes(n-1)}} .
\end{aligned}
$$

where $g$ is the genus of $\Sigma, B_{n}\left(\tau, \tau^{\prime}\right)(d \tau \otimes \overline{d \tau})^{\otimes n}$ is the Bergman kernel of holomorphic $n$-differentials, i.e. of $H^{0}\left(\Sigma, K_{\Sigma}^{\otimes n}\right)$, and

$$
c_{n, \alpha}=\frac{\Gamma(n+1)}{\Gamma(n+2+\alpha)}{ }^{3} F_{2}\binom{n+1, n, n}{2 n, n+2+\alpha^{\prime}},[w, \tau, z]=\frac{(w-z) d \tau}{(w-\tau)(\tau-z)} .
$$

