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1. Smale’s Mean Value Conjecture

Let P be a non-linear polynomial; then b is a critical

point of P if P ′(b) = 0, and v is a critical value of P if

v = P (b) for some critical point b of P .



In 1981, Stephen Smale proved the following

Theorem 1.Let P be a non-linear polynomial and a ∈ C such

that P ′(a) ̸= 0. Then there exists a critical point b of P such

that ∣∣∣∣P (a)− P (b)

a− b

∣∣∣∣ ≤ 4|P ′(a)| (1.1)

Or equivalently, we have

min
b,P ′(b)=0

∣∣∣∣P (a)− P (b)

a− b

∣∣∣∣ ≤ 4|P ′(a)| (1.2)



Smale then asked whether one can replace the factor 4 in

the upper bound in (1.1) by 1, or even possibly by d−1
d , where

d = degP .

He also pointed out that the number d−1
d would, if true, be

the best possible bound here as it is attained (for any nonzero

λ) when P (z) = zd − λz and a = 0 in (1.1).



Note that if bi are the critical points of P (z) = zd − λz and

a = 0, then

∣∣∣∣ P (b1)

b1P ′(0)

∣∣∣∣ = · · · =
∣∣∣∣ P (bd−1)

bd−1P ′(0)

∣∣∣∣ = d− 1

d
.

Q: Is it also true for all extremal polynomials ?



min
b,P ′(b)=0

∣∣∣∣P (a)− P (b)

a− b

∣∣∣∣ ≤ 4|P ′(a)| (1.2)

Let M be the least possible values of the factor in the upper

bound in (1.2) for all non-linear polynomials and Md be the

corresponding value for the polynomial of degree d.

Then Smale’s theorem and example show that

d−1
d ≤ Md ≤ 4 and 1 ≤ M ≤ 4.



Smale’s Mean Value conjecture:

M = 1 or even Md = d−1
d , where d = degP .

• S. Smale, The fundamental theorem of algebra and complexity theory, Bull. Amer. Math.

Soc. 4 (1981), 1-36.

• S. Smale, Mathematical Problems for the Next Century, Mathematics: frontiers and

perspectives, eds. Arnold, V., Atiyah, M., Lax, P. and Mazur, B., Amer. Math. Soc., 2000.



Smale’s mean value conjecture is equivalent to the following

Normalised conjecture : Let P be a monic polynomial of

degree d ≥ 2 such that P (0) = 0 and P ′(0) = 1. Let

b1, . . . , bd−1 be its critical points. Then

min
i

∣∣∣∣ P (bi)

biP ′(0)

∣∣∣∣ ≤ d− 1

d
(∗)



Smale’s proof: P (0) = 0, P ′(0) ̸= 0, apply Koebe 1/4 Thm.



Smale’s Mean Value conjecture is true for the following

polynomials.

A) Polynomials of degree d = 2, 3, 4, 5.

B) Polynomials with real zeros only.

C) Polynomials with zero constant term and all the zeros

have the same modulus.

D) Polynomials with zero constant term and all the critical

points are fixed points.

• D. Tischler (1989).



E) Polynomials with zero constant term and all the critical

points have the same modulus.

F) Polynomials with zero constant term and all the critical

values have the same modulus.

• V.V. Andrievskii and S. Ruscheweyh (1998).

G) Polynomials with critical points lying on two rays.

• A. Hinkkanen and I. Kayumov (2010).

• Q.I. Rahman and G. Schmeisser, Analytic theory of Polynomials, OUP, 2002.

• T. Sheil-Small, Complex polynomials. CUP, 2002.



Estimates of Md

Tischler (1989), Crane (2006), Sendov (2006)

For 2 ≤ d ≤ 5,

Md =
d− 1

d
.

Beardon, Minda and N. (2002)

Md ≤ 41−
1

d−1 = 4− 4 log 4

d
+O

(
1

d2

)
.



Conte, Fujikawa and Lakic (2007)

Md ≤ 4
d− 1

d+ 1
= 4− 8

d
+O

(
1

d2

)
.

Fujikawa and Sugawa (2006)

Md ≤ 4

(
1 + (d− 2)4−1/(d−1)

d+ 1

)
= 4−8 + 4 log 4

d
+O

(
1

d2

)
.



Crane (2007)

For d ≥ 8,

Md ≤ 4− 2√
d
.



By applying some results on univalent functions with omitted

values, we have

Theorem 2. (N., 2003) Let P be a polynomial of degree d ≥ 2

such that P (0) = 0 and P ′(0) ̸= 0. Let b1, . . . , bd−1 be its

critical points such that |b1| ≤ |b2| ≤ · · · ≤ |bd−1|. Suppose

that b2 = −b1, then

min
i

∣∣∣∣P (bi)

bi

∣∣∣∣ ≤ 2|P ′(0)|.



G. Schmieder (2002-2003), A proof of Smale’s mean value

conjecture (math.CV/0206174).

J. Borcea (2003), Maximal and inextensible polynomials

and the geometry of the spectra of normal operators

(math.CV/0309233).



Motivation.

Smale discovered the Mean Value theorem as a by product

of his investigations of the efficiency of zero finding algorithms.

Newton’s map of P : NP (z) = z − P (z)
P ′(z).

Choose an initial point z0 suitably and let

zn+1 = NP (zn) = zn − P (zn)

P ′(zn)
,

then the sequence {zn} will converge to a zero of P .



If we consider the Taylor’s series of P at zn, then we have

P (zn+1) = P (zn) +
d∑

i=1

(−1)i
P (i)(zn)

i!

(
P (zn)

P ′(zn)

)i

.

It follows that
P (zn+1)
P (zn)

= 1 +
∑d

i=1(−1)iP
(i)(zn)P (zn)

i−1

i!P ′(zn)i
and

hence the efficiency of Newton’s method mainly depends on the

growth of

P (i)(zn)P (zn)
i−1

i!P ′(zn)i
,

i = 2, 3, ..., d;n = 0, 1, ...



By using Löwner’s theorem, Smale proved the following

result.

Theorem 3. (Smale, 1981) Let a be any non-critical point of

P . Then there exists a critical point b of P such that for each

k ≥ 2, ∣∣∣∣∣P (k)(a)

k!P ′(a)

∣∣∣∣∣
1

k−1

|P (a)− P (b)| ≤ 4|P ′(a)| (∗∗)

Let K be the least possible values of the factor in the upper

bound in (∗∗) and Kd,i be the corresponding value for the

polynomial of degree d and k = i.



Smale suggested six open problems (Problem 1A-1F) related

to the inequality (**).

Most of these problems are about the precise values of K

and Kd,i.

Smale also gave an example to show that 1 ≤ K ≤ 4 and

conjectured that K = 1.

Problem 1A: Reduce K from 4.

Problem 1B, 1C and 1D are about Kd,2.

Porblem 1E is the mean value conjecture.



The constant K is quite important for estimating the

efficiency of Newton’s Method.

Theorem 4. (Smale,1981) Let R0 = minb,P ′(b)=0{|P (b)|} > 0.

If |P (w)| < R0
3K+1, then the iterations of Newton’s method

starting at w will converge to some zero of P . In addition, if

P (w) ̸= 0, one has

|P (w′)|
|P (w)|

<
1

2

where w′ = w − P (w)
P ′(w).



When i = 2, Smale showed that for some critical point b,∣∣∣∣∣P (2)(a)

2P ′(a)

∣∣∣∣∣ |P (a)− P (b)| =

∣∣∣∣∣∣12
d−1∑
j=1

1

a− b

∣∣∣∣∣∣ |P (a)− P (b)| ≤ 2|P ′(a)|.

Problem 1B asked whether 2 can further be reduced to d−1
2d , i.e.

∣∣∣∣∣∣
d−1∑
j=1

1

a− b

∣∣∣∣∣∣ |P (a)− P (b)| ≤ d− 1

d
|P ′(a)|.

• Kd,2 =
d−1
2d when d = 2, i.e. K2,2 =

1
4.



For Problem 1B, Y.Y. Choi, P.L. Cheung and N. showed that

K3,2 =
4

6
√
3
= 0.3845... >

2

6

K4,2 ≥ 0.473... >
3

8
, Kd,2 =?

For Problem 1A, we also showed that

K ≤ 4
d−2
d−1.



∣∣∣∣∣P (i)(a)

i!P ′(a)

∣∣∣∣∣
1

i−1

|P (a)− P (b)| ≤ Kd,i|P ′(a)|.

For i = d, V.N. Dubinin (2006), applies the method of

dissymmetrization to prove the sharp inequality.

∣∣∣∣∣P (d)(a)

d!P ′(a)

∣∣∣∣∣
1

d−1

|P (a)− P (b)| ≤ d− 1

d
d

d−1

|P ′(a)|.

Hence, Kd,d = d−1

d
d

d−1

.



2. Introduction to theory of amoeba

Let f = f(z1, ..., zn) be a non-constant polynomial.

Let Zf = {(z1, ..., zn) ∈ Cn
∗ |f(z1, .., zn) = 0} be the

hypersurface defined by f .

The amoeba Af is defined to be the image of Zf under the

map Log : Cn
∗ → Rn defined by

Log(z1, ..., zn) = (log |z1|, ..., log |zn|).

• Introduced by Gelfand, Kapranov and Zelevinsky in 1994.



I.N. Gelfand, M.M. Kapranov, and A.V. Zelevinsky,

Discriminants, Resultants, and Multidimensional Determinants,

Math. Theory Appl., Birkhauser, Boston, 1994.

M. Forsberg, M. Passare, and A. Tsikh, Laurent determinants

and arrangements of hyperplane amoebas, Adv. Math. 151

(2000), 45–70.



Components of the complement

Theorem (GKZ, 1994). Af is closed and any connected

component of Ac
f = Rn\Af is convex.

Ronkin function for the hypersurface, Nf : Rn → R defined

by:

Nf(x) =
1

(2πi)n

∫
Log−1

(x)

log |f(z)|dz1
z1

∧ . . . ∧ dzn
zn

.

Theorem (Ronkin,2001). Nf is convex. It is affine on each

connected component of Ac
f and strictly convex on Af .



Proposition (FPT,2000). The derivative of Nf with respect

to xj is the real part of

νj(x) =
1

(2πi)n

∫
Log−1

(x)

∂f

∂zj

zj
f(z)

dz1
z1

∧ . . . ∧ dzn
zn

• νj(x) is an integer in a connected component of Ac
f .



Let f =
∑
ω∈I

bωz
ω and ∆ be the Newton polygon of f (that

is, the convex hull of the elements ω of I for which bω ̸= 0.)

Theorem (FPT,2000). The map

ord :Ac
f → ∆ ∩ Zn

x 7→ (ν1(x), . . . , νn(x))

sends two different connected components to two different

points.



Proposition (FPT, 2000). Let x ∈ Ac
f and u ∈ Log−1(x).

For each 1 ≤ i ≤ n, define

f i,u(z) = f(u1, ..., ui−1, z, ui+1, ..., un).

Then,

νi(x) is equal to the number of roots of f i,u(z) inside

{|z| < exi}.



3. A problem on extremal polynomials.

Recall that we can always assume that the polynomials are

monic. Note that any monic polynomial with zero constant

term is determined uniquely by its critical points.

Let B = (b1, . . . , bd−1) ∈ Cd−1 and PB(z) be a degree d

monic polynomial whose critical points are b1, . . . , bd−1.

If PB(0) = 0, then PB(z) = d
∫ z

0
(w − b1) · · · (w − bd−1)dw.

Assume that 0 is not be a critial point of PB(z).Then,

P ′
B(0) ̸= 0 or

∏
bi ̸= 0.



Let λ ̸= 0. Consider

PλB(z) = d

∫ z

0

(w − λb1) · · · (w − λbd−1)dw.

Then,

PλB(λbi)

λbiP ′
λB(0)

=
PB(bi)

biP ′
B(0)

.

Therefore, we may further assume that B is in the set

E =

{
(z1, ..., zd−1) ∈ Cd−1|

∏
zi =

(−1)d−1

d

}

so that P ′
λB(0) = 1.



Define Si : E → C by

Si(B) = Si(b1, . . . , bd−1) =
PB(bi)

biP ′
B(0)

=
PB(bi)

bi
.

To solve Smale’s conjecture, we need to show that

sup
B∈E

{ min
1≤i≤d−1

|Si(B)|} =
d− 1

d

• Not clear if a maximum point exists.



Theorem 5. (E. Crane, 2006). There exists some B∗ such

that

max
B∈E

{ min
1≤i≤d−1

|Si(B)|} = |S1(B
∗)| = · · · = |Sd−1(B

∗)|.

We know that

max
B∈E

{ min
1≤i≤d−1

|Si(B)|} < 4.

Hence, |S1(B
∗)| = · · · = |Sd−1(B

∗)| < 4. It can then be

proven that |b∗i | < 4
d+1
d−1 for all 1 ≤ i ≤ d− 1.



This gives an explicit compact set of polynomials in which

at least one extremal polynomial must be found.

Crane mentioned in the paper that he is able to use verifiable

interval arithmetic to confirm that

M5 =
4

5
.



Theorem 6. (E. Crane, 2006) If Md+1 > Md, then for all

degree d extremal polynomial PB∗,

max
B∈E

{ min
1≤i≤d−1

|Si(B)|} = |S1(B
∗)| = · · · = |Sd−1(B

∗)|.

Conjecture 1: For all degree d extremal polynomial PB∗, we

have

max
B∈E

{ min
1≤i≤d−1

|Si(B)|} = |S1(B
∗)| = · · · = |Sd−1(B

∗)|.

• True when 2 ≤ d ≤ 5.



Consider the map S : E → Cd−1 defined by S(B) =

(S1(B), ..., Sd−1(B)).

As pointed out in Crane’s paper, it follows from the

properness of the maps S and (log | · |, ..., log | · |) that we

have the following:

If Conjecture 1 is true, then for each d ≥ 2, the set of all

degree d extremal polynomials PB∗ is compact.



An amoeba approach

Note that we have d − 1 homogeneous Si(b1, ..., bd−1)

polynomial in d− 1 variables, so there is a unique non-constant

irreducible symmetric complex polynomial f = fd such that

f(S1(B), . . . , Sd−1(B)) = 0

whenever B ∈ Cd−1
∗ .

Let Af be the amoeba of f . It follows from Smale’s theorem

that for all t > 4, t = (log t, ..., log t) lies in Ac
f .



For d = 3, f(z1, z2) = 18z1z2 − 9z1 − 9z2 + 4

−6 −5 −4 −3 −2 −1 0 1 2

−4

−3

−2

−1

0

1

2



Theorem 7. f has a leading term of the form zk1 · · · zkd−1

for some k ∈ N. Let U be the unbounded component

of Ac
f containing (log 4, ..., log 4) + Rd−1

+ and d =

(log d−1
d , ..., log d−1

d ). Then the following are equivalent:

1) Smale’s mean value conjecture is true for degree d;

2) U contains d+ Rd−1
+ ;

3) U contains the ray {t(1, ..., 1) : t > log d−1
d };

4) d is a boundary point of U ;

5) Nf(d) = k(d− 1) log d−1
d .



Theorem 5 (E. Crane, 2006). There exists some B∗ such that

max
B∈E

{ min
1≤i≤d−1

|Si(B)|} = |S1(B
∗)| = · · · = |Sd−1(B

∗)|.



Max-Min and Min-Max problem on hypersurfaces in Cn

For a non-constant polynomial f ∈ C[z1, . . . , zn] and the

hypersurface Zf ⊂ Cn
∗ defined by f , let

C(f) = sup
z∈Zf

(
min

1≤i≤n
|zi|
)

.

Problem: Characterize those polynomials f for which C(f)

is finite, and for such a polynomial to determine whether the

bound is attained by some point x ∈ Ck.



A monomial term of the polynomial f is the dominant

monomial of f if it is of maximal degree in each variable

separately.

Theorem 8. (Crane, 2006) f ∈ C[z1, . . . , zn] has a dominant

monomial if and only if C(f) < ∞.

Theorem 9. (Crane,2006) Let f ∈ C[z1, . . . , zn] be non-

constant. If C(f) < ∞, then there exists some (z1, . . . , zn) ∈

Zf such that

|z1| = · · · = |zn| = C(f).



Proof of Theorem 9. Let c = logC(f) and C = (c, ..., c) ∈

Rn. For a fixed δ > 0, let Cδ = (c+ δ, ..., c+ δ) ∈ Rn.

By the definition of C(f), it follows that Cδ + Rn
≥0 belongs

to some component C of Ac
f .

Assume that there is no points (z1, . . . , zn) ∈ Zf such

that |z1| = · · · = |zn| = C(f), then we must have the ray

t(1, ..., 1), t ≥ c belongs to Ac
f and hence the ray is actually

inside the component C.



Since C is open, we can find some point A = (a, ..., a) ∈ C

with a < c.

It follows from the definition of C(f) that for a sufficiently

small ϵ > 0, there exists some point X = (x1, ..., xn) ∈ Af

such that

a < c− ϵ < min
1≤i≤n

xi ≤ c < c+ δ.

WLOG assume that x1 = min1≤i≤n xi.



Consider the straight line A + t(X − A) and let Y =

(y1, ..., yn) be the point on this line corresponding to the

parameter t = c+δ−a
x1−a > 1. Then yi = a + (c + δ − a)xi−a

x1−a ≥

a+ (c+ δ − a) · 1 = c+ δ for all i.

Therefore, Y ∈ Cδ + Rn
≥0 ⊂ C ⊂ Ac

f .

We know that C is convex and it follows that the whole line

segment joining A and Y belongs to C and in particular X ∈ C

which is a contradiction.



Theorem 5 (E. Crane, 2006). There exists some B∗ such that

max
B∈E

{ min
1≤i≤d−1

|Si(B)|} = |S1(B
∗)| = · · · = |Sd−1(B

∗)|.

Proof of Theorem 5. Let f = fd be the implicit polynomial

obtained from the rational functions Si(B). By Smale’s mean

value theorem, we have C(f) ≤ 4.

It then follows from Theorem 9 that there exists an extremal

polynomial PB∗ such that Md = |S1(B
∗)| = · · · = |Sd−1(B

∗)|.



Related to the above max-min problem, we consider the dual

min-max problem.

For a non-constant polynomial f ∈ C[z1, . . . , zn] and the

hypersurface Zf ⊂ Cn
∗ defined by f , let

D(f) = inf
z∈Zf

(
max
1≤i≤n

|zi|
)

.



D(f) = inf
z∈Zf

(
max
1≤i≤n

|zi|
)

Theorem 10. f ∈ C[z1, . . . , zn] has a non-zero constant term

if and only if D(f) > 0.

Theorem 11. If D(f) > 0, then there exists at least one

(z1, . . . , zn) ∈ Zf such that

|z1| = · · · = |zn| = D(f).



fd(S1(B), . . . , Sd−1(B)) = 0.

Note that fd has a non-zero constant term. Apply the previous

result to f = fd.

Theorem 12.There exists some Nd > 0 such that if P be a

monic polynomial of degree d ≥ 2 with P (0) = 0 and P ′(0) =

1 and b1, . . . , bd−1 are its critical points, then

max
i

∣∣∣∣ P (bi)

biP ′(0)

∣∣∣∣ ≥ Nd .



Moreover, at least one of the extremal polynomials for Nd

satisfies the condition

∣∣∣∣ P (b1)

b1P ′(0)

∣∣∣∣ = · · · =
∣∣∣∣ P (bd−1)

bd−1P ′(0)

∣∣∣∣ . (∗)



Dual Mean Value Conjecture:

Let P be a monic polynomial of degree d ≥ 2 such that

P (0) = 0 and P ′(0) = 1. Let b1, . . . , bd−1 be its critical points.

Then

max
i

∣∣∣∣ P (bi)

biP ′(0)

∣∣∣∣ ≥ 1

d
.

It is conjectured that the extremal polynomial should be

P (z) = (z − a)d − (−a)d, where a is some non-zero complex

number.



Note that Dubinin and Sugawa (2009) have also discovered

this dual mean value conjecture around the same time

independently and they are able to show that Nd ≥ 1/(d4d)

which has been improved by Ng and Zhang (2016) to

Nd ≥ 1/(4d) recently.



Applications to Kd,i

Note that the existence of the extremal polynomials for any

Kd,i has never been proven and it is not clear if they exist at

all because the parameter space for the normalized polynomials

is not compact.

Using the amoeba theory, one can prove that for each Kd,i,

at least one extremal polynomial exists .



Applications to Pareto optimal points

Recall that

Si(B) = Si(b1, . . . , bd−1) =
PB(bi)

biP ′
B(0)

.

In Problem 1D, Smale suggested to look for the Pareto

optimal points of those attain the following optimization

problem:

max
B∈E

{ min
1≤i≤d−1

|Si(B)|}



Definition: B∗ = (b∗1, . . . , b
∗
d−1) ∈ Cd−1

∗ is a Pareto optimal

point if there is no B ∈ Cd−1
∗ such that Sj(B) ≥ Sj(B

∗) for all

1 ≤ j ≤ d− 1 with strict inequality for some j.

For the past thirty years, no one knows if a Pareto optimal

point exists.

Using the amoeba theory, one can show that such a Pareto

optimal point does exist if the set of extremal polynomials is

compact.



Problems for amoeba

Q1: How to determine if Ac
g of a given polynomial g has a

bounded component if one knows a parametrization of g ?

Q2: Given a parametrization of g, how to determine if a point

is in Ac
g?

The answers to these questions would have important

consequences to the study of Smale’s problems and the mean

value conjecture.


