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» Joint work with Wing-Keung To.

> In complex geometry, we can measure negativity, or
hyperbolicity, of a Kahler manifold (M, g), in terms of
curvature of a Kahler metric g, such as

» (i) Holomorphic sectional curvature: Ryaaa <0, @] = 1;
where i

R 85 = —aaagg,yg + g””@a,yﬁw.

«
» (ii) Ricci curvature,
RoaB = gijozBuﬁ < 0.
» Can also describe in a more (holomorphically) invariant way:
» (iii) Complex hyperbolicity, such as Kobayashi hyperbolic, or

» (iv) General type, or Log-general type properties,
diml(M,aKy) > ca” i.e. k(Ky) = n, or
dim(M, a(Ky + D)) > ca”, i.e. k(Kym + D) = n.
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where fiber M; is a complex manifold and S is also a complex
manifold.

Consider first M is a Riemann surface with dim¢ M = 1:

Riemann Uniformization:
M is uniformized by P&, C or A = {|z| < 1}.

M| PE C A
g(M)| 0 1 >2
Mg | {-} | H/SL(2,Z) | dimc : 3g — 3

Moduli M, : parametrize isomorphism classes of curves of
genus g.

Similarly, we may consider M, ,, moduli of Riemann surfaces
of genus g with n punctures.

Mg, Mg, for g > 2 share the following properties:
negatively curved, hyperbolic, and are of log-general type.
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Kobayashi distance:

dh(x.y) = i | VE(x. To)|¢ oining x and y)
V4

v

M is Kobayashi hyperbolic: dk(x,y) > 0 Vx # y.
M is Brody hyperbolic : Af : C — M non-constant.

v

v

Kobayashi hyperbolic = Brody hyperbolic

v

Kobayashi hyp < Brody hyp if M compact (Brody
Reparametrization)
In general ‘<" if M non-compact
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» An easy criterion for hyperbolicity: (M, g) has holomorphic
sectional curvature < ¢ < 0 = M Kobayashi hyperbolic.

» Reason:

> (i)Recall Ahlfors’ Schwarz Lemma:
For f : Ag — M holomorphic,

f*g < E
8ar €
Poi p . _ R?|dz?
oincare metric ga, = Rz
d. 2
Atz =0, ga,(0) = 1%

> (i) Apply Lemma to f : Ag — M, at 0, with df () = v,
= R is bounded above
= |v]g > 0.
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since universal cover = H = A, equipped with ga.
eg 2. Pc\{0,1, 00} is hyperbolic, since universal cover = H,

note: Pe\{0,1,00} = H/[SLa(Z), SLa(Z)]

!
H/SL(Z),

moduli of elliptic curves.

eg 3. My is hyperbolic, g > 2.
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> Let t € M. t represent a Riemann surface M; of genus g.
3 a natural invariant metric on M,: Weil-Petersson gyp.
It is known classically (or from Kodaira-Spencer) that tangent
vectors to the moduli at point t are determined by
harmonic ~ ® € HY(M;, Tp,).
Define gWP(Vl,Vg) = fMt<V1,V2>gAdVgA.

Ry = —2/M (O +2) (D0, 05)) - (&, bs)

2 [ (042180, 00) - (07, 05)
Mt

» Ahlfors (61), Royden(75), Wolpert(86):
holomorphic sectional curvature R goa < —m,
In particular, M, is Kobayashi hyperbolic if g > 2.
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i.e. Ricci curvature R,-J- =0.
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i.e. M equipped with complete Kahler-einstein metrics.

We are going to prove that some (augmented) Weil-Petersson
metric

(a) possess a Finsler metric with Rygaa < ¢ < 0,
hence is Kobayashi hyperbolic;

(b) is of log-general type.
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Consider (a) moduli space of Kahler-Einstein metric of
negative scalar curvature (< canonically polarized manifolds)
(1) (Migliorino, Kovacs, Kebekus-Kovacs,...) Given a family of
canonically polarized manifolds over an algebraic curve C,
g(C) =0 = 3 > 3 singular fibers,

g(C) =1= 3> 1 singular fiber.

(I1) (Zuo-Viehweg 2003) Let m : X — S be an effectively
parametrized holomorphic family of K.E. manifolds (-ve curv)
over a complex manifold S. Then S is Brody hyperbolic.

(Il) => (1), note PL — {0,1,00} and T — {0} are hyperbolic.
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» Theorem (To-Yeung (a) )

Let m: X — S be an effectively parametrized holomorphic family
of K.E. manifolds (-ve curv) over a complex manifold S. Then S
admits a C> Aut(m)-inv Finsler metric, with holomorphic sectional
curvature < —c < 0, where c is a constant.

Hence S is Kobayashi hyperbolic.

» Finsler metric: length function h on Ty satisfying
|evln = [cl[v]n.
Effectively parametrization: Kodaira-Spencer map
pe . T:S — HY(M,, Tp,) is injective.
» (a) = (Il), as Kobayashi hyperbolic = Brody hyperbolic.

» In fact, —c depends only on the Chern number ¢’ of a fiber,
similar to M case.
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Schumacher independently constructed a Finsler metric of
negative hol. sect. curvature, but no upper bound < —c < 0,
cannot conclude hyperbolicity directly.

Proofs of theorems of Viehweg-Zuo, Migliorino, Kovacs,
Kebecus-Kovacs etc. are algebraic in nature.

Computation of curvature of Weil-Petersson metric for higher
dimensional manifolds begins with a paper of Siu in 1986.
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» Consider (b) family of Kahler Ricci-flat manifolds or orbifolds.
Dim one case corresponds to moduli of elliptic curves.

Theorem (To-Yeung (b))

Let m: X — S be an effectively parametrized holomorphic family
of compact polarized Kahler manifolds of zero first Chern class
over a complex manifold S. Then S admits a C*° Aut(r)-inv
Finsler metric, with holomorphic sectional curvature < —c < 0,
where ¢ is a constant.

Hence S is Kobayashi hyperbolic.

Theorem (To-Yeung (b))

Same conclusion for family of compact polarized Ricci-flat Kahler
orbifolds.
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» Consider (c) family of quasi-projective manifolds M = M — D
satisfying
(i) D= 3_!_, D;, with D; simple normal crossing,
(i) (Kgz + D)|p, >0 Vi

> It follows that M is equipped with complete Kahler-Einstein
metric g of negative scalar curvature with bounded geometry,
i.e.
(i) The curvature tensor is bounded on M,
(ii) The volume of (M, g) is finite,
(Tsuji, Tian-Yau, Wu,...)

» For this article, we call M ‘log-canonically polarized'.
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» Example: Let M; be a family of smooth hyperplanes in P¢ of
large degree.
Let H be a smooth hypersurface of sufficiently large degree in
P¢.
Let Dy = H N M;, defined by [s;] as a divisor on M;.
Let S be the set of t such that the intersection H N M; is

transversal.
> w given at t by
aa( Vi, ) .
[[s/|?(log [|s|%)?
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» Theorem (To-Yeung (c) )

Let m: X — S be an effectively parametrized holomorphic family
of log-canonically polarized manifolds with bounded variation over
a complex manifold S. Then S admits a C*° Aut(r)-inv Finsler
metric, with holomorphic sectional curvature < —c < 0, where c is
a constant. Hence S is Kobayashi hyperbolic.



[1. Results



[1. Results

» We study another type hyperbolicity criterion. Getting back
to (a), family of (canonically) polarized manifolds.



[1. Results

» We study another type hyperbolicity criterion. Getting back
to (a), family of (canonically) polarized manifolds.

» Conjecture (Viehweg)

Let m: x — S be an effectively parametrized family of canonically

polarized manifolds. Assume that S =S — D, D simple normal
crossing divisor. Then S is of log-general type, i.e. K+ D is big.



[1. Results

» We study another type hyperbolicity criterion. Getting back
to (a), family of (canonically) polarized manifolds.

» Conjecture (Viehweg)

Let m: x — S be an effectively parametrized family of canonically

polarized manifolds. Assume that S =S — D, D simple normal
crossing divisor. Then S is of log-general type, i.e. K+ D is big.

> Results for canonically polarized ones:



[1. Results

» We study another type hyperbolicity criterion. Getting back
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» We study another type hyperbolicity criterion. Getting back
to (a), family of (canonically) polarized manifolds.

» Conjecture (Viehweg)

Let m: x — S be an effectively parametrized family of canonically

polarized manifolds. Assume that S =S — D, D simple normal
crossing divisor. Then S is of log-general type, i.e. K+ D is big.

> Results for canonically polarized ones:
(a). dim = 1: Shafarevich Conjecture,
solved by Parshin, Arakelov.
(b). Arbitrary dimension: partial results were obtained by
Kebekus-Kovacs (dim 3)
Patakfalvi (S compact)
Campana-Paun (general).
» For (b), all depends on existence of a Viehweg-Zuo subsheaf.

> (Viehweg-Zuo) There exists a big subsheaf F of @™Q(S, D)
for some m € Z* (for canonically polarized family).
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» We give a direct construction of a sheaf of Viehweg-Zuo type
for the case of (a), (b) and (c) and derive log-general
properties as desired.

» Theorem (To-Yeung)

Let m: x — S be an effectively parametrized family of manifolds
which are one of the following types

(a) canonically polarized,

(b) log-polarized Kahler-Ricci flat,

(c) log-canonically polarized.

Assume that S =S — D, where D is a simple normal crossing
divisor. Then

(i). There exists explicitly a Viehweg-Zuo subsheaf of @™Q)(S, D)
for some m.

(ii). S is of log-general type.
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» Consider a family

My, €¢ M
{ i
t € S

g+ Kahler-Einstein metric on M;.
RaB(t) = kgaﬁ(t)’ k<0
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» Given a local tangent vector field u on S, there is a unique
lifting to v, such that such that 7.(v,) = uv.
®(u(t)) := Ovy|m, € A%H(M,) is actually a harmonic
representative of the Kodaira-Spencer class, called canonical
lift (Siu) or horizontal lift (Schumacher).
All Lie derivatives later are taken with respect to such vector
fields.

» Hence Kodaira-Spencer Map p; : T:S — HY(M;, Tp,) is
represented by ®(u(t)), a O; = 09* 4+ 0*0 harmonic
bundle-valued form on M;.
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» For v; € T;S, denote ®; = p(v;).
Define h’%VP = f/\//t<¢i’ ¢J>w7
» (Siu 86, Schumacher 93)
wp _ w"
RID() =k | (O~ k) M5, 07)) - (04,002,
i M, nl
1 w"
k[ (@00 (0,002
M n
n

T k/ (O - k)—lzv,¢k,cvj¢e>“’—
M;

+/<W¢®%)W¢®%Wd
M;

w.r.t. normal coordinates. Note that we are using a
‘canonical’ or ‘horizontal' lifting of v to total space.
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Let WV € A%Y(M,, Tp,), representing v € T,S. Let a% e T;:S.

>

@H‘UH%)
w3
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I1l. Idea of proof of (a)

> Procedures to obtain the above identity:
Let WV € A%Y(M,, Tp,), representing v € T,S. Let a% e T;:S.

>
A 3| li5
d;0ilog | V|3 = 8;(= )
aioilvI5 (8f||‘UH§)(&,-HWH%)'
N4 Wil
| 4
0 w"
. 2 _ 7 =
ovIE = g [ v

n

w" w
n!

— / R it / (W, L V)
M, n! M,

n

w
_ /Mt<ﬁv,w,w>n!.
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wn
n!

0
0i07|V |13 f%-f?iHWII%:,-/ (L,V, V)
ot Jm,

n

- /(ﬁv,cviw,w>”+/ (L, L,V
M, n! M,

wn
n!
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0 w”
d:0;||v 2:./ L,V V) —
20i (| W12 o7 Mt< VLV

0;0:| w2

n

n
_ /(ﬁv,cv,.w,w>“’+/ (L, Loy
M; n! M, nl

» Key point: To handle each terms by integration by part
guided by geometry.

» Obvious strategy: Control the last term by the others.
(People tried for years.)
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» Generalizations: Fix v = v;.
Define W, :=H(® D PO --- ® P), {-times.
H(A): harmonic part of A.

;0; log || W13

KOS v )) B

— H%Il%( k(O = k)N V), 0 - v))
—k((O = k)T, 0), (W, W)
—k((D — k)il(ﬁv,-wJ)vain)

v, 2

Tl )

—(H(®; ® V), H(®; © V)))).




I1l. Idea of proof of (a)



I1l. Idea of proof of (a)

» Here ;- W, ¢ A%~1(A*"1TM,) has components given by

5. . areog1 ) X Yo —1
(@i V)5, = (@05 (Vo5 5, 1



I1l. Idea of proof of (a)

» Here ;- W, ¢ A%~1(A*"1TM,) has components given by

- areog1 ) X Yo —1
(@i V)5, = (@05 (Vo5 5, 1

> To obtain the identity:



I1l. Idea of proof of (a)

» Here ;- W, ¢ A%~1(A*"1TM,) has components given by

v ) (g,
(®i-Va)g,.5,, = (@)

. (\U YorQp—1

7 =
v TB1Be-1

> To obtain the identity:
Need various integration by parts



I1l. Idea of proof of (a)

» Here ;- W, ¢ A%~1(A*"1TM,) has components given by

&) (g,
(®i-¥s)5,.5,, = (P

(v Yooy

7 =
v B Be-1

> To obtain the identity:
Need various integration by parts
Regrouping of terms guided by geometry



I1l. Idea of proof of (a)

» Here ;- W, ¢ A%~1(A*"1TM,) has components given by

&) (g,
(®i-¥s)5,.5,, = (P

LU L
v ( B1+Br 1
> To obtain the identity:

Need various integration by parts

Regrouping of terms guided by geometry

Completing of squares (Bochner type arguments).
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» Here ;- W, ¢ A%~1(A*"1TM,) has components given by

&) (g,
(®i-¥s)5,.5,, = (P

LU L
v ( B1+Br 1
> To obtain the identity:

Need various integration by parts

Regrouping of terms guided by geometry
Completing of squares (Bochner type arguments).

> In restrospect, a similar expression was obtained independently
by Schumacher (12) in a slightly different form.
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» The above implies

_ Wal3  JHE)3
0;0; log |V, 2 > -
Wyll2 [HED)|2 I
> Let Wy = [[W[3. Then
_ hW - p@)
1) —_
level 1 dy0y log ') = PORTO)
A A3

Jologh® > M2
level 2 0,0y log K<) = FORTE)

(n) —
level n 8v8v IOg h = h(n—1) h(n)
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» But h("t1) ¢ HrHL(AMHIT,, ) = 0.
Use good term on level i to control bad term on level i — 1.

» Proposition
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» Proposition
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NN 1)
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I1l. Idea of proof of (a)
» But h("t1) ¢ HrHL(AMHIT,, ) = 0.

Use good term on level i to control bad term on level i — 1.

» Proposition
Let 0 = max{{: W, # 0}, N = n!, C; = min{1, %}

NN 1)

3 - -/
Co = 3041, a0 = (a) N—1 . Then for

oz

_ 2N /¢
hv,v) = (3 a3V,
=1
0,9, log h(v,v) > Co hv)
vOy 108 (V,V) = W v,v).

» Remark For n = 1, get back the results for Riemann surfaces.

» Remark Note that the sum stops at o, which is important for
Part 11(ii).
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» Consider a family 7 : X — S with fiber (M, w;), where
M, is Kahler Ricci flat, w; polarization
Require: cohomology class [¢pfw:] € H?>(Mp, C) is constant.
Here ¢¢ : My — M, is induced from a smooth trivialization
¢: My x| — X.

» Analogous to the work of Siu, Nannicini (86) obtained

ikl hzhix + highp;) (1)

4v(
_/Mt<(,cvl_¢k,£vj¢g>m

n

+/Mt<H(¢,'®¢k),H((D @q)g))fl

here V is the volume of M,.
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» To handle the last term, for
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we prove
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1 _ _
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» To handle the last term, for

WJ = H(q)h ORERN@) ¢je) € ‘AO’Z(/\Z TMt)

we prove
9;0; log || W13
1 _ _
- W(H(d)i W), ® - W) 4 (H((Pg, D)), (W, W)
2
v, |2
+((H(LyV ), LoV ) — [(LyVy, —— e )|

—(H(®; ® V), H(®; ® V)))).

» Use bootstraping argument to construct a Finsler metric of
negative holomorphic sectional curvature.
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IV. About the proof of (b)

» Remark Candelas, de la Ossa, Green and Parkes constructed
a family of Calabi-Yau threefolds with mixed signs in the
curvature of gyp. Hence higher order augmented metric
cannot be avoided.

» The same scheme works for orbifolds. Need to make sure that
Hodge Decomposition, Green's kernels make sense for
orbifolds.
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I1l(ic). About the proof of (c)

» Technical difficulties:
(1) Non-compact fibers, need to make sure that integration by
parts make sense.
(2) Need to make sure that Hodge Decomposition, Spectral
Decomposition make sense for the special class of
non-compact manifolds that we study (log-canonically
polarized).
(3) Need to use some sort of Maximum Principle for complete
non-compact manifolds.
(4) The above for tensors obtained after Lie derivatives with
respect to the canonical (horizontal) lifts.
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I11(ii). About the proof of (generalized) Viehweg
Conjecture

» Proposition
There exists a Viehweg-Zuo sheaf in cases (a), (b), (c)
> Idea of Proof
» Consider first a Zariski open set U of M on which it is
effectively parametrized.

» Take a basis %, e ,8% of T:S, and let ®; be the harmonic
)

otl
» Consider the map p(té) : SY(T:S) — A%(A*TM,) given by

representative of p:(=) on M; as before.

w9 o ..o
Pt (8tj1® ®atje

):\UJ = H((Dﬂ@@(bﬂ)
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Let 1 < o < n be the smallest integer £ such that p(‘+1) =0
identically on S.

Consider
0 — ker pl&) — S(Ts) — S(Ts)/kerp) 0. (2)
V = (579(Ts)/ ker p{2))* is a coherent subsheaf of S¢(Qs).

V is a vector bundle on a Zariski open set U, of S.

gwp s is non-degenerate on )V from defintiion.



Q>



» Computation shown earlier for W, on Uy gives,
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» Computation shown earlier for W, on Uy gives,

| 4
9;0; log || W3
1 _ .
= (= k(@O —-k) (D -V,),® V)
HWJlfg(

—k((O = k)H(®;, D3), (W, W)
—k((@O = k) HLyV), Ly,V))
v, )‘2

[Wll2

—(H(CD,' D WJ), H((D,' D WJ))).

‘([fv,va

» For { = o, the last term H(®; ® V) = 0.
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» It follows that

1

9;0; log | W[5 > B
5

(= k(O = k)i, 0)), (We, Wyp))).
(3)

» Hence

1

0d108 Vil > o ([ ) wil?) >0 (9
||w£||2 xeM;



» |t follows that
=y 2 1 —1
0;0; log [|W,l|5 > AR (= k(O — k)", ®;), (Wg, Wy))).
2
(3)

» Hence

— 1
0;9; log [|We|[3 > 2(/ i) [Vell?()) >0 (4)
IWell2* Jxem,

where v; is the canonical lift of ®;.



» It follows that

— 1

9;0; log | W[5 > W( — k(O = k), D7), (Wy, Wp))).

2
(3)

» Hence

— 1

0;0; log || W3 > 2(/ (i, v [IWel?(x)) >0 (4)
||\Ug||2 xeM;

where v; is the canonical lift of ®;.
» We get a Griffith positive subsheaf V of S/(Qs).
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Standard L2-estimates allow us to construct a lot of sections
for V on Uy, hence bigness on U,.

As explained, guwp ¢ is non-degenerate on V. Riemann
Extension Theorem allows us to extend L? sections from U, to

S.
To extend the sheaf V across S — S is more difficult.

For this we used Theorem 1a, -ve hol sectional curv, to
estimate the augmented Finsler metric by the Poincaré metric
gp in a neighborhood of D, using Ahlfors Schwartz Lemma.

This in terms bounds Weil-Petersson metric gup 1 by gp,
from which we can show that L? sections of V|s extends as
log sections to S to conclude Proposition 1.
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» ldea for Proof of Theorem 2.

» Once we have Proposition, we can use the results of
Campana-Paun or modify Miyaoka's generic semi-negativity
Theorem to conclude that Kz + D is big.

Hence Theorem 2 for Case (a).

» Appropriate modifications of the arguments can be applied to

(b) and (c).



