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I. Introduction

I Joint work with Wing-Keung To.

I In complex geometry, we can measure negativity, or
hyperbolicity, of a Kähler manifold (M, g), in terms of
curvature of a Kähler metric g , such as

I (i) Holomorphic sectional curvature: Rαααα < 0, |α| = 1;
where

Rαβγδ = −∂a∂βgγδ + gµν̄∂αν̄∂µγ .

I (ii) Ricci curvature,

Rαβ = gµν̄Rαβµν̄ < 0.

I Can also describe in a more (holomorphically) invariant way:

I (iii) Complex hyperbolicity, such as Kobayashi hyperbolic, or

I (iv) General type, or Log-general type properties,
dim Γ(M, aKM) > can i.e. κ(KM) = n, or
dim Γ(M, a(KM + D)) > can, i.e. κ(KM + D) = n.
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I In this talk, we primarily focus on π : χ→ S a family of
complex manifolds over a base S ,

I where fiber Ms is a complex manifold and S is also a complex
manifold.

I Consider first M is a Riemann surface with dimCM = 1:

I Riemann Uniformization:
M is uniformized by P1

C,C or ∆ = {|z | < 1}.
I

M̃ P1
C C ∆

g(M) 0 1 > 2

Mg {·} H/SL(2,Z) dimC : 3g − 3

Moduli Mg : parametrize isomorphism classes of curves of
genus g .

I Similarly, we may consider Mg ,n, moduli of Riemann surfaces
of genus g with n punctures.

I Mg , Mg ,n for g > 2 share the following properties:
negatively curved, hyperbolic, and are of log-general type.
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I. Introduction

I Recall some standard terminology.

I Kobayashi infinitesemal pseudo-metric:

√
gK (x , v) := inf{ 1

R
|∃f : ∆R → M hol, f (0) = x , f ′(0) = v}

Kobayashi distance:

dK (x , y) = inf
`
{
∫
`

√
gK (x ,T`)|` joining x and y}

I M is Kobayashi hyperbolic: dK (x , y) > 0 ∀x 6= y .

I M is Brody hyperbolic : 6 ∃f : C→ M non-constant.

I Kobayashi hyperbolic ⇒ Brody hyperbolic

I Kobayashi hyp ⇐ Brody hyp if M compact (Brody
Reparametrization)
In general ‘6⇐’ if M non-compact
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I. Introduction

I An easy criterion for hyperbolicity: (M, g) has holomorphic
sectional curvature 6 c < 0 ⇒ M Kobayashi hyperbolic.

I Reason:

I (i)Recall Ahlfors’ Schwarz Lemma:
For f : ∆R → M holomorphic,

f ∗g

g∆R

6
1

c
.

Poincaré metric g∆R
= R2|dz|2

(R2−|z|2)2 .

At z = 0, g∆R
(0) = |dz|2

R2 .

I (ii) Apply Lemma to f : ∆R → M, at 0, with df ( ∂
∂z ) = v ,

=⇒ R is bounded above
=⇒ |v |gK > 0.
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I eg 1. Riemann surface, genus > 2, is hyperbolic,
since universal cover = H ∼= ∆, equipped with g∆.

I eg 2. PC\{0, 1,∞} is hyperbolic, since universal cover = H,
note:

PC\{0, 1,∞} = H/[SL2(Z),SL2(Z)]
↓

H/SL2(Z),

moduli of elliptic curves.

I eg 3. Mg is hyperbolic, g > 2.
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I. Introduction

I Let t ∈Mg . t represent a Riemann surface Mt of genus g .
∃ a natural invariant metric on Mg : Weil-Petersson gWP .
It is known classically (or from Kodaira-Spencer) that tangent
vectors to the moduli at point t are determined by
harmonic Φ ∈ H1(Mt ,TMt ).
Define gWP(v1, v2) :=

∫
Mt
〈v1, v2〉g∆

dvg∆
.

I

Rαβγδ = −2

∫
Mt

(
(�+ 2)−1〈Φα,Φβ〉

)
· 〈Φγ ,Φδ〉ω

−2

∫
Mt

(
(�+ 2)−1〈Φα,Φδ〉

)
· 〈Φγ ,Φβ〉ω

I Ahlfors (61), Royden(75), Wolpert(86):
holomorphic sectional curvature Rαααα 6 − 1

2π(g−1) ,
In particular, Mg is Kobayashi hyperbolic if g > 2.
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I The goal here is to generalize the results to family of higher
dimensional varieties of the following three types of manifolds
on the fiber.

I (a). Family of canonically polarized manifolds
i.e. KM ample, or Kähler-Einstein with negative scalar
curvature, Ri j = cgi j , c < 0.

I (b). Family of polarized Ricci flat Kähler manifolds and
orbifolds.
i.e. Ricci curvature Ri j = 0.

I (c). Family of log-canonically polarized manifolds,
i.e. M equipped with complete Kähler-einstein metrics.

I We are going to prove that some (augmented) Weil-Petersson
metric

I (a) possess a Finsler metric with Rαααα 6 c < 0,
hence is Kobayashi hyperbolic;

I (b) is of log-general type.
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II. Results

I Consider (a) moduli space of Kähler-Einstein metric of
negative scalar curvature (⇔ canonically polarized manifolds)

I (I) (Migliorino, Kovacs, Kebekus-Kovacs,...) Given a family of
canonically polarized manifolds over an algebraic curve C ,
g(C ) = 0⇒ ∃ > 3 singular fibers,
g(C ) = 1⇒ ∃ > 1 singular fiber.

I (II) (Zuo-Viehweg 2003) Let π : X → S be an effectively
parametrized holomorphic family of K.E. manifolds (-ve curv)
over a complex manifold S . Then S is Brody hyperbolic.

I (II) =⇒ (I), note P1
C − {0, 1,∞} and T − {0} are hyperbolic.
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II. Results

I Theorem (To-Yeung (a) )

Let π : X → S be an effectively parametrized holomorphic family
of K.E. manifolds (-ve curv) over a complex manifold S . Then S
admits a C∞ Aut(π)-inv Finsler metric, with holomorphic sectional
curvature 6 −c < 0, where c is a constant.
Hence S is Kobayashi hyperbolic.

I Finsler metric: length function h on TM satisfying
|cv |h = |c ||v |h.
Effectively parametrization: Kodaira-Spencer map
ρt : TtS → H1(Mt ,TMt ) is injective.

I (a) =⇒ (II), as Kobayashi hyperbolic =⇒ Brody hyperbolic.

I In fact, −c depends only on the Chern number cn1 of a fiber,
similar to Mg case.
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I Remarks:

I Schumacher independently constructed a Finsler metric of
negative hol. sect. curvature, but no upper bound 6 −c < 0,
cannot conclude hyperbolicity directly.

I Proofs of theorems of Viehweg-Zuo, Migliorino, Kovacs,
Kebecus-Kovacs etc. are algebraic in nature.

I Computation of curvature of Weil-Petersson metric for higher
dimensional manifolds begins with a paper of Siu in 1986.
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II. Results

I Consider (b) family of Kähler Ricci-flat manifolds or orbifolds.
Dim one case corresponds to moduli of elliptic curves.

Theorem (To-Yeung (b))

Let π : X → S be an effectively parametrized holomorphic family
of compact polarized Kähler manifolds of zero first Chern class
over a complex manifold S . Then S admits a C∞ Aut(π)-inv
Finsler metric, with holomorphic sectional curvature 6 −c < 0,
where c is a constant.
Hence S is Kobayashi hyperbolic.

Theorem (To-Yeung (b’))

Same conclusion for family of compact polarized Ricci-flat Kähler
orbifolds.
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II. Results

I Consider (c) family of quasi-projective manifolds M = M − D
satisfying
(i) D =

∑l
i=1 Di , with Di simple normal crossing,

(ii) (KM + D)|Di
> 0 ∀i

I It follows that M is equipped with complete Kähler-Einstein
metric g of negative scalar curvature with bounded geometry,
i.e.
(i) The curvature tensor is bounded on M,
(ii) The volume of (M, g) is finite,
(Tsuji, Tian-Yau, Wu,. . . )

I For this article, we call M ‘log-canonically polarized’.
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II. Results

I Theorem (To-Yeung (c) )

Let π : X → S be an effectively parametrized holomorphic family
of log-canonically polarized manifolds with bounded variation over
a complex manifold S . Then S admits a C∞ Aut(π)-inv Finsler
metric, with holomorphic sectional curvature 6 −c < 0, where c is
a constant. Hence S is Kobayashi hyperbolic.



II. Results

I We study another type hyperbolicity criterion. Getting back
to (a), family of (canonically) polarized manifolds.

I Conjecture (Viehweg)

Let π : χ→ S be an effectively parametrized family of canonically
polarized manifolds. Assume that S = S − D, D simple normal
crossing divisor. Then S is of log-general type, i.e. KS + D is big.

I Results for canonically polarized ones:
(a). dim = 1: Shafarevich Conjecture,
solved by Parshin, Arakelov.
(b). Arbitrary dimension: partial results were obtained by
Kebekus-Kovacs (dim 3)
Patakfalvi (S compact)
Campana-Paun (general).

I For (b), all depends on existence of a Viehweg-Zuo subsheaf.

I (Viehweg-Zuo) There exists a big subsheaf F of ⊗mΩ(S ,D)
for some m ∈ Z+ (for canonically polarized family).
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II. Results

I We give a direct construction of a sheaf of Viehweg-Zuo type
for the case of (a), (b) and (c) and derive log-general
properties as desired.

I Theorem (To-Yeung)

Let π : χ→ S be an effectively parametrized family of manifolds
which are one of the following types
(a) canonically polarized,
(b) log-polarized Kähler-Ricci flat,
(c) log-canonically polarized.
Assume that S = S − D, where D is a simple normal crossing
divisor. Then
(i). There exists explicitly a Viehweg-Zuo subsheaf of ⊗mΩ(S ,D)
for some m.
(ii). S is of log-general type.
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III. Idea of proof of (a)

I Consider a family
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↓ ↓ π
t ∈ S

gt Kähler-Einstein metric on Mt .
Raβ(t) = kgaβ(t), k < 0

ωM =
2π

k
c1(K−1

X |S , g).
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I Given a local tangent vector field u on S , there is a unique
lifting to vu such that such that π∗(vu) = u.

Φ(u(t)) := ∂vu|Mt ∈ A0,1(Mt) is actually a harmonic
representative of the Kodaira-Spencer class, called canonical
lift (Siu) or horizontal lift (Schumacher).
All Lie derivatives later are taken with respect to such vector
fields.

I Hence Kodaira-Spencer Map ρt : TtS → H1(Mt ,TMt ) is
represented by Φ(u(t)), a 2t = ∂∂∗ + ∂∗∂ harmonic
bundle-valued form on Mt .
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Define hWP
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=
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〈Φi ,Φj〉ω
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I (Siu 86, Schumacher 93)

R
(WP)
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Mt

((�− k)−1〈Φi ,Φj〉) · 〈Φk ,Φ`〉
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n!
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∫
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〈(�− k)−1Lvi Φk ,Lvj Φ`〉
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n!

+

∫
Mt

〈H(Φi ? Φk),H(Φj ? Φ`)〉
ωn

n!
.

w.r.t. normal coordinates. Note that we are using a
‘canonical’ or ‘horizontal’ lifting of v to total space.
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III. Idea of proof of (a)

I Generalizations: Fix v = vi .
Define ΨJ := H(Φ ? Φ ? · · ·? Φ), `-times.
H(A): harmonic part of A.

∂i∂i log ‖ΨJ‖2
2

=
1

‖ΨJ‖2
2

(
− k((�− k)−1(Φi ·ΨJ),Φi ·ΨJ)

−k((�− k)−1〈Φi ,Φi 〉, 〈ΨJ ,ΨJ〉)
−k((�− k)−1(Lvi ΨJ),Lvi ΨJ)

−
∣∣(Lvi ΨJ ,

ΨJ

‖ΨJ‖2
)
∣∣2

−(H(Φi ? ΨJ),H(Φi ? ΨJ))
)
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III. Idea of proof of (a)

I Here Φi ·ΨJ ∈ A0,`−1(∧`−1TMt) has components given by

(Φi ·ΨJ)
α1···α`−1

β1···β`−1
= (Φi )σγ · (ΨJ)

γα1···α`−1

σβ1···β`−1
.

I To obtain the identity:
Need various integration by parts
Regrouping of terms guided by geometry
Completing of squares (Bochner type arguments).

I In restrospect, a similar expression was obtained independently
by Schumacher (12) in a slightly different form.
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III(ia). Idea of proof of (a)

I The above implies

∂i∂i log ‖ΨJ‖2
2 ≥

‖ΨJ‖2
2

‖H(`−1)‖2
2

− ‖H
(`+1)‖2

2

‖ΨJ‖2
2

.

I Let ΨJ = ‖ΨJ‖2
2. Then

level 1 ∂v∂v log h(1) >
h(1)

h(0)
− h(2)

h(1)

level 2 ∂v∂v log h(2) >
h(2)

h(1)
− h(3)

h(2)

·
·

level n ∂v∂v log h(n) >
h(n)

h(n−1)
− h(n+1)

h(n)
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III. Idea of proof of (a)

I But h(n+1) ∈ Hn+1(∧n+1TMt ) = 0.
Use good term on level i to control bad term on level i − 1.

I Proposition

Let σ = max{` : ΨJ 6= 0}, N = n!, C1 = min{1, knn!
(2π)nKn

Mt

},

Cσ = σ1
3σ−1 , a` = ( 3

C1
)
N(N`−1−1)

N−1 . Then for

h(v , v) := (
σ∑
`=1

a`‖ΨJ‖
2N/`
2 )1/2N ,

∂v∂v log h(v , v) >
Cσ

σ1/Na
1+1/N
σ

h(v , v).

I Remark For n = 1, get back the results for Riemann surfaces.

I Remark Note that the sum stops at σ, which is important for
Part III(ii).
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III(ib). Idea of proof of (b)

I Consider a family π : X → S with fiber (Mt , ωt), where
Mt is Kähler Ricci flat, ωt polarization
Require: cohomology class [φ∗tωt ] ∈ H2(M0,C) is constant.
Here φt : M0 → Mt is induced from a smooth trivialization
φ : M0 × I → X .

I Analogous to the work of Siu, Nannicini (86) obtained

R
(WP)

i j̄k ¯̀ (t) = − 1

4V
(hi jhlk + hikhl j) (1)

−
∫
Mt

〈(Lvi Φk ,Lvj Φ`〉
ωn

n!

+

∫
Mt

〈H(Φi ? Φk),H(Φj ? Φ`)〉
ωn

n!
,

here V is the volume of Mo .
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IV. Idea of proof of (b)

I To handle the last term, for

ΨJ := H(Φj1 ? · · ·? Φj`) ∈ A
0,`(∧`TMt)

we prove

∂i∂i log ‖ΨJ‖2
2

=
1

‖ΨJ‖2
2

(
H(Φi ·ΨJ),Φi ·ΨJ) + (H(〈Φi ,Φi 〉), 〈ΨJ ,ΨJ〉)

+((H(Lvi ΨJ),Lvi ΨJ)−
∣∣(Lvi ΨJ ,

ΨJ

‖ΨJ‖2
)
∣∣2

−(H(Φi ? ΨJ),H(Φi ? ΨJ))
)
.

I Use bootstraping argument to construct a Finsler metric of
negative holomorphic sectional curvature.
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IV. About the proof of (b)

I Remark Candelas, de la Ossa, Green and Parkes constructed
a family of Calabi-Yau threefolds with mixed signs in the
curvature of gWP . Hence higher order augmented metric
cannot be avoided.

I The same scheme works for orbifolds. Need to make sure that
Hodge Decomposition, Green’s kernels make sense for
orbifolds.
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III(ic). About the proof of (c)

I Technical difficulties:
(1) Non-compact fibers, need to make sure that integration by
parts make sense.
(2) Need to make sure that Hodge Decomposition, Spectral
Decomposition make sense for the special class of
non-compact manifolds that we study (log-canonically
polarized).
(3) Need to use some sort of Maximum Principle for complete
non-compact manifolds.
(4) The above for tensors obtained after Lie derivatives with
respect to the canonical (horizontal) lifts.
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III(ii). About the proof of (generalized) Viehweg
Conjecture

I Proposition

There exists a Viehweg-Zuo sheaf in cases (a), (b), (c)

I Idea of Proof

I Consider first a Zariski open set U of M on which it is
effectively parametrized.

I Take a basis ∂
∂t1 , · · · , ∂

∂tm of TtS , and let Φi be the harmonic

representative of ρt(
∂
∂t i

) on Mt as before.

I Consider the map ρ
(`)
t : S`(TtS)→ A0,`(∧`TMt) given by

ρ
(`)
t (

∂

∂t j1
⊗ · · · ⊗ ∂

∂t j`
) = ΨJ := H(Φj1 ? · · ·? Φj`).
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I Let 1 < σ 6 n be the smallest integer ` such that ρ(`+1) = 0
identically on S .

I Consider

0→ ker ρ(`) → S`(TS)→ S`(TS)/ ker ρ(`) → 0. (2)

I V = (Sσ(TS)/ ker ρ(σ))∗ is a coherent subsheaf of S`(ΩS).

I V is a vector bundle on a Zariski open set Uσ of S .

I gWP,σ is non-degenerate on V from defintiion.
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I Computation shown earlier for ΨJ on U` gives,

I

∂i∂i log ‖ΨJ‖2
2

=
1

‖ΨJ‖2
2

(
− k((�− k)−1(Φi ·ΨJ),Φi ·ΨJ)

−k((�− k)−1〈Φi ,Φi 〉, 〈ΨJ ,ΨJ〉)
−k((�− k)−1(Lvi ΨJ),Lvi ΨJ)

−
∣∣(Lvi ΨJ ,

ΨJ

‖ΨJ‖2
)
∣∣2

−(H(Φi ? ΨJ),H(Φi ? ΨJ))
)
.

I For ` = σ, the last term H(Φi ? ΨJ) = 0.
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I It follows that

∂i∂i log ‖Ψ`‖2
2 >

1

‖Ψ`‖2
2

(
− k((�− k)−1〈Φi ,Φi 〉, 〈Ψ`,Ψ`〉)

)
.

(3)

I Hence

∂i∂i log ‖Ψ`‖2
2 >

1

‖Ψ`‖2
2

( ∫
x∈Mt

〈νi , νi 〉‖Ψ`‖2(x)
)
> 0 (4)

where νi is the canonical lift of Φi .

I We get a Griffith positive subsheaf V of S`(ΩS).
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I Standard L2-estimates allow us to construct a lot of sections
for V on U`, hence bigness on U`.

I As explained, gWP,` is non-degenerate on V. Riemann
Extension Theorem allows us to extend L2 sections from U` to
S .

I To extend the sheaf V across S − S is more difficult.

I For this we used Theorem 1a, -ve hol sectional curv, to
estimate the augmented Finsler metric by the Poincaré metric
gP in a neighborhood of D, using Ahlfors Schwartz Lemma.

I This in terms bounds Weil-Petersson metric gWP,1 by gP ,
from which we can show that L2 sections of V|S extends as
log sections to S to conclude Proposition 1.
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I Idea for Proof of Theorem 2.

I Once we have Proposition, we can use the results of
Campana-Paun or modify Miyaoka’s generic semi-negativity
Theorem to conclude that KS + D is big.
Hence Theorem 2 for Case (a).

I Appropriate modifications of the arguments can be applied to
(b) and (c).
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