Building Blocks of Polarized Endomorphisms of Normal Projective Varieties

Sheng Meng, De-Qi Zhang

Department of Mathematics National University of Singapore

May 2, 2017

We work over an algebraically closed field *k* which has characteristic zero, and is uncountable. (eg. \mathbb{C})

글 🕨 🖌 글

We work over an algebraically closed field k which has characteristic zero, and is uncountable. (eg. \mathbb{C})

Let *X* be a (normal) projective variety. Let $f : X \to X$ be a surjective endomorphism. Denote by $N^1(X) := NS(X) \otimes_{\mathbb{Z}} \mathbb{R}$ for the Néron-Severi group $NS(X) = Pic(X)/Pic^0(X)$. *f* induces an automorphism $f^* : N^1(X) \to N^1(X)$.

Definition (Polarized Endomorphsim)

Let $f : X \to X$ be a surjective endomorphism of a (normal) projective variety X. We say that f is polarized if there is an ample Cartier divisor H such that $f^*H \sim qH$ for some integer q > 1.

Definition (Polarized Endomorphsim)

Let $f : X \to X$ be a surjective endomorphism of a (normal) projective variety X. We say that f is polarized if there is an ample Cartier divisor H such that $f^*H \sim qH$ for some integer q > 1.

Proposition

The following are equivalent.

- (1) f is polarized.
- (2) $f^*H \equiv qH$ in $N^1(X)$ for some ample \mathbb{R} -divisor H.

X is called *Q*-abelian if there is a quasi-étale (i.e. étale in codimension 1) cover $\pi : A \to X$ from an abelian variety *A*.

X is called *Q*-abelian if there is a quasi-étale (i.e. étale in codimension 1) cover $\pi : A \to X$ from an abelian variety *A*.

Theorem (N. Nakayama and D. Q. Zhang, 2010)

Let *X* be a normal projective surface and *f* a polarized endomorphism. Then either $f^*|_{N^1(X)}$ is a scalar (after iteration) or *X* is *Q*-abelian.

X is called *Q*-abelian if there is a quasi-étale (i.e. étale in codimension 1) cover $\pi : A \to X$ from an abelian variety *A*.

Theorem (N. Nakayama and D. Q. Zhang, 2010)

Let *X* be a normal projective surface and *f* a polarized endomorphism. Then either $f^*|_{N^1(X)}$ is a scalar (after iteration) or *X* is *Q*-abelian.

Question: what about high dimensional case?

Let X be \mathbb{Q} -factorial lc and $f : X \to X$ be a polarized endomorphism. Then any MMP (with finitely many steps) starting from X can be run f-equivariantly (after iteration).

Let X be \mathbb{Q} -factorial lc and $f : X \to X$ be a polarized endomorphism. Then any MMP (with finitely many steps) starting from X can be run f-equivariantly (after iteration).

Sketch of the idea: Let $f_i = f|_{X_i}$ and $\pi : X_i \dashrightarrow X_{i+1}$ the *i*th step. We need to show (1) f_i may descend to an endomorphism $f_{i+1} : X_{i+1} \to X_{i+1}$; (2) f_{i+1} is again polarized.

For (1), the key observation is the following:

Lemma

Let (X, f) be a polarized pair. Suppose $A \subseteq X$ is a closed subvariety with $f^{-i}f^i(A) = A$ for all $i \ge 0$. Then $f^{\pm 1}(A) = A$ (after iteration).

For (1), the key observation is the following:

Lemma

Let (X, f) be a polarized pair. Suppose $A \subseteq X$ is a closed subvariety with $f^{-i}f^i(A) = A$ for all $i \ge 0$. Then $f^{\pm 1}(A) = A$ (after iteration).

Lemma

Let X be a \mathbb{Q} -factorial lc normal projective variety and $f: X \to X$ a surjective endomorphism. Let $\pi: X \to Y$ be a contraction of a K_X -negative extremal ray $R_C := \mathbb{R}_{\geq 0}[C]$. Suppose that $E \subseteq X$ is a subvariety such that $\dim(\pi(E)) < \dim(E)$ and $f^{-1}(E) = E$. Then replacing f by a positive power, $f(R_C) = R_C$; hence, π is f-equivariant.

イロト イポト イヨト イヨト 二日

For (2), first note that by pull back of π_i , N¹(X_{i+1}) can be regarded as an $((f^*)^{\pm 1}$ -invariant) hyperplane of N¹(X_i) (divisoral and Fano contractions) or just N¹(X_i) (flip).

For (2), first note that by pull back of π_i , N¹(X_{i+1}) can be regarded as an $((f^*)^{\pm 1}$ -invariant) hyperplane of N¹(X_i) (divisoral and Fano contractions) or just N¹(X_i) (flip).

Remark

1. f_i^* is a scalar iff so is f_{i+1}^* .

2. The ample cones $Amp(X_{i+1}) \cap Amp(X_i) = \emptyset$.

Proposition (S. Meng and D.-Q. Zhang)

Let $f: V \to V$ be a (linear) automorphism of a positive dimensional real vector space V such that $f^{\pm 1}(C) = C$ for a closed cone $C \subseteq V$ which spans V and contains no line. Let q be a positive number. Then (1) and (2) below are equivalent.

(1) f(x) = qx for some $x \in C^{\circ}$.

(2) There exists a constant N > 0, such that $\frac{||f'||}{q^i} < N$ for any $i \in \mathbb{Z}$.

If (1) or (2) above is true, then f is a diagonalizable linear map with all eigenvalues of modulus q.

Application:
$$C = Nef(X) := \overline{Amp(X)}$$
 or $C = PEC(X) := \overline{Big(X)}$

Proposition (S. Meng and D.-Q. Zhang)

Below are equivalent.

- (1) f is polarized.
- (2) $f^*H \equiv qH$ in $N^1(X)$ for some big \mathbb{R} -divisor H. (quasi-polarized)

Application:
$$C = Nef(X) := \overline{Amp(X)}$$
 or $C = PEC(X) := \overline{Big(X)}$

Proposition (S. Meng and D.-Q. Zhang)

Below are equivalent.

(1) f is polarized.

(2) $f^*H \equiv qH$ in $N^1(X)$ for some big \mathbb{R} -divisor H. (quasi-polarized)

Proposition (S. Meng and D.-Q. Zhang)

Let $\pi : X \to Y$ be a dominant rational map between two projective varieties and let $f : X \to X$ and $g : Y \to Y$ be two surjective endomorphisms such that $g \circ \pi = \pi \circ f$. If f is polarized. Then g is polarized.

< ロ > < 同 > < 回 > < 回 > < 回 > <

Theorem (D. Greb, S. Kebekus and T. Peternell, 2016)

Let X be a non-uniruled normal projective variety and f polarized. Then X is Q-abelian.

Theorem (D. Greb, S. Kebekus and T. Peternell, 2016)

Let X be a non-uniruled normal projective variety and f polarized. Then X is Q-abelian.

As an application, we have:

Lemma (S. Meng and D.-Q. Zhang)

Let (X, f) be a polarized pair with X being a \mathbb{Q} -factorial klt normal projective variety. Assume that K_X is pseudo-effective. Then X is Q-abelian.

Theorem (D. Greb, S. Kebekus and T. Peternell, 2016)

Let X be a non-uniruled normal projective variety and f polarized. Then X is Q-abelian.

As an application, we have:

Lemma (S. Meng and D.-Q. Zhang)

Let (X, f) be a polarized pair with X being a \mathbb{Q} -factorial klt normal projective variety. Assume that K_X is pseudo-effective. Then X is Q-abelian.

Remark

Let *X* be a *Q*-abelian variety and $f : X \to X$ a surjective endomorphism. Assume the existence of a non-empty closed subset $Z \subsetneq X$ and s > 0, such that $f^{-s}(Z) = Z$. Then *f* is not polarized.

イロト イポト イヨト イヨト

Let (X, f) be a polarized pair such that X has at worst \mathbb{Q} -factorial klt singularities. Then, replacing f by a positive power, there exist a Q-abelian variety Y, a morphism $X \to Y$, and an f-equivariant relative MMP over Y

$$X = X_1 \dashrightarrow \cdots \dashrightarrow X_i \dashrightarrow \cdots \dashrightarrow X_r = Y$$

(i.e. $f = f_1$ descends to polarized f_i on each X_i), such that we have:

- (1) If K_X is pseudo-effective, then X = Y and it is Q-abelian.
- (2) If K_X is not pseudo-effective, then for each i, X_i → Y is an equi-dimensional morphism with every fibre (irreducible) rationally connected. The X_{r-1} → X_r = Y is a Fano contraction.

< □ > < □ > < □ > < □ > < □ > < □

Let (X, f) be a polarized pair. Assume that X is smooth and rationally connected. Then, replacing f by a positive power, f^* is a scalar.

Let (X, f) be a polarized pair. Assume that X is smooth and rationally connected. Then, replacing f by a positive power, f^* is a scalar.

Sketch: X has no non-trivial (quasi)-étale cover. So MMP ends up with a point.

Let (X, f) be a polarized pair. Assume that X is smooth and rationally connected. Then, replacing f by a positive power, f^* is a scalar.

Sketch: X has no non-trivial (quasi)-étale cover. So MMP ends up with a point.

Question

Let (X, f) be a polarized pair. Assume that X is a rationally connected variety with at worst \mathbb{Q} -factorial terminal singularities. Is a positive power of f^* a scalar?

True when dim $(X) \leq 3$.

Thanks!

Q & A

Sheng Meng, De-Qi Zhang (NUS) Building Blocks of Polarized Endomorphisms of No

May 2, 2017 13 / 13

< Ξ

イロト イロト イヨト