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SLDS/Nonparamatric Conference in 2018

The Conference on Statistical Learning and Data Science /
Nonparametric Statistics

Date: Monday, June 4 - Wednesday, June 6, 2018

Place: Columbia University, NYC

Conference is chaired by Annie Qu (anniequ@illinois.edu) and
Cynthia Rudin (cynthia@cs.duke.edu).

Local Chair: Tian Zheng, Columbia U

Still looking for industry sponsorship!

2 / 51



Prelude
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Individualized Modeling V.S. Population Modeling

Population modeling

I Homogeneity assumption

I Marginal average effect

Individualized modeling

I Heterogeneity variation

I Subject-specific effect
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Why Individualized Modeling (Variable Selection)?

Abundant individual information
collected

More precise prediction for
individuals

I Personalized medicine

I Individualized recommendation
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Real Data Example: HIV Data (ACTG16)

Harvard AIDS clinical trial group: longitudinal data study

I 140 patients with measurements over 14 time points

I Response: CD4 counts (missing rate: 8.5%)

I Main variable of interest: Zidovudine (ZDV) treatment effect

I Control variables: Age, Gender
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Individuals’ CD4 counts (response) over time
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A Traditional Model Testing ZDV Effect

A marginal model:

yit = β0+βt∗Time+βz∗ZDV+βzt∗ZDV ∗ Time+βa∗Age+βg∗Gender+εit

Treatment indicator: ZDV (treatment group=1, control group=0)

Treatment effect βzt : difference in slope compared to the control group
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ZDV Treatment Effect

Examine the marginal treatment effect over time: β̂zt

β̂zt is Not significant! ( p-value=0.113)

=⇒ No effect of ZDV on average
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Average Treatment Effect

Treatment effect over time
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Heterogeneity within ZDV Treatment Group
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Individualized Regression Model Framework

Individualized regression model under clustered data framework:

yi = Xiβi + Ziα+ εi , i = 1, ...,N

N: sample size (number of subjects)

mi : cluster size (set mi = m, number of repeated measurements)

yi (m × 1): response vector; εi (m × 1): random error

Xi (m × p): individualized covariates with βi = (βi1, ..., βip)′

Zi (m × q): population-shared covariates with α = (α1, ..., αq)′
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A Penalized Variable Selection Approach

Minimize a penalized objective function:

(β̂, α̂) = argmin
β,α

1

2

N∑
i=1

‖ yi − µi (βi ,α) ‖2
2 +λN,m

N∑
i=1

p∑
k=1

ρ(βik) (1)

ρ(·): Lasso (Tibshirani, 1996), SCAD (Fan and Li, 2001), elastic net

(Zou, 2005), adaptive Lasso (Zou, 2006), MCP (Zhang, 2010) and TLP

(Shen et al., 2012), etc.

Subject(individual)-wise modeling, may have overfitting

Not utilize cross-subject information
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Subpopulation with Respect to Regression Coefficients

Encourage subgrouping of individuals who share the similar effect

Some existing approaches:

I Grouping covariates in a population model: fused Lasso

(Tibshirani et al., 2005), OSCAR (Bondell et al., 2008), grouping

pursuit (Shen and Huang, 2010), CARDS (Ke et al., 2015)

I Mixture-of-regressions model (Jacobs et al., 1991)

I Pairwise penalized clustering (Hocking et al., 2011; Lindsten et

al., 2011; Pan et al., 2013; Ma and Huang, 2016)

I Meta lasso (Li et al., 2013): No subpopulation
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Our Target in Two Perspectives

Individual feature selection: select different relevant predictors for

different individuals

Utilizing subgroup homogeneity: borrow cross-subject

information in both variable selection and model estimation
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Subpopulation Structure Assumption

Regarding to the kth (k = 1, . . . , p) individualized covariate, assume:

βik =

{
γk , if i ∈ Gk
0, if i ∈ Gck

for ith subject, i = 1, . . . ,N

Gk is the unknown index set for signal group of individuals

γk is the unknown homogeneous effect shared within subgroup

Different subgrouping with respect to different covariates

Extensions

I multiple subgroups: G0
k ,G1

k ,G2
k , . . .

I constraint homogeneous effects: γ+
k > 0 or γ−k < 0
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The Proposed Approach

Regression coefficients βi ’s and α are estimated by minimizing

QN,m(β,α,γ) =
1

2

N∑
i=1

(yi − µi )
TV−1

i (yi − µi ) + λN,m

N∑
i=1

p∑
k=1

s(βik , γk),

Multi-directional separation penalty (MDSP)

s(βik , γk) = min(|βik − γk |, |βik |), k = 1, . . . , p

I Provide multiple shrinking directions for βik : either 0 or γk

I Group βik ’s over different subjects

Vi = A1/2
i RmA1/2

i incorporates within-subject correlation
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Alternative Shrinking Direction

L1-penalty: λ(|β1|+ |β2|)

MD-penalty for β2: λ(|β1|+ min(|β2|, |β2 − γ2|))

nearly unbiased estimator of β̂2
MD

if γ2 → β0
2
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Comparison to Traditional Penalty Functions

To overcome estimation bias due to L1-penalty

I SCAD, MCP, TLP: Non-convex penalty, control threshold by
tuning parameter

I Adaptive Lasso: control magnitude of penalization through initial
weights

I Proposed penalty: provide alternative shrinking direction
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Piecewise Convex Separation Penalty and Grouping

Different shrinking directions to

separate individuals

I Weak signals ⇒ 0

I Strong signals ⇒ γk
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Figure 1: Thresholding functions for Lasso and
the proposed separation penalty.
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Algorithm for Optimization

1 (Initialization) Provide initials: β̂(0), α̂(0), e.g., OLS or Lasso estimators

2 Calculate γ̂(0) = argminγ

∑p
k=1

∑N
i=1 min(|β̂(0)

ik |, |β̂
(0)
ik − γk |)

3 (Regression) At the mth iteration, update β̂(m), α̂(m) via minimizing

L(β,α) + λN,m

N∑
i=1

p∑
k=1

{
(1− ξ̂ik )|βik |+ ξ̂ik |βik − γ̂

(m−1)
k |

}
,

where L(·) is the quadratic loss function, and ξ̂ik = 1(|β̂(m−1)
ik

| > |β̂(m−1)
ik

− γ̂(m−1)
k

|)

4 (Grouping) Update γ̂(m) by minimizing
p∑

k=1

N∑
i=1

min(|β̂(m)
ik |, |β̂

(m)
ik − γk |)

5 Iterate Step 3 and Step 4 until ‖ β̂(m) − β̂(m−1) ‖2 + ‖ α̂(m) − α̂(m−1) ‖2< ε, ε
is a pre-specified small value
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Properties of Proposed Algorithm

Algorithm Convergence

I Due to non-convex optimization, the iterative estimators converge

to a local minimizer

Step 3 (regression) is a Lasso-type convex optimization problem

Step 4 (grouping): K-means algorithm (one group center is 0)

Tuning parameter λN,m: generalized cross-validation (GCV)
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Theory of Double-divergence Correlated Model

Two sample sizes

I Number of individuals N: population information

I Number of repeated measurements m: individual information

Theoretical Challenges

I Multi-directional separation penalty

I Both N and m could go to infinity

I Diverging number of parameters pθ = Np + q

I Within-subject dependence
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Population-wise Oracle Estimators

Subgroup membership Gk = {1 ≤ i ≤ N : βik = γk 6= 0} is known

True signal set (Ai ) of any individual is known, e.g.,

βor
1 = (γ1, 0, γ3, γ4, 0, . . . , 0)′,

βor
2 = (0, γ2, γ3, 0, γ5, . . . , 0)′,

· · ·

The total sample size is
∑N

i=1 mi = mN

|Gk | denotes the subgroup size of non-zero-effect individuals, k = 1, . . . , p

Nk =
∑

i∈Gk
mi = m|Gk |: total information contributing to γ̂k
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Subgroup Effects on Oracle Estimators’ Convergence

Theorem 1

Suppose ηm = λmax(R−1
m R0

m) ≤ C1 uniformly holds for some constant C1, under
regularity conditions, if either (i) m→∞ or (ii) min(|Gk |)→∞, we have

η
−1/2
m ‖M1/2

Nm

(
{(γ̂or )T , (α̂or )T}T − {(γ0)T , (α0)T}T

)
‖ ≤ Op(1)

where MNm = diag(N1, . . . ,Np︸ ︷︷ ︸
p

,mN, . . . ,mN︸ ︷︷ ︸
q

).

Rm is the working correlation matrix,R0
m is the true correlation matrix

Convergence rate of γ̂k is η
−1/2
m

√
Nk = η

−1/2
m

√
m|Gk |

Both subgroup size |Gk | and repeated measurement size m contribute

Faster convergence rate than any subject-wise estimator (η
−1/2
m

√
m)

25 / 51



Oracle property of the Diverging Proposed Estimator

Theorem 2

Let τm = η−1
m λmin(DN,m), where ηm = λmax(R−1

m R0
m), θ(Np+q)×1 = (βT ,αT )T .

Under regularity conditions, if
λN,m

τm
→ 0,

λN,m√
τm
→∞, and log(N) = o(τm), as

τm →∞, N(τm)→∞, we have

Oracle property: P(θ̂ = θ̂or )→ 1.

DN,m(θ) =
∑N

i=1

(
∂µi (θ)

∂θT

)T

V−1
i

(
∂µi (θ)

∂θT

)
If λmax(R0

m) is bounded (e.g., independent model), then τm = O(m)
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Simulation I: Simple Subject-wise Model

Heterogeneous model with one individualized covariate:

yij = α0 + α1zij1 + α2zij2 + βixij + εij , i = 1, . . . ,N, j = 1, . . . ,m.

Set β = (β1, . . . , βN)′ = (γ, . . . , γ︸ ︷︷ ︸
N/2

, 0, . . . , 0︸ ︷︷ ︸
N/2

)′, where γ = 1 or 2

population parameters:α′ = (α0, α1, α2) = (1, 1, 1)

zij1, zij2, xij ∼ N(0, 1); independent εij ∼ N(0, 1)

Sample size N = 40 or 100, cluster size m = 10, 20
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Evaluation of Performance

Model estimation efficiency

I Root mean squared error (RMSE): N−
1
2 ‖β̂ − β0‖2

I RMSE is equivalent to standard prediction error

Variable selection accuracy (over individuals)

I Correct variable selection rate (CVSR)

I Sensitivity: true positive rate P(β̂i 6= 0|βi 6= 0)

I Specificity: true negative rate P(β̂i = 0|βi = 0)
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Comparing Methods

Subject-wise least squares estimator

Homogeneous least squares estimator

Subject-wise penalized estimator

I Lasso, adaptive Lasso, SCAD and MCP

Fused Lasso estimator
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Select Number of Subgroups

Sk : number of non-zero-effect subgroups for kth individualized covariate

Modified Bayesian Information Criterion (Wang et al., 2007)

BIC(Sk) = log

( N∑
i=1

m∑
j=1

(yij − µ̂ij(Sk))2/mN

)
+ bN,m

log(mN)

mN
(Sk + q)

bN,m = log(log(Np + q))
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Simulation I: Average RMSE of 200 replications (Plot)
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Simulation I: RMSE of 200 replications (Boxplot)
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Simulation I: Average RMSE of 200 replications (Table)

Table 1: The average root mean square error (RMSE) of the proposed MDSP model
compared with other approaches based on 100 simulations, with sample size
N = 40, 100, cluster size m = 10, 20, and subgroup homogeneous effect γ = 2.

Sample Cluster Methods
Size (N) Size(m) MDSP Sub Homo FusedL Lasso AdapL SCAD MCP

40
10 0.122 0.349 1.004 0.317 0.408 0.309 0.311 0.309
20 0.048 0.232 1.002 0.204 0.293 0.181 0.168 0.167

100
10 0.113 0.350 1.001 0.318 0.387 0.305 0.300 0.299
20 0.037 0.233 1.001 0.210 0.274 0.208 0.206 0.206
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Simulation I: Variable Selection (Boxplot)
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Simulation I: Variable Selection (Table)

Table 2: The average correct variable selection rate (CVSR), sensitivity and
specificity of the proposed MDSP model compared with other approaches based on
100 simulations, with sample size N = 40, 100, cluster size m = 10, 20, and subgroup
homogeneous effect γ = 2.

Variable Sample Cluster Methods
Selection Size (N) Size(m) MDSP FusedL Lasso AdapL SCAD MCP

CVSR
40

10 0.959 0.639 0.886 0.884 0.800 0.852
20 0.972 0.670 0.928 0.940 0.908 0.953

100
10 0.940 0.648 0.868 0.898 0.809 0.871
20 0.965 0.682 0.890 0.888 0.773 0.832

Sensitivity
40

10 0.997 0.996 0.997 0.998 1.000 0.998
20 1.000 1.000 1.000 1.000 1.000 1.000

100
10 0.998 0.997 0.998 0.998 0.999 0.999
20 1.000 0.999 0.993 0.994 0.999 0.997

Specificity
40

10 0.922 0.282 0.774 0.771 0.602 0.705
20 0.945 0.340 0.856 0.880 0.816 0.906

100
10 0.882 0.299 0.738 0.797 0.620 0.744
20 0.930 0.365 0.787 0.782 0.546 0.668
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Simulation II: Constraint Subgroups and Within-subject Invariant Covariate

Heterogeneous model setting:

yij = α0 +α1zij1 +α2zij2 +βi1xi1 +βi2xij2 +εij , i = 1, ...,N, j = 1, ...,m

Set (α0, α1, α2) = (1, 1, 1); generate z1 and z2 from N(0, 1)

Within-subject invariant covariates: xi1 = −1 or 1, coefficients βi1 to be

either -2, 2 or 0, balanced subgroup size

Within-subject varying covariates: xij2 ∼ N(0, 1), coefficients βi2 to be

either -1, 1 or 0, balanced subgroup size

Sample size N = 60, repeated measurement size m = 2, 5, 10
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Simulation II: Modeling Performance

Table 3: The correct variable selection rates for the proposed
separation-penalty approach (βMDSP

i1 , βMDSP
i2 ) and the L1-penalized model (βL1

i1 ,

βL1
i2 ), and the RMSE for two approaches.

Correct variable selection rate RMSE

Repeated size βMDSP
i1 βL1

i1 βMDSP
i2 βL1

i2 MDSP L1

m = 2 0.93 0.60 0.80 0.53 0.56 1.01
m = 5 0.94 0.66 0.83 0.60 0.37 0.64
m = 10 0.95 0.71 0.84 0.64 0.18 0.45

performance of other subject-wise penalized models are similar to the
Lasso model
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Simulation II: Estimates of Individualized Coefficients

0 10 20 30 40 50 60

−
3

−
2

−
1

0
1

2
3

βi1

Individual

b
e

ta
1

●

●

●

●

●

●
●

●

●
●

●
●

●

●

●●

●

●

●

●

●

●

●
●●

●

●●
●
●●●

●

●

●

●●●●
●

●

●●●

●

●

●

●

●

●●

●

●

●

●

●

●

●

●

●

●

Proposed Model
L1 Model
True value

0 10 20 30 40 50 60
−

1
.5

−
1

.0
−

0
.5

0
.0

0
.5

1
.0

βi2

Individual

b
e

ta
2

●

●

●

●

●

●●

●

●

●

●

●

●

●

●
●●

●

●

●

●●

●

●

●

●

●

●●
●

●●●
●

●

●

●●

●

●

●

●

●

●

●

●●●●

●

●

●

●●

●

●

●
●

●

●

●

Proposed Model
L1 Model
True value

Figure 2: The estimated personalized coefficients of βi1, βi2 for
individuals when the repeated measurement size m = 10.
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HIV Data: An Individualized Model

Individualized effect for treatment group:

yit = β0+βt∗Time+βz∗ZDV+βizt∗ZDV ∗ Time+βa∗Age+βg∗Gender+εit

In control group (ZDV=0), βizt is set to be zero

Assuming there are three subgroups: 0, γ+ > 0 or γ− < 0

Training set: time t = 1, . . . , 12; Testing set: time t = 13, 14
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Compared Methods

Homogeneous Model: assume βizt = βzt

Random-effects model: random effects on slope βzt

Subject-wise penalized (Lasso) model:
∑N

i λ|βizt |

Fused Lasso model: λ
∑

i 6=j |βizt − βjzt |

Evaluation: median prediction errors (MPE) on testing set
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Model Estimation and Prediction

Table 4: The estimated coefficients of the population model, the
random-effects model, the L1-penalty model and the proposed model with
corresponding median prediction errors (MPE) for the ACTG data. The
individualized coefficient estimators β̂izt ’s in the Lasso model, the fused Lasso
(fusedL) model and the proposed (MDSP) model are not listed.

Model β̂0 β̂t β̂z β̂a β̂g β̂zt MPE
Population 3.09 −0.68 −0.54 0.01 −0.01 −0.24 1.67

Random-effects 2.56 −0.68 −0.57 0.02 −0.01 −0.29 1.70
Lasso 3.09 −0.76 −0.54 0.01 −0.01 - 1.64
fusedL 3.05 −0.72 −0.52 0.01 −0.01 - 1.62

MDSP 3.10 −0.68 −0.56 0.01 −0.01 - 1.44
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Subpopulations for ZDV Treatment Group βizt
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Post-Subgrouping Marginal Model

Table 5: The treatment effect estimators within each subgroup model (zero-effect
group: β0

zt , negative-effect group: β−zt and positive-effect group β+
zt) as well as the

standard errors (s.e.) and the p-values. Each subgroup consists of the corresponding
individuals in the treatment group identified by the Lasso model or the proposed
model (MDSP) as well as all the individuals in the control group. The proportion of
individuals with the treatment classified into each subgroup is provided.

Model Estimates s.e. p-value Proportion

β̂0
zt −0.24 0.17 0.14 0.75

Lasso β̂−zt −0.73 0.31 0.02 0.18

β̂+
zt 0.82 0.48 0.10 0.07

β̂0
zt −0.04 0.30 0.89 0.20

MDSP β̂−zt −0.68 0.08 0.00 0.64

β̂+
zt 0.72 0.33 0.02 0.16

Combine the identified subgroup with the control group and fit a

marginal regression model
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Concluding Remarks

Individualized regression model with subpopulation structure

Multi-directional Separation penalty: Center-based integration

providing multiple shrinking directions

Theoretical properties: population-wise oracle property

Incorporate cross-subjects information to improve individual

model’s estimation and prediction
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The End

Thank You!
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Regularity Conditions

(A1) The unknown parameter θ = (α′,β′)′ belongs to a compact subset B ⊆ Rpθ

and its true value θ0 = ((α0)′, (β0)′)′ lies in the interior of B;

(A2) Random error εij has mean 0 and variance σ2 <∞, εi is a sub-Gaussian vector

(A3) There exist νl > 0, ν′l > 0, such that λmin(R0
i ) > νl and λmin(Ri ) > ν′l for all i

and m.

(A4) X̃ij = (Z ′ij ,X
′
ij )
′
(q+p)×1

belongs to a compact set X ⊂ Rq+p for 1 ≤ i ≤ N and

1 ≤ j ≤ m;

(A5) Let X̃i,k denote the kth column of X̃i , assume ‖X̃i·,k‖2
2 = Op(m) and∑N

i=1 m
−1‖X̃i·,k‖2

2 = Op(N), for 1 ≤ k ≤ q + p;

(A6) m−1λmin(XT
i Xi ) > c3 for any i and

(mN)−1λmin

(∑N
i=1 ZT

i (Im −HXi )Zi

)
> c4, where HXi = Xi (XT

i Xi )
−1XT

i , for

some constants 0 < c3 <∞, 0 < c4 <∞ .
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Some Corollaries of Oracle Property

Uniform model selection consistency: P(∩N
i=1{Âi = Ai})→ 1

Group identification consistency: P(∩p
k=1{Ĝk = Gk})→ 1

Population-wise optimal efficiency: η
−1/2
m

√
Nk = η

−1/2
m

√
m|Gk |
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Simulation I: Select Number of Subgroups

Table 6: The mean of identified subgroup numbers of the proposed model compared
with the two-stage OLSK method based on 100 simulations, with sample size
N = 60, 120, cluster size m = 5, 10, 20. The first three scenarios contain one
individualized predictor (p = 1) of one, two and three groups, respectively. The last
scenario contain two individualized predictors (p = 2), one with two groups and the
other with three groups. The subgroup sizes are equal in each scenario. The subgroup
homogeneous effects are listed as possible values for βi in the table.

Number of individualized variables p = 1 p = 2
Sample Cluster βi = 0 βi = 0, 1 βi = 0, 2, 5 β1i = 0, 2 β2i = −2, 0, 1
Size
(N)

Size(m) MDSP OLSK MDSP OLSK MDSP OLSK MDSP OLSK MDSP OLSK

60
5 1.0(100) 1.0(100) 2.0(95) 1.0(2) 2.9(88) 2.5(68) 2.0(100) 1.5(52) 3.2(85) 1.2(0)
10 1.0(100) 1.0(100) 2.0(100) 1.3(26) 3.1(90) 2.7(74) 2.0(100) 2.0(100) 3.1(90) 2.4(44)
20 1.0(100) 1.0(100) 2.0(100) 2.0(100) 3.1(92) 2.8(78) 2.0(100) 2.0(100) 3.0(100) 2.8(80)

120
5 1.0(100) 1.0(100) 2.0(96) 1.0(2) 3.2(86) 2.8(82) 2.0(100) 1.7(72) 3.1(90) 1.4(0)
10 1.0(100) 1.0(100) 2.0(100) 1.2(24) 3.1(92) 2.9(86) 2.0(100) 2.0(100) 3.1(90) 2.6(64)
20 1.0(100) 1.0(100) 2.0(100) 2.0(100) 3.0(98) 2.9(96) 2.0(100) 2.0(100) 3.1(92) 2.78(78)
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Simulation II: Robustness

Table 7: The average RMSE and CVSR of the proposed MDSP model compared to
the subject-wise model (Sub), the fused Lasso (FusedL), the Lasso, the adaptive Lasso
(Adapl), the SCAD and the MCP penalization models, based on 100 simulations with
sample size N = 60 and cluster size m = 10. The first case contains a population
homogeneous effect (Ktrue = 1) and the second case contains an individualized
predictor of three subgroups (Ktrue = 3) with equal subgroup size. In both cases the
proposed model assumes two subgroups. The estimated subgroup homogeneous
effects from the proposed model are γ̂ = 2.01(0.06) and γ̂ = −2.99(0.06) in these two
cases (with empirical standard errors in parenthesis), respectively.

Case MDSP Sub FusedL Lasso AdapL SCAD MCP
Ktrue = 1 RMSE 0.115 0.346 0.319 0.414 0.373 0.346 0.345
(βi = 2) CVSR 0.996 - 0.993 0.994 0.992 0.995 0.996

Ktrue = 3 RMSE 0.277 0.349 0.315 0.410 0.335 0.337 0.338
(βi = −3, 0, 1) CVSR 0.901 - 0.748 0.877 0.902 0.816 0.817
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Simulation II: Robustness
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