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Motivation

An application: Populations of different geographic regions may bear differences in
efficacy (or safety) dose response
−→ Objective: Ability to extrapolate study results
−→ Demonstrating similarity of curves becomes an issue

Another application: Comparison of dose response relationships for two regimens
−→ For example, demonstrate that once-daily (o.d.) and twice-daily (b.i.d.) applications
of a drug are similar over a given dose range

Yet another application: Comparison of different drugs containing the same active
substance in order to claim bioequivalence.
−→ Traditional approaches based on AUC or Cmax may be misleading
−→ Objective: Develop a test which takes the whole curve into account

IDEAL project: Focus on small population clinical trials (e.g. rare diseases)
−→ Methodology should work for small sample sizes
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Comparing curves - The setting
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Comparing curves - The setting II

Two dose response curves (from two samples)

Y`,i ,j = m`(x`,i , ϑ`) + ε`,i ,j (j = 1, . . . , n`,i ; i = 1, . . . , k`; ` = 1, 2)

I ε`,i,j independent ∼ N (0, σ2
` ) (` = 1, 2)

I x`,i ∈ X (dose levels)
I ϑ` ∈ Rd` (parameter in model m`)

Problem: Are the dose response curves m1 and m2 similar?
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Measures of similarity

d : a metric measuring the distance between m1 and m2.

Hypothesis of similarity:

H0 : d(m1,m2) ≥ ε versus H1 : d(m1,m2) < ε

(here ε is a pre-specified constant).

Examples
I maximum absolute difference

d∞(m1,m2) = max
x∈X
|m1(x , ϑ1)−m2(x , ϑ2)|

I squared L2-distance

d2(m1,m2) =

∫
X

(m1(x , ϑ1)−m2(x , ϑ2))2dx
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Efficient tests for similarity
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Tests based on distances

Basic idea: Estimate the distance between m1 and m2 directly and decide for similarity for
small values of the resulting estimate

(parametric) estimates of m1 and m2:

m̂1 = m1(·, ϑ̂1), m̂2 = m2(·, ϑ̂2)

estimate of the distance between m1 and m2:

d̂ = d(m̂1, m̂2)
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Tests based on distances

d̂: estimate the distance between m1 and m2

Decide for similarity, i.e. reject the hypothesis

H0 : d(m1,m2) ≥ ε

whenever

d̂ = d(m̂1, m̂2) < q

Problem: how do we find the critical value q?
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Estimating the distance between two curves – the squared L2-distance

Define an estimate by

d̂2 = d2(m̂1, m̂2) =

∫
X

(m1(x , ϑ̂1)−m2(x , ϑ̂2))2dx

Empirical process theory:
{

m1(x , ϑ̂1)−m2(x , ϑ̂2)− (m1(x , ϑ1)−m2(x , ϑ2))
}
x∈X

converges weakly to a centered Gaussian process (as n1, n2 →∞)

−→ d2(m̂1, m̂2)− d2(m1,m2)
a∼ N

(
0,

τ2

n1 + n2

)
where

τ2 =

∫
X×X

(m1(x , ϑ1)−m2(x , ϑ2)) · (m1(y , ϑ1)−m2(y , ϑ2))k(x , y)dx dy
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Estimating the distance between two curves – the squared L2-distance II

An asymptotic test for similarity of two dose response curves:

If τ̂2 is an estimate of τ2, then

H0 : d2(m1,m2) ≥ ε2

is rejected, whenever

d2(m̂1, m̂2) < ε2 +
τ̂√

n1 + n2
uα

It is very difficult to estimate τ2, especially for small sample sizes
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Estimating the distance between two curves – the maximum distance

Define an estimate by

d̂∞ = d∞(m̂1, m̂2) = max
x∈X
|m1(x , ϑ̂1)−m2(x , ϑ̂2)|

If the true absolute difference curve has only one extremal point, we have

d∞(m̂1, m̂2)− d∞(m1,m2)
a∼ N

(
0,

σ2d∞
n1 + n2

)
,

where σ2d∞ depends on the location of the extremal point

Otherwise d∞(m̂1, m̂2) is not asymptotically normal distributed

An asymptotic test is not always available!
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Bootstrap test for similarity

Generate data under the null hypothesis

Estimate ϑ1, ϑ2 under the restriction of the null hypothesis, that is the estimates fulfill
d(m1,m2) = ε

 constrained estimates ˆ̂
ϑ1,

ˆ̂
ϑ2

e.g. for d = d2, ˆ̂ϑ1,
ˆ̂ϑ2 satisfy

∫
X (m1(x , ˆ̂ϑ1)−m2(x , ˆ̂ϑ2))2dx = ε2

Generate bootstrap data (parametric bootstrap)

Y ∗`,i ,j = m`(x`,i ,
ˆ̂ϑ`) + σ̂`ε

∗
`,i ,j

where ε∗`,i ,j are i.i.d. ∼ N (0, 1)
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Bootstrap test for similarity II

Bootstrap test:

Calculate ϑ̂∗1, ϑ̂
∗
2 from the bootstrap data Y ∗`,i ,j

Calculate d̂∗ = d(m̂∗1, m̂
∗
2), for d = d2 that is

d̂∗2 =

∫
X

(m1(x , ϑ̂∗1)−m2(x , ϑ̂∗2))2dx

Repeat this procedure B times

If d̂∗(1), . . . , d̂∗(B) denote the ordered bootstrap replicates the hypothesis

H0 : d(m1,m2) ≥ ε

is rejected, whenever
d̂ < d̂∗(bBαc)
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Bootstrap test for similarity III

Theoretical properties:

I the bootstrap test has asymptotic level α
I the bootstrap test is consistent

More precisely: for increasing sample sizes n1, n2 →∞

d(m1,m2) = ε  P(“rejection”) → α

d(m1,m2) > ε  P(“rejection”) → 0

d(m1,m2) < ε  P(“rejection”) → 1

In case of d = d∞ and the true difference curve having more than one extremal point the
bootstrap test is still valid but more conservative
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Finite sample properties
m1(x , ϑ1) = δ + 5x

x+1 , m2(x , ϑ2) = 5x
1+x , X = [0, 4]

Figure: Two shifted EMAX models.
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The d2 bootstrap test – simulation of Type I error rates
m1(x , ϑ1) = δ + 5x

x+1 , m2(x , ϑ2) = 5x
1+x , X = [0, 4]

H0 : d2(m1,m2) ≥ 1 versus H1 : d2(m1,m2) < 1

α = 0.05 α = 0.1
(σ2

1 , σ
2
2) (σ2

1 , σ
2
2)

(n1, n2) δ d2 (0.25, 0.25) (0.5, 0.5) (0.25, 0.5) (0.25, 0.25) (0.5, 0.5) (0.25, 0.5)
(10, 10) 1 4 0.000 0.000 0.000 0.000 0.000 0.000
(10, 10) 0.75 2.25 0.004 0.002 0.001 0.000 0.002 0.000
(10, 10) 0.5 1 0.051 0.064 0.052 0.101 0.120 0.118
(20, 20) 1 4 0.000 0.000 0.000 0.000 0.000 0.000
(20, 20) 0.75 2.25 0.001 0.002 0.000 0.004 0.005 0.001
(20, 20) 0.5 1 0.057 0.058 0.050 0.125 0.107 0.097
(50, 50) 1 4 0.000 0.000 0.000 0.000 0.000 0.000
(50, 50) 0.75 2.25 0.001 0.000 0.000 0.002 0.000 0.000
(50, 50) 0.5 1 0.057 0.048 0.054 0.097 0.114 0.093

Table: Simulated Type I error rates of the d2-bootstrap test (1000 simulations, B = 300).
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The d2 bootstrap test – simulation of power

α = 0.05 α = 0.1
(σ2

1 , σ
2
2) (σ2

1 , σ
2
2)

(n1, n2) δ d2 (0.25, 0.25) (0.5, 0.5) (0.25, 0.5) (0.25, 0.25) (0.5, 0.5) (0.25, 0.5)
(10, 10) 0.25 0.25 0.210 0.118 0.134 0.300 0.212 0.256
(10, 10) 0.1 0.04 0.294 0.132 0.186 0.427 0.250 0.312
(10, 10) 0 0 0.351 0.145 0.176 0.467 0.286 0.340
(20, 20) 0.25 0.25 0.392 0.171 0.225 0.534 0.302 0.382
(20, 20) 0.1 0.04 0.560 0.308 0.418 0.720 0.460 0.562
(20, 20) 0 0 0.610 0.314 0.390 0.757 0.462 0.555
(50, 50) 0.25 0.25 0.724 0.460 0.554 0.825 0.595 0.825
(50, 50) 0.1 0.04 0.961 0.691 0.821 0.982 0.824 0.973
(50, 50) 0 0 0.984 0.734 0.865 0.998 0.861 0.999

Table: Simulated power of the d2-bootstrap test (1000 simulations, B = 300).
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The d∞ bootstrap test – simulation of Type I error rates

α = 0.05 α = 0.1
(σ2

1 , σ
2
2) (σ2

1 , σ
2
2)

(n1, n2) d = d∞ (0.25, 0.25) (0.5, 0.5) (0.25, 0.5) (0.25, 0.25) (0.5, 0.5) (0.25, 0.5)
(10, 10) 1 0.000 0.004 0.001 0.007 0.019 0.010
(10, 10) 0.75 0.000 0.008 0.006 0.013 0.041 0.020
(10, 10) 0.5 0.015 0.040 0.016 0.050 0.104 0.054
(20, 20) 1 0.000 0.000 0.000 0.000 0.004 0.006
(20, 20) 0.75 0.000 0.002 0.000 0.003 0.010 0.002
(20, 20) 0.5 0.006 0.019 0.016 0.027 0.051 0.046
(50, 50) 1 0.000 0.000 0.000 0.000 0.000 0.001
(50, 50) 0.75 0.006 0.000 0.000 0.004 0.007 0.002
(50, 50) 0.5 0.003 0.005 0.004 0.018 0.027 0.034

Table: Simulated Type I error rates of the d∞-bootstrap test for ε∞ = 0.5 (1000 simulations, B = 300).
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The d∞ bootstrap test – simulation of power

α = 0.05 α = 0.1
(σ2

1 , σ
2
2) (σ2

1 , σ
2
2)

(n1, n2) d = d∞ (0.25, 0.25) (0.5, 0.5) (0.25, 0.5) (0.25, 0.25) (0.5, 0.5) (0.25, 0.5)
(10, 10) 0.25 0.062 0.050 0.053 0.147 0.118 0.118
(10, 10) 0.1 0.100 0.070 0.099 0.195 0.137 0.190
(10, 10) 0 0.109 0.090 0.092 0.216 0.143 0.176
(20, 20) 0.25 0.085 0.060 0.076 0.171 0.134 0.162
(20, 20) 0.1 0.158 0.090 0.112 0.309 0.184 0.220
(20, 20) 0 0.178 0.108 0.120 0.324 0.209 0.219
(50, 50) 0.25 0.162 0.086 0.098 0.283 0.178 0.218
(50, 50) 0.1 0.390 0.212 0.232 0.568 0.349 0.398
(50, 50) 0 0.457 0.211 0.266 0.630 0.363 0.438

Table: Simulated power of the d∞-bootstrap test for ε∞ = 0.5 (1000 simulations, B = 300).
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A case study – IBS data set

Biesheuvel, E. and Hothorn, L. A. : Female and male patients with Irritable Bowel
Syndrome (IBS), n = 369

randomized to one of the five doses 0 (placebo), 1, 2, 3, and 4

larger values corresponding to a better treatment effect

fitted models
I male: m1(x , β1) = 0.398 + 0.043x
I female: m2(x , β2) = 0.220 + 0.517 x

1.396+x

maximum distance: 0.1784
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A case study – IBS data set II
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Figure: Left: Fitted dose response curves for male (linear model) and female (Emax model) patients.
Right: p-values of the d∞- bootstrap test for different values of the threshold ε∞.

the p-value corresponding to the choice ε∞ = 0.35 is given by 0.078
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Further results and extensions

the bootstrap d∞-test was implemented in the R package TestingSimilarity

we investigated the performance of all tests under the assumption of model
misspecification and observed a robust performance

the proposed tests were adapted to
I the case of multiple curve comparison
I dependent data
I models with common parameters

especially the adaption to dependent data offers a variety of new applications, e.g. the
demonstration of bioequivalence
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Further results and extensions II
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Figure: Comparison of concentration profiles.
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Conclusions

Two powerful tests have been proposed by
I estimating the distance and the variance of the test statistic directly (asymptotic approach)
I generating quantiles by a parametric bootstrap

the bootstrap approach can be applied to any metric without deriving the asympotic
distribution

the tests are robust against misspecification of the functional form and can also be
applied to dependent data
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