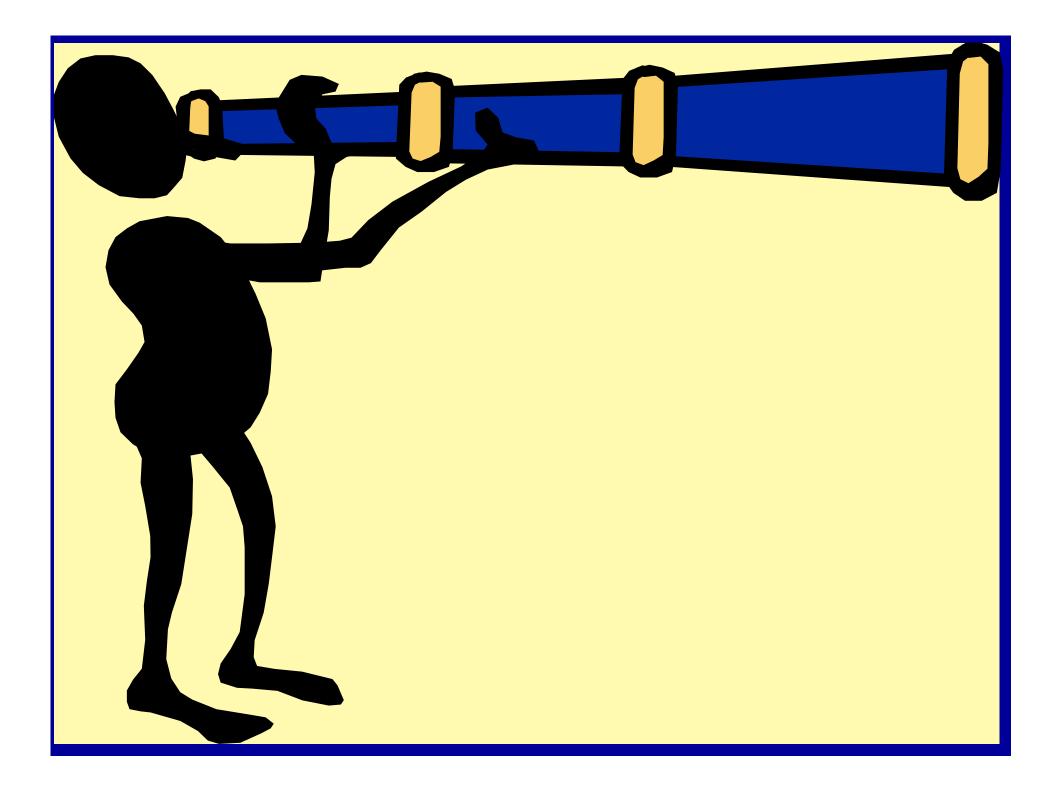
Multi-loci association test in genetic association study using similarity between individuals

> Indranil Mukhopadhyay Human Genetics Unit Indian Statistical Institute, India



Acknowledgement

- Anbupalam Thalamuthu
- Eleanor Feingold
- Daniel Weeks
- Kushal Dey
- Pronoy Kanti Mondal

Sarmistha Das

Outline ...

• Some prelims

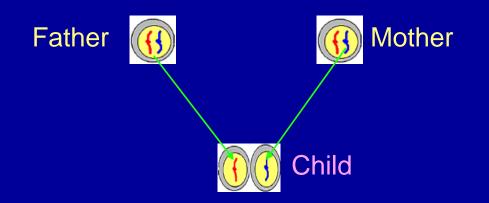
• Disease ... Genetics ... ??

• Finding a disease gene

A new test for multi-loci association

The Human Genome

• Human genome is *diploid*, meaning we have two copies of each chromosome (one from each parent)



• 22 pairs of chromosomes + 1 pair of sex chromosome

Prelims ...

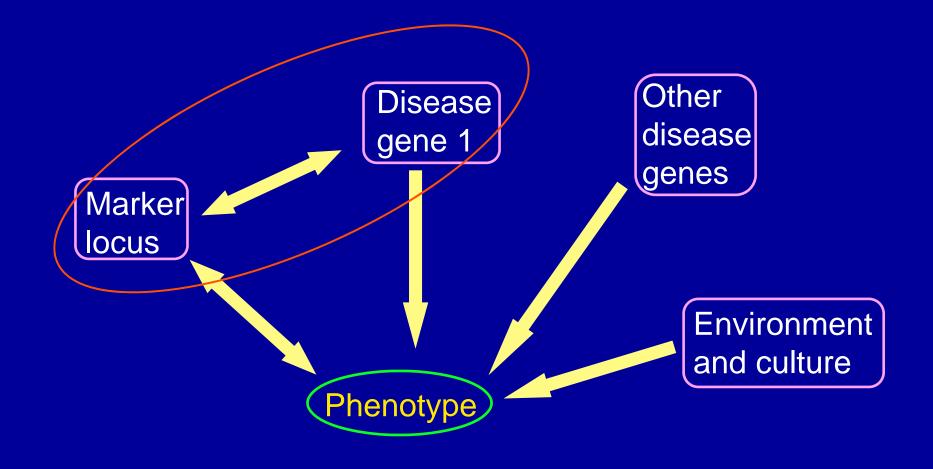
- Gene: Fundamental unit of genetic information that passes from generation to generation
- Allele: One of two or more states in which either copy of a gene can exist
- Marker: A polymorphic entity with known physical location

Genetic Markers

- Known location in genome
 - Human Genome Project tells us precisely where the markers are
- Unchanged from generation to generation
- Follow transmission from parents to offspring
- Be able to distinguish alleles

 Polymorphic- having more than one state (alleles)

Complex disease



Slide by S Ghosh

SNP Single Nucleotide Polymorphism

1 ATCGCGGTAATAGCTACGATACGCTGACTAGCATG 2 ATCGCGATAATAGCTACGATACGCTGATTAGCATG

So an SNP has only two alleles Marker = SNP Alleles: a or bGenotypes: aa, ab, bb

Association: A tendency for a particular genotype to occur more commonly in cases for a disease than expected by chance

Association testing: A testing method to test the possible existence of association between a phenotype and a candidate gene

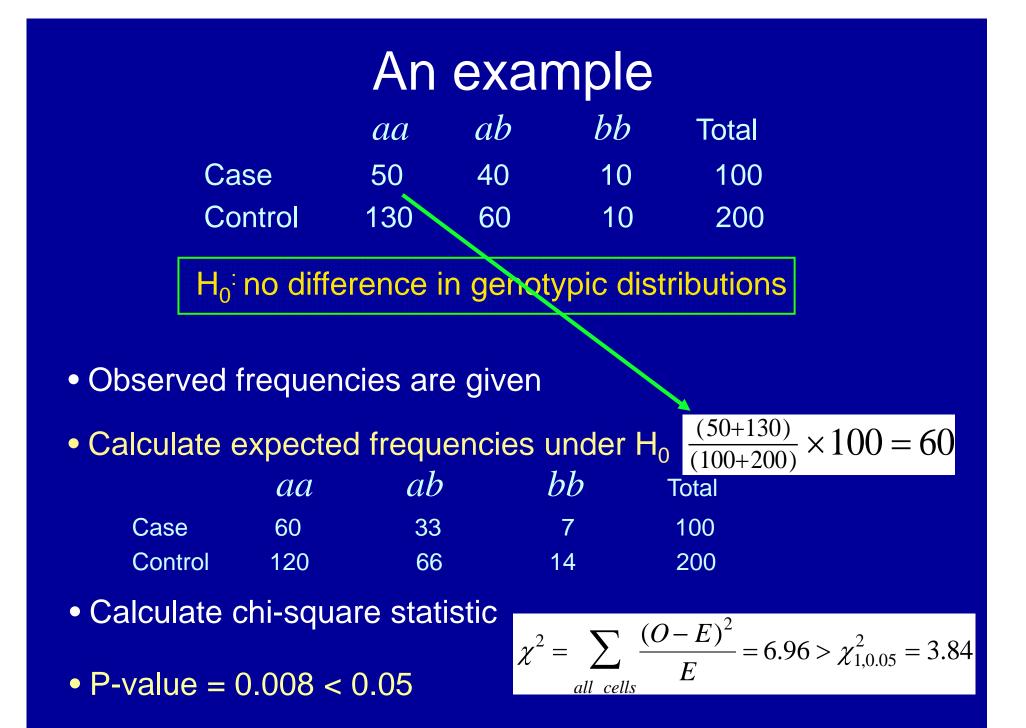
Basic methods of association

Genotype-based Test

	aa	ab	bb	Total
Case	n ₁	n ₂	n ₃	S
Control	N ₁	N_2	N ₃	Т

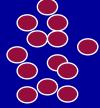
Null hypothesis (H_0) : no difference in the genotypic distributions of cases and controls.

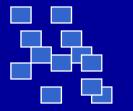
$$\chi^2 = \sum_{all \ cells} \frac{(O-E)^2}{E}$$



Genome-wide Association analysis (GWAS)

1) Collect cases and controls.





2) Genotype everyone at a marker.



3) Test genotype/phenotype association.

	aa	ab	bb
cases	50	40	10
controls	130	60	10

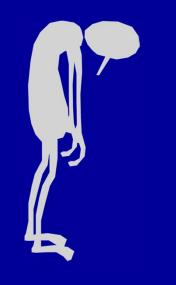
P-value = 0.008 : small enough !!!

- 4) Genotype everyone at all markers.
- Test at each locus
- Check P-value < 0.05
- Hurray! Found causal locus

I have found one locus !!!

Write paper, have beer ... have fun!

But this 'world is not enough'



Simple, good, ... but...

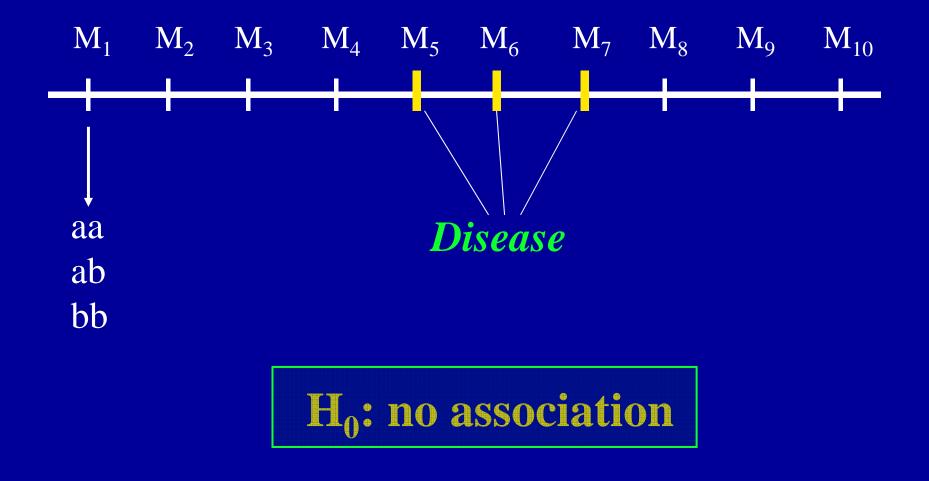
• Millions of SNPs

.

• Need for multiple comparison

May miss some true signals
Need extremely large sample
many other issues ...

Let's give a fresh look ...



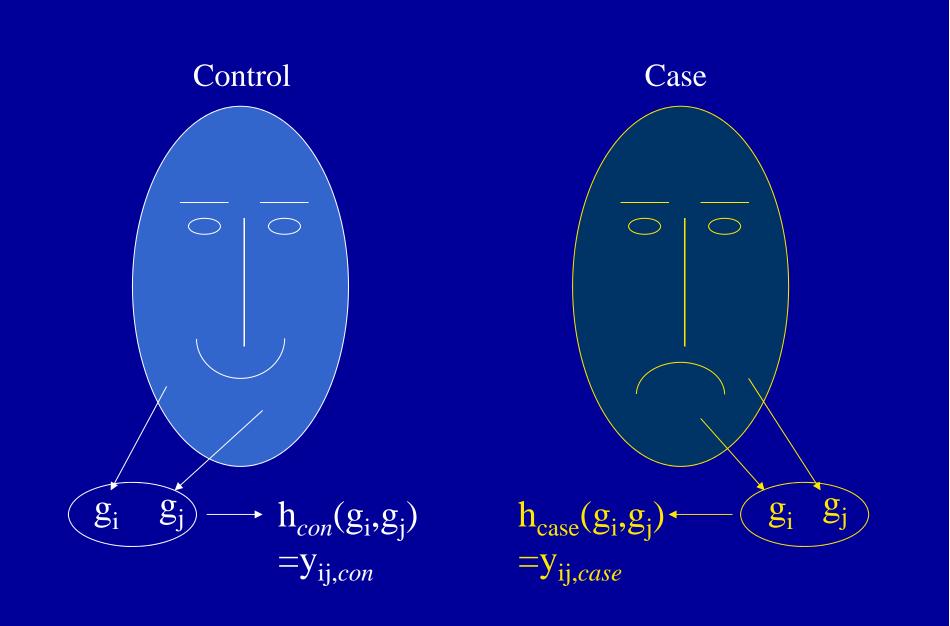
Idea

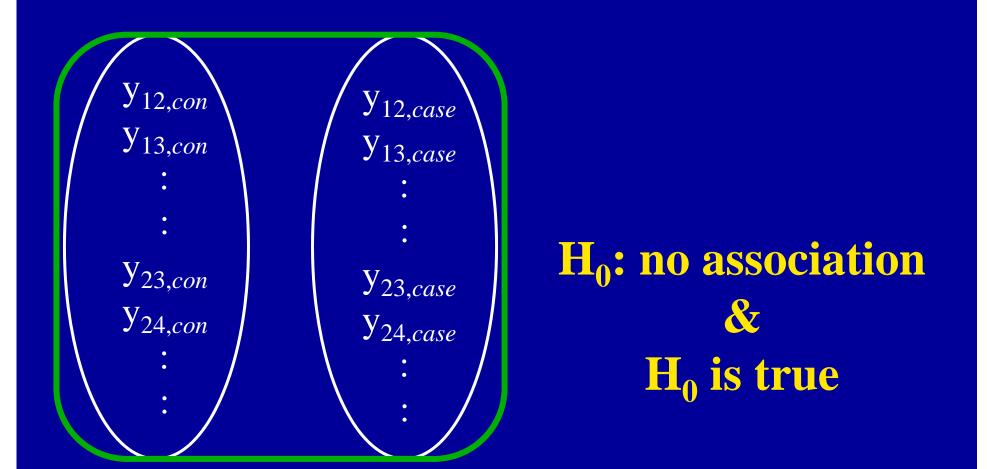
• Individuals belonging to control group form a class, those having the disease (cases) form another class

• Use variation between cases and controls and variation within each class

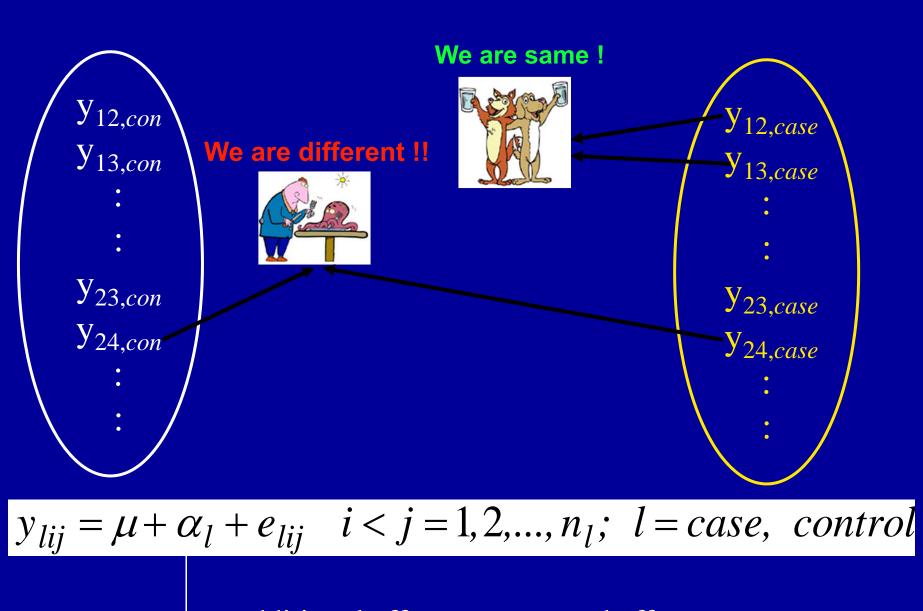
• Similarity scores or values based on the genotype of each marker

• We study each marker separately and combine them to get a global statistic that is finally used to detect disease-marker association



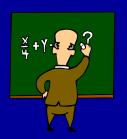


$$y_{lij} = \mu + e_{lij}$$
 $i < j = 1, 2, ..., n_l; l = case, control$



→ additional effect over general effect

Model

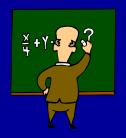


Let $y_{lij} = h_l(g_i, g_j)$ denote the kernel score between (*i*,*j*)-th pair in the *l*-th group

TABLE 1. Kernel scores corresponding to different choices of additive kernels associated with pair of genotypes g_i and g_j .

	Allele match			Allele share		Linear dosage		Recessive			Quadratic				
gi	a/a	a/b	b/b	a/a	a/b	b/b	a/a	a/b	b/b	a/a	a/b	b/b	a/a	a/b	b/b
g _j															
a/a	4	2	0	0	0	0	0	1	2	0	0	1	2	3	5
a/b	2	4	2	0	1	1	1	2	3	0	0	1	3	4	6
b/b	0	2	4	0	1	2	2	3	4	1	1	2	5	6	8

$$y_{lij} = h_l(g_i, g_j)$$
: not uncorrelated



$$y_{lij} = \mu + \alpha_l + e_{lij}$$
 $i < j = 1, 2, ..., n_l; l = 1, 2$

(i)
$$\alpha_1 + \alpha_2 = 0$$

(ii) $V(y_{lij}) = \sigma^2$
(iii) $Cov(y_{lij}, y_{l'i'j'}) = \begin{cases} \rho \sigma^2 & \text{for } i \neq i' \text{ or } j \neq j' \text{ if } l = l' \\ 0 & \text{if } l \neq l' \end{cases}$

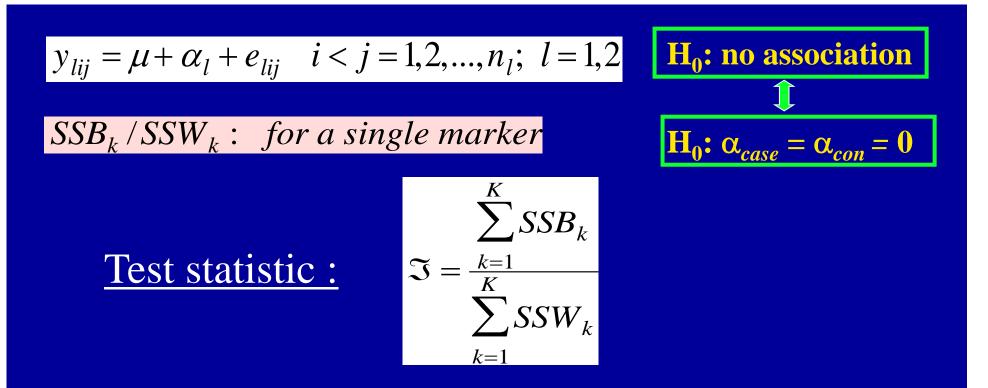
 $\{l=1\} \Rightarrow$ case, $\{l=2\} \Rightarrow$ control

• Consider *each* marker separately

• Combine them to get a statistic

• SSW_k = Within class variation

• SSB_k = Between class variation



If observed I is small we can think that H₀ is true
If observed I is large we can think that H₀ is not true

$$P(\mathfrak{T} > \mathfrak{T}_{\gamma} | H_0) = \gamma = P(Type \ I \ error)$$
$$P - value = P(\mathfrak{T} > Obsd.\mathfrak{T} | H_0)$$

$$P(\mathfrak{I} > \mathfrak{I}_{\gamma} | H_0) = \gamma = P(Type \ I \ error)$$
$$Power = P(\mathfrak{I} > \mathfrak{I}_{\gamma} | H_1)$$

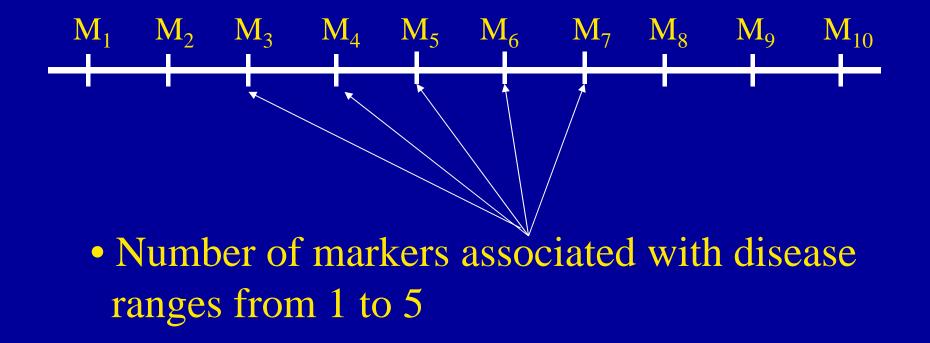
• The test is one-sided to the right

• The distribution of the test statistic is not known

• We calculate Power by simulation/permutation

Simulation

• Genotypes of 10 independent markers



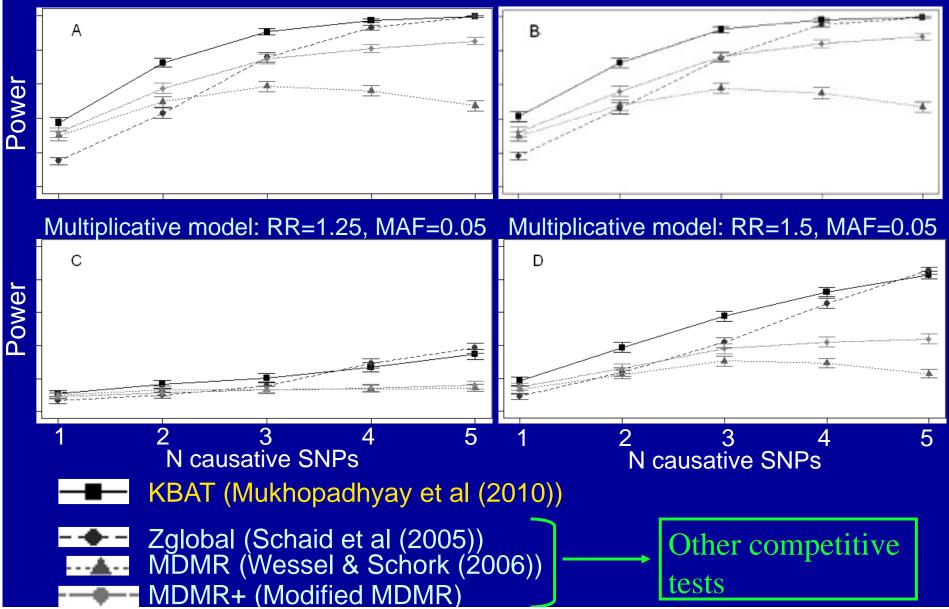
• High-risk allele frequency is 0.05

- Relative risk is 1.5 and assume multiplicative model
- Sample size for each group is 500
- \mathfrak{T}_{γ} is calculated based on 10000 simulations
- Power is calculated based on 1000 simulations

POWER STUDY

Additive model: RR=1.25, MAF=0.05

Additive model: RR=1.5, MAF=0.05



Asymptotic distribution of **KBAT** statistic

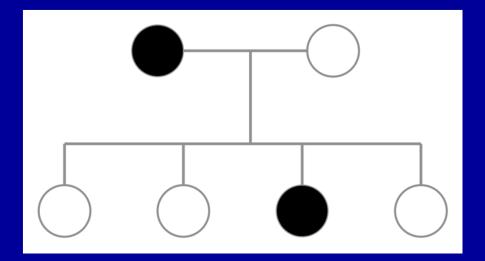
$$T = \beta(n_1, n_2) \frac{K(1 + v^2)}{2v(1 + v)} \frac{\sum_{k=1}^{K} SSB_k / \hat{\sigma}_{1k}^2}{\sum_{k=1}^{K} SSW_k / \hat{\sigma}_k^2} \xrightarrow{L} \chi_K^2 as(n_1, n_2) \to \infty$$

where $\beta(n_1, n_2) = \frac{n_1(n_1 - 1) + n_2(n_2 - 1)}{2n_1}$

Family based KBAT

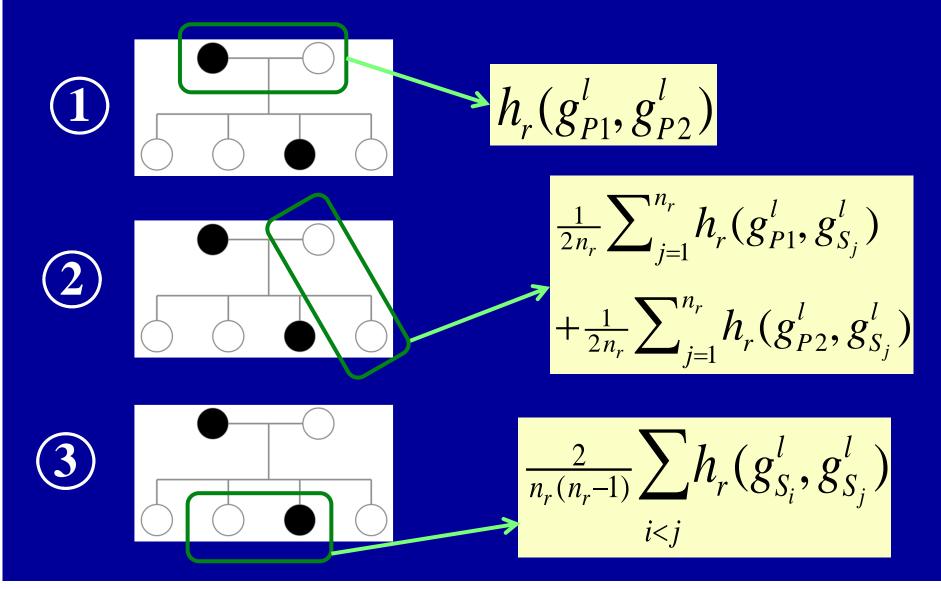
Notations

- SNP marker: *aa, ab, bb*
- No. of markers in a gene: L
- Phenotype: qualitative affected or unaffected
- Nuclear families with at least one affected sib
- No. of families: *n*



Towards test statistic...

Consider *l*-th locus, *r*-th family



Towards test statistic...

• Propose a 3-dimensional statistic using three statistics:

$$U_{rl} = \Sigma_{rl}^{-\frac{1}{2}} (T_{rl} - \mu_l)$$

where
$$T_{rl} = (T_{1,rl}, T_{2,rl}, T_{3,rl})'$$
 and Σ_{rl} is the var-cov matrix of T_{rl} ; $r = 1, ..., n$; $l = 1, ..., L$.

• Combine genetic information from *L* loci at a time for all *n* families to get the final statistic:

Kernel based association test for family data

F-KBAT:
$$U_n = \overline{\hat{U}_n}' \overline{\hat{U}_n}$$

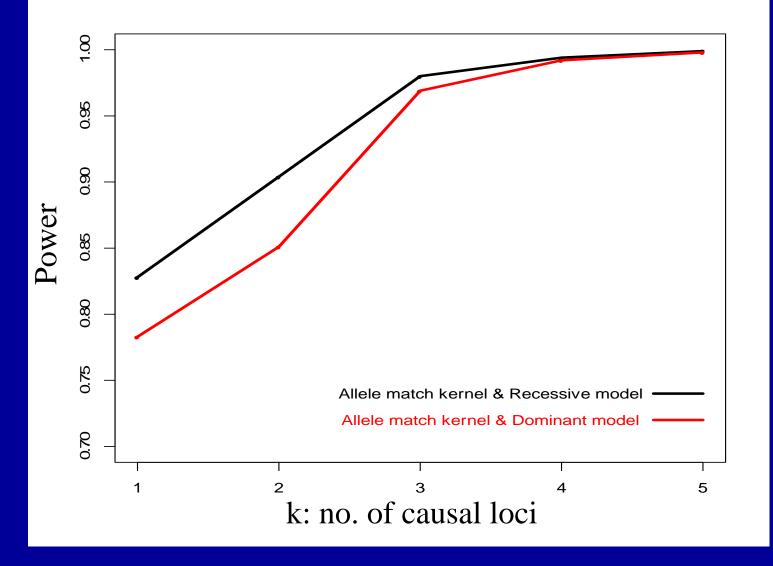
Theorem : Let \hat{U}_n be the mean of all estimated scaled score vectors \hat{U}_{rl} over all families and for all l, replace μ_l and Σ_{rl} by their consistent estimators. Assume $\forall r \; \forall l$, $j = (1,1,1)', \left\| \Sigma_{rl}^{-\frac{1}{2}} j \right\| \leq M < \infty$. Then under H_0 (no assoc.),

$$Ln\overline{\hat{U}}'\overline{\hat{U}} \xrightarrow{d} \chi_3^2 as n \to \infty.$$

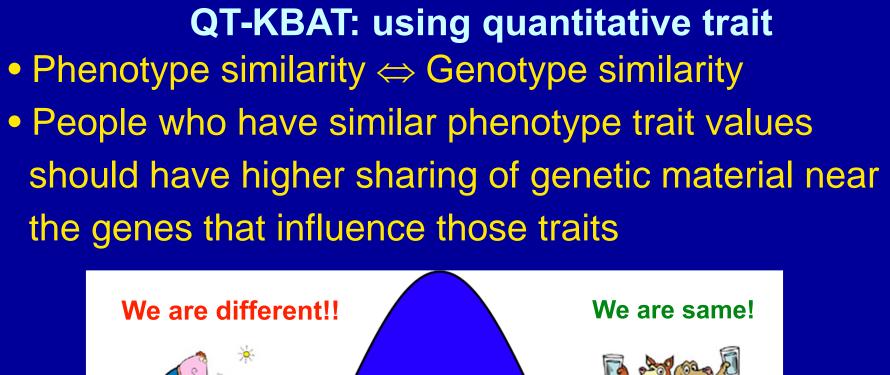
Simulation

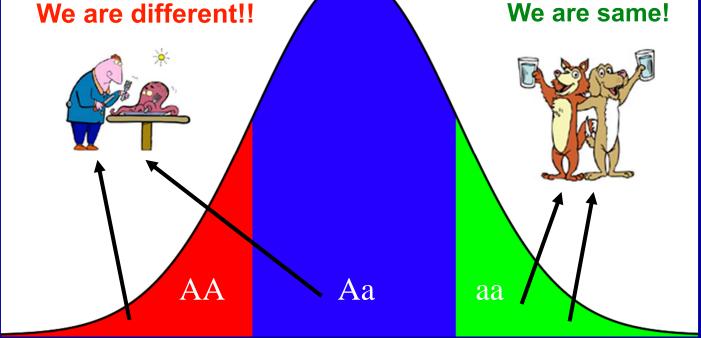
- 10 SNPs; causal markers k=1,2,3,4,5
- MAF = 0.1+i/100, i=1,2,...,10
- Genetic model: recessive, dominant
- No. of sibs per family (X) ~ Poisson(3|X>1)
- n = 200 families
- Average p-value over 1000 simulations
- Disease model:
 - Model 1: affected if at least one of *k* causal loci has risk genotype
 - Model 2: affected if all *k* causal loci have risk genotypes

Power against no. of causal loci



Qt-KBAT





But are we genetically same (with respect to trait)??

MODEL

Phenotype similarity:
$$P_{ij} = |z_i - z_j|$$

Genotype similarity: 3 possible groups based on 3 possible similarity values

$$G_{1} = \{(g_{i}, g_{i}) : g_{i} = a/a, a/b \& b/b\}$$

$$G_{2} = \begin{cases} (g_{i}, g_{j}) : [g_{i} = a/a \& g_{j} = a/b] \\ \text{or } [g_{i} = a/b \& g_{j} = b/b] \end{cases}$$

$$G_{3} = \{(g_{i}, g_{j}) : g_{i} = a/a \text{ and } g_{j} = b/b\}$$

Total Number of markers: K

Model

$$P_{l(ij)} = \mu + \beta_l G_{l(ij)} + e_{l(ij)}; i < j = 1, ..., n; l = 1, ..., K$$

(i) $V(e_{l(ij)}) = \sigma^2$ (ii) Errors $(e_{l(ij)})$ are correlated (iii) Errors are not Normally distributed

Test Statistic

$$\mathfrak{T} = \sum_{l=1}^{K} \mathfrak{T}_{l} \text{ where } \mathfrak{T}_{l} = \frac{SSE_{\beta_{l}=0} - SSE}{SSE}$$

Asymptotic distribution of Qt-KBAT statistic

$$\mathfrak{I} = \sum_{k=1}^{K} \mathfrak{I}_{k} \xrightarrow{L} \sum_{k=1}^{K} w_{k} \chi_{1}^{2} as n \rightarrow \infty$$

Conclusion, Future & ongoing works

- Our method is generally more powerful
- Significance may be determined by permutation
- Asymptotic distn helps in computing p-value fast
- Choice / effects of kernels and models
- Asymptotic distn when markers are not independent

Conclusion, Future & ongoing works

• KBAT for case-control data & Qt-KBAT for

quantitative phenotype

- KBAT for family data
- Develop gene-gene interaction test
- Develop gene-environment test
- Asymptotic distns in all above cases ...

