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Background

I Increasing interest in discovering individualized treatment rules for
patients who have different responses to treatments.

– treatments may be no better than control overall, but may be better
for a subgroup of patients with certain characteristics.

I Essentially, we need to investigate interactions between the
treatments and covariates to identify the subgroup.



Notations and Assumptions

For the ith patient,

I Ti = 1 or 0: treatment indicator

I Zi = (1,Z1, · · · ,Zp): (p + 1)-vector of predictor variables, including
an intercept

I Yi : observed outcome

I π(Zi ) ≡ P(Ti = 1|Zi ): treatment assignment mechanism

I π(Ti |Zi ) = TiP(Ti = 1|Zi ) + (1− Ti )P(Ti = 0|Zi )



Goal

I Construct a personalized scoring system f (Z )

I f (Z ) ranks the patients according to the potential treatment effect
(or contrast function)

∆(Z ) = E(Y |T = 1,Z )− E(Y |T = 0,Z )

I Treatment is recommended for

Ω = {Z | f (Z ) > 0} ≈ {Z |∆(Z ) > 0}



A Simple Interaction Model

I E(Y |Z ,T ) = φ(Z ) + T × f (Z )

I ∆(Z ) = E(Y |T = 1,Z )− E(Y |T = 0,Z ) = f (Z )

I It is important to identify the treatment and covariate interactions.

I Main effects of covariates φ(Z ) is in some sense ‘separated’ from
∆(Z ).



Single Index Model for the Contrast Function

Consider the following single index model

4(Z ) = E(Y |T = 1,Z )− E(Y |T = 0,Z ) = g(β>Z ),

I Observe that

E
[

(2T − 1)Y

π(T |Z )

∣∣∣∣Z] = 4(Z )

I Song et al (2007) considered estimation based on

∑
i

{
(2Ti − 1)Yi

π(Ti |Zi )
− g(Ziβ)

}2

I Assuming ‖β‖ = 1 and g from expansion of B-spline basis.



Our Goal

I When g is monotone: even without estimating g , β>Z is still
interpretable in the sense of treatment assignment.

I If we assume g is monotone and the goal is treatment assignment,
do we need to estimate g? Will the results be better?

I Is there a systematic way to come up with estimation equations?

I Deal with high dimensional data

I Deal with multiple treatments



Another Estimating Equation

Based on the work of Shuai et al (2017), define the risk

Rg (b) = E
[
{Y − (T − 1/2)g(b>Z )}2

π(T |Z )

]
.

I Rg (b) is the expectation of

WZ (b) = E
[{

Y − 2−1g(b>Z )
}2
|T = 1,Z

]
+E

[{
Y + 2−1g(b>Z )

}2
|T = 0,Z

]

I The minimizer of Rg (b) is unique and equal to β if g is second order
differentiable and g ′ is always positive.



Another Estimating Equation

The empirical version of Rg (b) is

1

n

n∑
i=1

{Yi − (Ti − 1/2)g(b>Zi )}2

π(Ti |Zi )

If g were known, then we could estimate β by finding the solution of

1

n

n∑
i=1

{Yi − (Ti − 1/2)g(b>Zi )}
π(Ti |Zi )

(1− 2Ti )g
′(b>Zi )Zi = 0,



Kernel Weighted Estimating Equation

Note that g ′(0)(b>Z ) is a good approximation to g(b>Z ) near 0,

g(b>Z ) ≈ g(0) + g ′(0)(b>Z ) = g ′(0)(b>Z ).

We can estimate g ′(0)β, via the following kernel based version,

1

n

n∑
i=1

{Yi − (Ti − 1/2)(b>Zi )}
π(Ti |Zi )

(1− 2Ti )ZiKh(b>Zi ) = 0.



Theoretical Results

I Assume that the kernel K satisfies the usual conditions;

I h→ 0 and nh→∞ as n→∞;

I Z has a density f ;

I βj 6= 0 for at least one j ≥ 1 and without loss of generality βp 6= 0.



Theoretical Results

Let b̃ be a solution to the kernel weighted equation. Then, as n→∞,

(i) b̃ converges in probability to g ′(0)β.

(ii) If nh5 → 0, then (nh)1/2{b̃ − g ′(0)β} converges in distribution to
the p-dimensional normal distribution with mean 0 and covariance
matrix Σ.

(iii) The optimal choice of h is h � n−1/5, where a � b means a = O(b)
and b = O(a).



Dealing with High Dimensional Covariates

When the dimension of Z is very high, we propose to add a LASSO
penalty and solve

1

n

n∑
i=1

{Yi − (Ti − 1/2)(b>Zi )}
π(Ti |Zi )

(1− 2Ti )ZiKh(b>Zi ) + λs(b) = 0

where

I λ ≥ 0 is a tuning parameter,

I s(b) is the subgradient of p(b) =
∑p

j=1 |bj | whose jth component is
sign(bj ) if bj 6= 0 and c if bj = 0, 0 < c < 1.

Let b̂ be a solution to the above equation. We can show that b̂ possesses
a weak oracle property (Fan and Lv, 2011).



Simulations

We consider respectively the low and high dimensional covariate settings
under the following model,

Y = (β>Z/2)2 + (T − 1/2)g(β>Z ) + ε,

where ε ∼ N(0, 0.32), ε, Z and T are independent, and g has the
following three forms:

I linear model: g(β>Z ) = 7β>Z

I logistic model: g(β>Z ) = 7
{

exp(β>Z )/{1 + exp(β>Z )} − 1/2
}

I probit model: g(β>Z ) = 7
{

Φ(β>Z )− 1/2
}

, where Φ is the
standard normal distribution



Simulation - Low Dimensional Setting

I The treatment T takes 0 and 1 with equal probability.

I p = 3, β = (1, 1, 1, 1)>, Z1, Z2, and Z3 are independently
distributed as the standard normal.

I n = 200, 500, and 1000

I Bootstrap variance estimators with bootstrap size 1000.

I All methods produce negligible biases based on 1000 simulation runs.



Root MSE Results in Low Dimensional Case

Linear Probit Logistic

Estimate Ours MCM† FindIt‡ Ours MCM FindIt Ours MCM FindIt

n = 200

b̃1/b̃0 .013 .041 .071 .109 .350 .132 .126 .418 .134

b̃2/b̃0 .014 .041 .072 .109 .340 .132 .131 .462 .143

b̃3/b̃0 .014 .042 .070 .104 .325 .133 .130 .430 .135

n = 500

b̃1/b̃0 .008 .027 .044 .062 .179 .081 .071 .195 .082

b̃2/b̃0 .008 .027 .046 .059 .164 .078 .075 .206 .084

b̃3/b̃0 .008 .026 .046 .059 .165 .080 .074 .192 .081

† Modified Covariate Method (MCM) by Tian et al. (2014)
‡ FindIt by Imai and Ratkovic (2013).



Coverage Results in Low Dimensional Case

Linear Probit Logistic

Estimate Ours MCM FindIt Ours MCM FindIt Ours MCM FindIt

n = 200

b̃1/b̃0 .947 .949 .939 .943 .942 .959 .950 .947 .951

b̃2/b̃0 .948 .944 .942 .945 .951 .951 .960 .940 .961

b̃3/b̃0 .953 .951 .939 .941 .956 .957 .943 .951 .956

n = 500

b̃1/b̃0 .953 .923 .960 .950 .947 .952 .955 .943 .938

b̃2/b̃0 .948 .923 .938 .955 .948 .953 .945 .955 .947

b̃3/b̃0 .947 .955 .955 .952 .945 .938 .945 .945 .957



Simulation - High Dimensional Setting

I β = (β0, · · · , βp)>, where p = 23, βj = 1, j = 0, 1, 2, 3, and βj = 0
for j ≥ 4

I Z1, ...,Zp are still independently distributed as the standard normal

I Other setting are the same as that for the low dimensional case.



Coverage Results in High Dimensional Case

Linear Probit Logistic

Estimate Ours MCM FindIt Ours MCM FindIt Ours MCM FindIt

n = 200

b̂1/b̂0 0.958 0.948 0.944 0.958 0.868 0.962 0.946 0.920 0.948

b̂2/b̂0 0.948 0.939 0.949 0.962 0.895 0.962 0.967 0.930 0.949

b̂3/b̂0 0.953 0.932 0.948 0.954 0.923 0.890 0.960 0.925 0.793

n = 500

b̂1/b̂0 0.944 0.977 0.954 0.949 0.925 0.937 0.947 0.948 0.966

b̂2/b̂0 0.944 0.943 0.971 0.941 0.948 0.966 0.954 0.977 0.937

b̂3/b̂0 0.947 0.937 0.948 0.960 0.954 0.977 0.962 0.954 0.971



Variable Selection Results in High Dimensional Case

Linear Probit Logistic

n Ours MCM FindIt Ours MCM FindIt Ours MCM FindIt

200 0.988 0.984 0.691 0.913 0.804 0.295 0.828 0.706 0.378
500 1.000 1.000 0.897 1.000 0.962 0.814 0.997 0.972 0.894



A Flexible Semiparametric Model

The single index contrast function model is equivalent to

Y =
1

2
Tg(β>Z ) + ε,

I g is an unknown function,

I ε satisfies

E

[
T

π(T |Z )
ε(Z )

∣∣∣∣Z] = 0.

This model is equivalent to the following model

Y = h(T , β>Z ) + ε(Z ),

where ε(Z ) is some random variable satisfying the above equation.



Semiparametric Efficiency Theory

The likelihood of (Z ,T ,Y ) is

η10(Z )× π(T |Z )× η20
{
Y − 1

2
Tg(β>0 Z ),Z ,T

}

I η10(·) is the density of Z

I η20(·) is the density of ε conditional on Z and T

I Note that η10, η20, and g are infinite-dimensional nuisance
parameters.

I π(T |Z ) is either known or estimated by a parametric model



Semiparametric Efficiency Theory

The orthogonal complement of the nuissance tangent space is
S0 = S10 ⊕ S2,

I

S10 =
{
WT{α(Z )− E[α(Z )|β>0 Z ]}

[
ε−

E(W 2
T ε|Z )

E(W 2
T |Z )

]
: ∀α(Z )

}
,

I

S2 =
{
WTγ(Z ) : ∀γ(Z )

}
.

where

WT ≡
T

π(T |Z )



Semiparametric Efficiency Theory
For any function h(ε,Z ,T ), its projection on S0 is given by

WT C (Z )

{
ε−

E[W 2
T ε|Z ]

E[W 2
T |Z ]

}
+ WT

E[WTh|Z ]

E[W 2
T |Z ]

,

where

I

C (Z ) = WZ ,T ,ε

{
D(Z )−

E[WZ ,T ,εD(Z )|β>0 Z ]

E[WZ ,T ,ε|β>0 Z ]

}
,

I

WZ ,T ,ε =

{
E[W 2

T ε
2|Z ]−

E[W 2
T ε|Z ]2

E[W 2
T |Z ]

}−1
,

I

D(Z ) = E[WThε|Z ]−
E[W 2

T ε|Z ]E[WTh|Z ]

E[W 2
T |Z ]

.



Efficient score

The efficient score is

WTC (Z )

{
ε−

E[W 2
T ε|Z ]

E[W 2
T |Z ]

}
,

where

C (Z ) = WZ ,T ,ε g
′
(β>0 Z )

{
Z −

E[WZ ,T ,εZ |β>0 Z ]

E[WZ ,T ,ε|β>0 Z ]

}
,

and,

WZ ,T ,ε =

{
E[W 2

T ε
2|Z ]−

E[W 2
T ε|Z ]2

E[W 2
T |Z ]

}−1
.



Efficiency Considerations

I In general, the efficient score is very hard to estimate directly

I Choose the most efficient estimating equation in a smaller subspace
in the nuisance tangent space, e.g.,

S̃ =
{
WTg

′
(β>0 Z )Z>{ε− η(Z )},∀η(Z )

}
.

I Choices for η(Z )

I η(Z ) = 0, adopted in our estimation.

I η(Z ) = {1− 2π(Z )}g(β>0 Z ) for Song et al. (2017).

I η(Z ) =
E [W 2

T ε|Z ]

E [W 2
T |Z ]

leads to the most efficient estimator in S̃ for any

function g .



Efficiency Considerations

When η(Z ) does not need to be estimated, we propose minimizing the
following loss function

{Y − 1
2Tg(β>0 Z )− η(Z )}2

π(T |Z )
.

Formally, our MAVE-type estimator with η, tMAVEη , is defined to be
the minimizer of the following optimization function:

L(β, {aj , bj}n
j=1)

=
1

n2

n∑
j=1

n∑
i=1

{Yi − 1
2Ti [aj + bj (β

>Zi − β>Zj )− η(Zi )]}2

π(Ti |Zi )
wij ,

where wij = Kh(β>Zj − β>Zi ).



Efficiency Considerations

A two step estimation process

I Firstly, we solve a tMAVE0 (with η = 0), then g and the residuals,
ε̂i ’s, are estimated by kernel method.

I Then, we solve tMAVEeff by estimating
E [W 2

T ε|Z ]

E [W 2
T |Z ]

by

Ê [W 2
T ε̂|Z ]

E [W 2
T |Z ]

= π(Z )(1− π(Z ))

∑n
i=1 K

e
he (Zi − Z )W 2

Ti
ε̂i∑n

i=1 K
e

he (Zi − Z )
(1)

where

I K e
he

is a kernel function with K e
he

(Z ) = h−p
e K e(Z/hp

e ).

I K e can be different from the kernel used in tMAVE.



Simulations

y = (β>Z )2 + (T − 1/2)g(β>Z ) + ε,

I Almost the same as previous simulation setting;

I Main effect quadrupled;

I SD of the error term doubled: σ = 0.6.



Coefficient Estimation with n = 200

Linear Gaussian Logistic

tMAVE0 tMAVEeff tMAVE0 tMAVEeff tMAVE0 tMAVEeff

mean

β̂2/β̂1 0.9995 0.9986 0.8630 0.9161 0.7797 0.8611

β̂3/β̂1 1.0021 1.0021 0.8960 0.9410 0.8192 0.8884

β̂4/β̂1 1.0042 1.0035 0.8891 0.9408 0.8013 0.8802
√
mse

β̂2/β̂1 0.0563 0.0378 0.3122 0.2044 0.4106 0.2890

β̂3/β̂1 0.0586 0.0386 0.2971 0.1977 0.4056 0.2837

β̂4/β̂1 0.0540 0.0361 0.3075 0.2055 0.4191 0.2847



Coefficient Estimation with n = 500

Linear Gaussian Logistic

tMAVE0 tMAVEeff tMAVE0 tMAVEeff tMAVE0 tMAVEeff

mean

β̂2/β̂1 0.9978 0.9994 0.9526 0.9759 0.8995 0.9484

β̂3/β̂1 1.0010 1.0004 0.9701 0.9854 0.9193 0.9625

β̂4/β̂1 1.0020 1.0004 0.9452 0.9798 0.8994 0.9477
√
mse

β̂2/β̂1 0.0372 0.0207 0.1676 0.0975 0.2539 0.1558

β̂3/β̂1 0.0329 0.0188 0.1663 0.0935 0.2587 0.1507

β̂4/β̂1 0.0326 0.0184 0.1675 0.0925 0.2531 0.1505



Rank Correlation with n = 200

Linear Gaussian Logistic

Single 0.9893(0.0121) 0.6318(0.3266) 0.5435(0.3582)

tMAVE0 0.9893(0.0122) 0.6675(0.2897) 0.5919(0.3191)

tMAVE0(index) 0.9983(0.0018) 0.8707(0.2224) 0.8255(0.2734)

tMAVEeff 0.9903(0.0122) 0.6887(0.3072) 0.6086(0.3450)

tMAVEeff (index) 0.9993(0.0008) 0.9406(0.1564) 0.9077(0.1952)

W †
sq−L 0.9909(0.0093) 0.6319(0.4688) 0.5608(0.5183)

W †
sq−A 0.9608(0.0284) 0.5722(0.2709) 0.5079(0.3035)

W †
flo−L 0.9823(0.0249) 0.4348(0.3457) 0.3760(0.3649)

† These methods are based on Chen et al (2017).



Rank Correlation with n = 500

Linear Gaussian Logistic

Single 0.9935(0.0071) 0.8013(0.2159) 0.7377(0.2657)

tMAVE0 0.9937(0.0072) 0.7941(0.1978) 0.7342(0.2436)

tMAVE0(index) 0.9994(0.0006) 0.9503(0.1375) 0.9088(0.2004)

tMAVEeff 0.9941(0.0072) 0.8129(0.1879) 0.7496(0.2704)

tMAVEeff (index) 0.9998(0.0002) 0.9931(0.0245) 0.9800(0.0612)

Wsq−L 0.9965(0.0029) 0.8244(0.2721) 0.7612(0.3486)

Wsq−A 0.9807(0.0126) 0.7108(0.1774) 0.6523(0.2107)

Wflo−L 0.9935(0.0072) 0.5972(0.2641) 0.5311(0.2945)



Correct Classification Rate with n = 200

Linear Gaussian Logistic

Single 0.9771(0.0087) 0.7810(0.1600) 0.7291(0.1662)

tMAVE0 0.9788(0.0085) 0.8177(0.1442) 0.7725(0.1543)

tMAVE0(index) 0.9841(0.0080) 0.8781(0.1147) 0.8502(0.1302)

tMAVEeff 0.9832(0.0072) 0.8347(0.1554) 0.7847(0.1697)

tMAVEeff (index) 0.9897(0.0052) 0.9242(0.0838) 0.8983(0.0999)

Wsq−L 0.9559(0.0186) 0.7393(0.1806) 0.7107(0.1947)

Wsq−A 0.7915(0.0332) 0.5347(0.0391) 0.5271(0.0353)

Wflo−L 0.9417(0.0331) 0.6370(0.1178) 0.6173(0.1196)



Correct Classification Rate with n = 500

Linear Gaussian Logistic

Single 0.9861(0.0052) 0.8857(0.1101) 0.8398(0.1367)

tMAVE0 0.9876(0.0049) 0.8972(0.1006) 0.8567(0.1222)

tMAVE0(index) 0.9905(0.0045) 0.9347(0.0787) 0.9026(0.1031)

tMAVEeff 0.9909(0.0040) 0.9157(0.1086) 0.8738(0.1415)

tMAVEeff (index) 0.9946(0.0026) 0.9713(0.0223) 0.9527(0.0413)

Wsq−L 0.9721(0.0108) 0.8232(0.1191) 0.7927(0.1425)

Wsq−A 0.7880(0.0207) 0.5193(0.0227) 0.5145(0.0198)

Wflo−L 0.9629(0.0165) 0.6927(0.0989) 0.6672(0.1033)



Conclusion and Discussion

I It is natural to extend the single index model to multiple index model

∆(Z ) := E[Y |T = 1,Z ]− E[Y |T = 0,Z ] = g(B>0 Z ),

where B0 is a p × d matrix.

I Extension to multiple treatment is not trivial:

I Choice of g : g1, g2, . . .

I Choice of β and model consistency: single vs. multiple index?

I Treatment ordered?
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