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Why Depth Regression for Functional Data?

Tecator Data
This dataset is available in the R-package caret.
It contains the percentage values of moisture, fat and protein contents
and the spectrum of absorbances for 215 meat samples.
The moisture, the fat and the protein contents are measured by
analytical chemistry.
The absorbance spectrum of a sample was measured by a
spectrometer.
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Why Depth Regression for Functional Data? (contd.)

Obtaining the spectrum of a sample is cost-efficient, but getting the
nutritional values is expensive.
It is economically important to be able to predict the fat and the
protein contents from the absorbance spectrum of a sample.
We consider the spectrum as a functional covariate (random element
in an L2 space) and the fat and the protein contents as response
variables. The response may be viewed as real-valued (if we analyze
the fat or the protein content individually), or considered as bivariate
(if the fat and the protein contents are analyzed simultaneously).
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Why Depth Regression for Functional Data? (contd.)

We construct local boxplots for both the protein content and the fat
content, taking the curve of absorbance spectrum as the covariate.
The radius of the neighborhoods of each covariate curve is fixed at
0.25.
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Why Depth Regression for Functional Data? (contd.)
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Figure: Local boxplots for the fat and the protein contents of the Tecator data.
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Why Depth Regression for Functional Data? (contd.)

Though the local median regression detects the change in the center
of the conditional distribution with the change in the covariate, it
misses some other important features of the conditional distributions
like the variation in the conditional spread of the response.
The upper and the lower boundaries of the boxplots, which are the
local first and the third quartiles respectively, provide an idea about
the changes in the conditional spread of the response with the change
in the covariate.
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Why Depth Regression for Functional Data? (contd.)

The two variables are correlated, but the boxplots of each individual
variable cannot capture the dependence.
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Data depth: Introduction

Outlying pointsOutlying points Central point

Data depth gives a center-outward ordering of the points relative to
the data cloud.
The blue point has almost equal number of points on its either sides,
while the red points have almost all the observations only on one side.
Depth of a point u = min{Fn(u), 1− Fn(u)}, where Fn(·) is the
proportion of data points that are on the left of u (the empirical
distribution function).
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Data depth: Introduction (contd.)

How do we extend these ideas in Rd for d ≥ 2 ?
One approach is to consider lines through u (planes for d = 3 and
hyper-planes for d ≥ 3) and look at the proportion of data points
lying on the two sides (half-spaces) of the line.
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Data depth: Introduction (contd.)

We can take the minimum of the proportion of data points in any
half-space of the line through u after considering all the possible lines
through u. This is called the Tukey half-space depth.
All the data points lie on one half-space of one line through the red
point, while any line through the blue point has almost equal
proportion of data points in both the half-spaces.
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Data depth: Introduction (contd.)

30 samples from BVN(0,0,0.5,0.5,0)

All sample points lie on

one side of the line

All lines divide data
cloud into two almost equal parts

The half-space depth leads to a center-outward ordering of the points
in Rd with respect to a given data cloud.
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Conditional Depth

Let the response Y ∈ Rp and the covariate X ∈ C, where (C, d) is a
complete separable metric space.
Let the conditional probability distribution of Y given X = z be
denoted as µ(· | z), and x ∈ C be a fixed element.
Conditional Half-space Depth of Y given X = x is defined as
ρ(y | x) = inf{µ({v ∈ Rp |utv ≥ uty} | x) |u ∈ Rp, ‖u‖ = 1}, y ∈ Rp.
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Conditional Depth (contd.)

Denote D(α | x) = {y ∈ Rp | ρ(y | x) ≥ α} for α ∈ R.
For 0 ≤ r < 1, let α(r) = sup{α |µ(D(α | x) | x) ≥ r}.
The set D(α(r) | x) is called the conditional 100r% central region of Y
given X = x.
The conditional 100r% central region contains 100r% of the
conditional probability mass with its elements having higher
conditional depth than any point outside this set.
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Kernel estimates

Let K (·) be a kernel function supported on [0, 1], which is bounded
and bounded away from 0, with associated bandwidth hn > 0.
Denote the sample conditional probability distribution of Y given
X = x as µn(· | x), which puts mass

K (h−1
n d(x,Xi ))∑n

i=1 K (h−1
n d(x,Xi ))

at the point Yi .
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Kernel estimates (contd.)

The conditional sample depth function ρn(· | x) is related to µn(· | x) in
the same way as the conditional population depth function ρ(· | x) is
related to µ(· | x).
Denote Dn(α | x) = {y ∈ Rp | ρn(y | x) ≥ α}, where α ∈ R.
For 0 ≤ r < 1, let αn(r) = sup{α |µn(Dn(α | x) | x) ≥ r}.
The conditional sample 100r% central region of Y given X = x is
Dn(αn(r) | x).
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Asymptotic properties

The conditional sample 100r% maximal depth contour of Y given
X = x is defined as δn(αn(r) | x) = {y ∈ Rp | ρn(y | x) = αn(r)},
where 0 < r < 1.
Under appropriate assumptions,

I Dn(αn(r) | x)→ D(α(r) | x) almost surely as n→∞ for any 0 < r < 1.
I Given any ε > 0,
δn(αn(r) | x) ⊆ {y ∈ Rp |α(r)− ε ≤ ρ(y | x) < α(r) + ε} almost surely
for all sufficiently large n.

The shapes of the sample central regions are good approximations of
their population counter-parts for large sample sizes as the contours
determine the shapes of the central regions.
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Center of the Conditional Distribution

A point m(x) with ρ(m(x) | x) ≥ ρ(y | x) for every y is called a
conditional median of Y given X = x with respect to the conditional
depth ρ(· | x).
For the the half-space depth, m(x) becomes the usual conditional
median for a univariate response, and D(α(r) | x) becomes the
conditional interquartile interval for r = 0.5.
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Center of the Conditional Distribution (contd.)

m(x) along with the set D(α(r) | x) can be viewed as a generalization
of the box-plot corresponding to the conditional distribution of a real
valued response.
A sample conditional median mn(x) satisfies ρn(mn(x) | x) ≥ ρn(y | x)
for every y.
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Center of the Conditional Distribution (contd.)

The conditional 100r% trimmed mean m(r | x) of Y given X = x is
defined as
m(r | x) = [

∫
yI (y ∈ D(α(1− r) | x))µ(dy | x)]/µ(D(α(1− r) | x) | x).

For a real valued response, the above definition of the conditional
trimmed mean coincides with the usual real valued conditional
trimmed mean.
The sample conditional 100r% trimmed mean mn(r | x) is defined by
mn(r | x)
= [

∫
yI (y ∈ Dn(αn(1− r) | x))µn(dy | x)]/µn(Dn(αn(1− r) | x) | x).
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Asymptotic Properties (contd.)

Under appropriate assumptions,
I Any sequence of sample deepest points mn(x) converges to a

population deepest point m(x) almost surely as n→∞.
I mn(r | x)→ m(r | x) almost surely as n→∞ for any 0 < r < 1.
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Demonstration: Tecator Data

We consider the pair of fat and protein contents as the bivariate
response, and the absorbance spectra as the covariate.
The response is bivariate and the covariate is functional.
The kernel function K (·) used for the estimation is
K (u) = I (0 ≤ u ≤ 1). The bandwidth is computed by the
leave-one-out cross validation method, minimizing the mean square
error for the conditional median corresponding to the half-space depth.
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Demonstration: Tecator Data (contd.)

We compute the 50% conditional central regions corresponding to four
selected covariate curves ordered by their L2-norms.
The conditional median and the conditional trimmed mean are plotted
as circles inside the central regions.
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Demonstration: Tecator Data (contd.)
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Figure: The selected covariate curves (1st row), scatter plots of the local response
values (2nd row) and the conditional central regions for r = 0.50 (3rd row) for the
Tecator Data with bivariate response.
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Conditional Spread

A larger conditional central region indicates a higher spread of the
conditional distribution of the response.
The measure ∆(r | x) of conditional spread of Y given X = x is
defined as the diameter of the set D(α(r) | x).
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Conditional Spread (contd.)

For a real valued response and for the half-space depth, ∆(r | x)
coincides with a conditional inter-quantile range.
In particular, ∆(0.5 | x) coincides with the conditional interquartile
range of the real valued response.
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Conditional Spread (contd.)

The estimate of ∆(r | x), denoted as ∆n(r | x), is defined as
∆n(r | x) = sup{‖y1 − y2‖ | y1, y2 ∈ Dn(αn(r) | x)}.
Under appropriate conditions, ∆n(r | x)→ ∆(r | x) almost surely as
n→∞ for any 0 < r < 1.

26 / 42



Demonstration: Tecator Data (contd.)
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Figure: Plot of ∆n(r | x) r = 0.50 for the Tecator Data with bivariate response
(fat and protein contents).
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Test of Heteroscedasticity

A nonparametric test for heteroscedasticity can be developed based on
the conditional central regions.
Our hypotheses are H0 : ∆(r | x) is constant over x, and
HA : ∆(r | x) varies with x.
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Test of Heteroscedasticity (contd.)

Recall that the estimate ∆n(r | x) is the diameter of the conditional
sample central region Dn(αn(r) | x), and computationally expensive as
a result.
We consider a different estimate of ∆(r | x).

29 / 42



Test of Heteroscedasticity (contd.)

Define ∆′n(r | x) = max{‖Yi − Yj‖ |Yi ,Yj ∈ Dn(αn(r) | x)}.
Under appropriate conditions, ∆′n(r | x)→ ∆(r | x) almost surely as
n→∞ for any 0 < r < 1.
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Test of Heteroscedasticity (contd.)

Our test-statistic is

Tn =
1
n

n∑
i=1

∆′n(r |Xi )−

1
n

n∑
j=1

∆′n(r |Xj)

2

.

Large values of Tn will bear evidence against H0.
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Test of Heteroscedasticity (contd.)

The p-value for the test is computed based on a permutation
procedure.
Step 1: Consider a permuted sample (X1,Y

∗
1 ), ..., (Xn,Y

∗
n ), where

Y ∗1 , · · · ,Y ∗n is a random permutation of Y1, · · · ,Yn.
Step 2: The value of Tn is computed for all such permuted samples,
and the empirical distribution of those values is taken as an
approximation of the null distribution of Tn.
Step 3: The p-value for the test is computed as the proportion of those
values of Tn which are larger than the actually observed value of Tn.
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Test of Heteroscedasticity (contd.)

In the Tecator data, the p-value for the proposed test, based on 500
random permutations, turns out to be 0 for the bivariate response (fat
and protein contents) and 0.002 for the trivariate response (moisture,
fat and protein contents).
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Power study

We consider a functional covariate X ∈ L2[0, 1] given by X (t) = Bet ,
where B ∼ Uniform[0, 1] and t ∈ [0, 1].
Let Σp denote a p × p matrix whose (i , j)-th element is
σij = 0.5 + 0.5I (i = j)

The conditional distribution of Y given X is
MVNp(0, (1 + a‖X‖2)Σp), where a ≥ 0.
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Power study (contd.)

Each of the simulated level and power is computed based on 500
independent replications of the data.
The nominal level of the test is fixed at 5%, i.e., we reject the null
hypothesis when the computed p-value is less than 0.05.
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Power study (contd.)

Bivariate Y (p = 2)

sample size a = 0 a = 5 a = 10 a = 15
n = 100 0.048 0.354 0.474 0.48
n = 200 0.048 0.558 0.598 0.59
n = 400 0.06 0.646 0.692 0.698

Trivariate Y (p = 3)

sample size a = 0 a = 5 a = 10 a = 15
n = 100 0.044 0.378 0.476 0.516
n = 200 0.056 0.514 0.558 0.602
n = 400 0.044 0.626 0.656 0.686
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Conditional Skewness

One can get an idea of the conditional skewness of the response by
comparing the conditional 100r% trimmed mean for some 0 < r < 1
with the conditional median.
If the conditional trimmed mean coincide with the conditional median,
one may conclude that the conditional distribution is symmetric.
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Conditional Skewness: Tecator Data
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Figure: The selected covariate curves (1st row), scatter plots of the local response
values (2nd row) and the conditional central regions for r = 0.50 (3rd row) for the
Tecator Data with bivariate response.
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Conditional Skewness (contd.)

Higher the distance between a conditional trimmed mean and the
conditional median, ‖m(r | x)−m(x)‖, we can say that higher is the
conditional skewness of the distribution.
The distance between a conditional trimmed mean m(r | x) and the
conditional median m(x) depends on the spread of the conditional
distribution.
We can take the quantity ‖m(r | x)−m(x)‖ scaled by a measure of
conditional spread at x as a measure of conditional skewness of Y
given X = x.
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Conditional Skewness (contd.)

We define the measure Ψ(r | x) of conditional skewness of Y given
X = x as Ψ(r | x) = ‖m(r | x)−m(x)‖/∆(r | x).
Ψ(r | x) is estimated by the sample analogue
Ψn(r | x) = ‖mn(r | x)−mn(x)‖/∆n(r | x).
Under appropriate conditions, Ψn(r | x)→ Ψ(r | x) almost surely as
n→∞, for any 0 < r < 1.
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Demonstration: Tecator Data (contd.)
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Figure: Plot of Ψn(r | x) with r = 0.50 for the Tecator Data with bivariate
response (fat and protein contents).
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Thank You
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