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Benefit-risk

BR evaluation involves multiple sources of evidence and
different disciplines, from clinical medicine to statistics, and
policy. Available clinical trial data are usually quite limited and
need to be supplemented by other sources of epidemiological
data and the evaluations need to continue into the
post-marketing setting.

Examples
Ingredients for BR evaluation
Multi–criteria statistical decision theory
BR in clinical trial data
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Benefit-risk: examples

Tysabri was the first monocolonal antibody that was
approved by the FDA in 2004 for the treatment of multiple
sclerosis, but was removed from the market after two
patients taking the drug developed progressive multifocal
leukoencephalopathy (PML). After withdrawal from the
market, an FDA advisory committee discussed and
concluded that benefit is greater than risk. Based on the
BR evaluation, the drug was back with limited use.
Lorcaserin is a selective serotonin receptor agonist that
regulates appetite and reduce food intake. It was shown
not to reach the desired effect in short term, but long-term
BR assessment shows its benefits outweighs its risk, so
FDA eventually voted 18 to 4 to approve the drug.
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Benefit-risk: ingredients

Planning process:
BRAT framework help B-R decisions; FDA also published
guidance; EMA has adopted the PrOACT-URL
decision-making framework.
Qualitative and quantitative evaluations:
Subjectivity is unavoidable in both quanlitative and
quantitative evaluations.
Benefit-risk formulations:

S =
K∑

k=1

wk (P0k − P1k ),

K : number of outcomes; P0k (P1k : proportions of patients
in control (treatment) responding; wk : relative importance
of the outcomes.
A multidisciplinary approach incorporating multiple
perspectives
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Benefit-risk: Multi-criteria statistical decision theory

MCDA (multi-criteria decision analysis):

S =
K∑

k=1

wk (xk − v (L)
k )/(v (H)

k − v (L)
k ),

v (L)
k (v (H)

k ): low(L) and high(H) weights for criterion k ; xk :
the criterion value; wk : weight of k .
SMAA (stochastic multi-criteria acceptability analysis):
two types of uncertanty: (a) sampling variability in
estimated effect sizes, (b) the weights to scale relative
importance of different criteria.

Sj(x j ,w) =
K∑

k=1

wku(x j
k ),

where u(x j
k ) = (x j

k − v (L)
k )/(v (H)

k − v (L)
k ). This formulation

incorporates uncertainty by assuming the criteria and the
weights to be random variables.
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Benefit-risk: Multi-criteria statistical decision theory

SMDM (stochastic multi-criteria discriminatory method) For
two treatments A and B, ∆(w) = SA(xA,w)− SB(xB,w) is
the difference in scores for the values of the K -dimensional
vectors xA and xB and weight the vector w . Favor A if
∆(w) ≥ cutoff(w) and to favor B otherwise, with cutoff(w)
given by the following “discrimatory probabilities”:

dA = P{∆ ≥ cutoff(w)},dB = P{−∆ ≥ cutoff(w)}.
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Benefit-risk: clinical trial data

Chuang-Stein (1994) derives a response score for each
patient by reducing the observed benefit response by
observed risk score. The safety endpoints are divided into
J classes and Lj levels of severity for each class. Intensity
weights wjk can be assigned to each level for each class of
safety endpoints, j = 1, . . . , J and k = 1, . . . ,Lj . A safety

(or risk) score for patient i using ri =
∑J

j=1
∑Lj

k=1 wjk Iijk ,
where Iijk = 1 is patient i has experienced side effect j at
intensity level k , and Iijk = 0 otherwise. The efficacy score
for patient i is discounted by ri for the risk-adjusted benefit
score

e∗i = ei − fri ,

where f is a proportionality constant assigning penalty to
the side effects profile and depends on the severity of the
underlying disease being treated.
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Design and analysis of clinical trials

In early-phase clinical trials, the evaluation of safety is mostly
exploratory with a focus on serious adverse reactions to the
product. These early first-in-human trials are conducted to
identify a dose range and to gain preliminary data on safety and
the pharmacokinetic properties of the candidate drug. In later
phases of clinical development programs, the safety profile is
characterized more fully using larger numbers of patients.
Some clinical trials may be designed with specific safety
hypotheses.

Dose-escalation in phase I
Safety considerations in phase II, III and phase II/III clinical
trials
Clinical trial designs with both efficacy and safety
endpoints
Analysis of safety data from clinical trials
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Dose-escalation in phase I

Determine DLT (dose-limited toxicity) and MTD (maximum
tolerated dose) through some rules and models:

Rule-based design: not rely on pre-specified parametric or
non-parametric models or curves, to escalate or
de-escalate dose with a fraction of preceding dose,
depending on the presence or absence of dose limiting
toxicity among the previous cohorts of treated subjects.
e.g. standard traditional 3+3 design and the accelerated
titration design.
Model-based designs: apply pre-defined statistical models
or curves to toxicity data to estimate the probability of
dose-limiting toxicity. Can be formulated using Bayesian
framework in which the posterior probability of toxic
response is updated with data from patients enrolled in
each dose level. (O’Quigley et al. (1990))

Tze Leung Lai Department of Statistics, Stanford University Medical Product Safety: Biological Models and Statistical Methods



Dose-escalation: model-based designs

Examples of model-based designs:
CRM (continual reassessment method): the toxicity
response is modeled through a dose-toxicity function that
is continually updated using data collected and hence is in
turn used to determine for the next subject the dose level
that is close to the target toxicity probability threshold.
EWOC (escalation with overdose control): modify CRM
that may cause unnecessary exposure of subjects to high
toxic doses by imposing additional measures to prevent
future subjects from being exposed to high toxic doses.
EWOC method assesses the probability of exceeding the
MTD for each higher dose after each patient, prohibiting
dose escalation if this probability exceeds some
pre-specified value.
Bartroff and Lai (2010, 2011) proposes to use Bayesian
sequential designs; also see Whitehead and Brunier
(1995), Haines, Perevozskaya and Rosenberger (2003) .
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Safety for the design of phase II and III studies

Challenges in phase II and phase III trials: (a)
demonstrating serious safety concerns with statistical
power needs much larger sample size; (b) lack of
evidentiary standards for evaluating safety; (c) prior
evidence on safety on an agent not strong enough to
prompt phase II and III trials designed to address the
serious safety issues.
Conditioning on rare adverse events: randomized two-arm
trial with 1 : r randomization ratio; λ0 (λ1): incidence rates;
n0 (n1): observed number of events from control
(treatment); constant incidence rate = Poisson arrivals of
AEs. n1 follows a binomial distribution Bin(n, π), where
π = rλ1/(λ0 + rλ1) .The relationship between the relative
risk R = λ1/λ0 and the binomial probability π is

R =
π

r(1− π)
and π =

rR
1 + rR

.
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Sequential conditioning methods and efficient GLR
tests

Use repeated significance test that terminates after n
intussusception cases and declares the vaccine to be
unsafe if P{Bin(n,p0) ≥ #n(V )} ≤ 0.025, wehre #n(V )
denotes the number of vaccine cases among the n cases.
Declare the vaccine to be safe if
P{Bin(n,p0) ≤ #n(V )} ≤ 0.025, where p1 = 11/10p0
corresponds to a 10-fold increase in risk for the vaccine
group.
MC simulations show that the probability for the study to
stop with “no increase risk using vaccine” is 0.94 for a
vaccine with no increased risk, and the probability for the
study to stop with a “increased-risk vaccine” conclusion is
almost 1 for relative risks of 6 or greater. This
“conservativeness” is good for safety evaluation.
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Sequential tests without conditioning on n

Next, an innovation without conditioning on the total
number of events, which makes conventional sequential
tests applicable. The limit of binomial distribution is
Poisson.
Arrivals of adverse events follow a Poisson process, with
rate λV for vaccine (V) and λC for placebo (C). Test
H0 : λV/λC ≤ 1 versus H1 : λV/λC ≥ γ, where γ > 1. Let
p = λV

λV+λC
. Shih et al (2010) propose to use a sequential

generalized likelihood ratio (GLR) test

τ = inf{n ≥ 1 : ln,0 ≥ b or ln,1 ≤ a},

which is asymptotically efficient for testing H0 : p ≤ p0
versus H1 : p ≥ p1.
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Sequential conditioning methods and BLN(2004)

Bartroff, Lai and Narasimhan (2014) (BLN) propose an
integrated approach: a joint efficacy-toxicity model is
chosen to model toxicity yi and efficacy zi , and a phase I
design is chosen to estimate MTD. In phase II, a
group-sequential GLR test of H0 : P(z = 1|x = γ) ≤ p0,
rather than K0 : p(γ̂0) ≤ p0 is used. The MTD estimate γ̂ is
updated at each stage and always dose patients at the
current estimate.
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Incidence rate: a better measurement

Safety data are commonly summarized using the crude

incidence rate:
#subjects with adverse events

#subjects in each treatment group
. Its

validity requires strong assumptions of randomness of
patient discontinuation and of constant hazard rates within
groups over time.
A remedy: Exposure-adjusted incidence rate (EAIR):
calculate the exposure time period of each patient and
then divide the number of subjects with AEs by the total
exposure time for all patients.
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Various confidence intervals

CI based on Wald’s approximation and moment
Conventional Wald’s CI: λ̂1 − λ̂2 ± Z1−α/2σ̂.
CI with moment incorporated in:
λ̂1 − λ̂2 + δ ± Z1−α/2

√
σ̂ + δ2, where

δ = Z 2
1−α/2(1/T1 − 1/T2)/2.

CI based on variance estimate recovery:
Li et al. (2014) constructed the confidence intervals on the
difference of two Poisson rates based on the recovered
variance estimates of λ1 and λ2. Let L and U be the lower
and upper bounds of the confidence intervals based on
Wald’s approximation. Then, L and U can be viewed as the
minimum and maximum values of θ satisfying

Z 2
1−α/2 =

(λ̂1 − λ̂2 − L)2

σ̂2 and Z 2
1−α/2 =

(U − λ̂1 + λ̂2 − L)2

σ̂2 .
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Various confidence intervals

Let (l1,u1) and (l2,u2) denote the two-sided 100(1− α)%
confidence intervals on λ1 and λ2, respectively. Then the
variance estimates of λ̂1 and λ̂2 can be recovered. The
confidence intervals on θ is given byL = λ̂1 − λ̂2 −

√
(λ̂1 − l1)2 + (u2 − λ̂2)2

U = λ̂1 − λ̂2 −
√

(u1 − λ̂1)2 + (λ̂2 − l2)2.
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Various confidence intervals

Other CI types:
CI based on parameter constraint
CI with stratification
...
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Limitations and other adjustments of methods

Limitations: large number of scales, inadequate statistical
power, non-meaningful p-values, heterogeneity in adverse
event reporting...

Some other adjustments of methods:
Integrated Summary of Safety (ISS): a compound has
multiple disease indications for countries and populations
with diversified background
Development Safety Update Report (DSUR): to present
annual review from all clinical trias
Crude and exposure-adjusted incidence rates
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Multiplicity in the evaluation of clinical safety data

Due to new unanticipated effects, there is potential for drawing
false positive conclusions and the need for understanding the
multiplicity aspects in safety signal detection. Safety
assessment continues into the post-marketing phase initially
with clinical trials designed specifically to address possible
safety issues. We describe both frequentist error-controlling
methods and Bayes (in particular, empirical Bayes) methods
that have been developed to address multiplicity in the
evaluation of clinical safety data.

Illustrative example
Multiplicity and FDR
Double FDR and FDR with discrete statistics
Berry and Berry’s hierarchical mixture Bayes model
Gould’s Bayesian screening
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Multiplicity: example

Data: MMRV vaccine trial, treatment receives a measles,
mumps, rubella, varicella (MMRV) combination vaccine,
control receives MMR on Day 0 and optional V 42 days
later. NT = 148,NC = 132.
MedDRA and body systems: The adverse events are
coded using a standard dictionary (e.g., MedDRA) and
classified into groupings by body systems. The MMRV
dataset consists of 40 adverse event types which are
categorized into 8 body systems
Category of Tier 1,2,3 events; we focus on Tier 2 events.
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Multiplicity: FDR

FWER (family-wise error rate) control (P(V ≥ 1) ≤ α)
versus FDR (false discovery rate) control (E(V/R) ≤ α);
V : number of true null hypotheses rejected, R: number of
all hypotheses rejected
FDR-controlled procedure has higher power than
FWER-controlled procedure
FWER control leads to Bonferroni procedure; FDR control
leads to BH (Benjamini & Hochberg) procedure.
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Multiplicity: FDR and DFDR

BH procedure: FDR adjusted P-value

P[m] = P(m),P[j] = min{P[j+1],m/j · P(j)},

for j ≤ m − 1.
Mehrotra and Heyse (2004) propose double FDR (DFDR)
control which incorporates structure of body systems.
Need clever resampling method.

DFDR: first apply BH procedure on body system level with
level α1, and then apply BH procedure on individual
hypotheses in selected body systems with level α2.
Can fix α1 = α2/2, but does not control FDR. Use
resampling technique can give better FDR control at level
α2.
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Multiplicity: FDR and DFDR

Mehrotra and Adewale (2012) propose an adjustment to
DFDR procedure developed by Mehrotra and Heyse
(2004):

First, apply BH procedure on the adjusted smallest
P-value for each body system level with level α1. Then put
all individual hypotheses from selected body systems
together and apply BH procedure once with level α2.
Mehrotra and Adewale (2012) fix α1, α2 without using any
resampling methods. This does not control FDR at level α2
theoretically, even under independence assumption.
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Multiplicity: comparisons of 2004 & 2012 DFDR

A detailed comparison...
Original (2004) DFDR procedure:

Step 1: Let pi = min(pi1,pi2, ...,piki ) denote the
representative p-value for body system i , and let p̃i denote
the corresponding BH FDR-adjusted pi .
Step 2: Let p̃(i)

ij denote the FDR-adjusted pij obtained by
applying a BH FDR adjustment to the ki p-values within
body system i
Reject AEij if p̃i ≤ α1 and p̃(i)

ij ≤ α2.

(2012) new DFDR procedure:
Step 1: Apply BH FDR adjustment to the p∗

i (1 ≤ i ≤ s)

values, where p∗
i = min(p̃(i)

ij ; 1 ≤ j ≤ ki ), and let p̃∗
i denote

the FDR-adjusted p∗
i .

Step 2: Let F ≡ {pij |p̃∗
i ≤ α}. Apply a single BH FDR

adjustment to the p-values in F , and let p̃(F )
ij =

FDR-adjusted pij |pij ∈ F .
Reject AEij if p̃∗

i ≤ α and p̃(F )
ij ≤ α.
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Multipilicity: New appraoch

A combination of the new DFDR procedure (2012) and
careful resampling might be a better choice
Lai, Miao, Tsang (2017): alternative approach to “divide
and conquer” idea underlying DFDR for multiple
hypothesis testing and post-selection inference.

Insights:...

Tze Leung Lai Department of Statistics, Stanford University Medical Product Safety: Biological Models and Statistical Methods



Multiplicity: FDR control for discrete data

Heyse (2011) improves power even more by adjusting FDR
for discrete test statistics:

Let Qi (p) denotes the largest achievable P-value ≤ p for
hypothesis i = 1, ...,m. Qi (p) = 0 if no such P-value exists.
The adjusted P-values for discrete data is:

P[m] = P(m),P[j] = min{P[j+1],
m∑

i=1

Q(i)(P(j)/j},

for j ≤ m − 1.
The discrete-adjusted P-value (Q(i)(P(j)) ≤ P(j)) is smaller
than or equal to the originally BH-adjusted P-value,
(Q(i)(P(j)) = P(j)).
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Multiplicity: FDR and DFDR

Table: Smallest B&H Adjusted P-value From Each of the 8 Body
Systems

BS
#

AEs
Representative
AE Description

Group 1
N1 = 148

Group 2
N2=132

Unadjusted
P-value

Adjusted
P-value

01 5 Asthenia/Fatigue 57 40 0.1673 0.6248
03 7 Diarrhea 24 10 0.0289 0.2026
05 1 Lymphadenopathy 3 2 1.0000 1.0000
06 1 Dehydration 0 2 0.2214 0.2214
08 3 Irritability 75 43 0.0025 0.0075∗

09 11 Bronchitis 4 1 0.3746 0.9447
10 9 Rash 13 3 0.0209 0.1745
11 3 Conjunctivitis 0 2 0.2214 0.6641
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Multiplicity: Hierarchical Bayes mixture model

Berry and Berry’s 3-level hierarchical Bayes model:
θbi is the logarithm of the odds ratio of the adverse event
probability for treatment (Group 2) to that for control
(Group 1):

θbi = log(pbi,2/(1− pbi,2))− log(pbi,1/(1− pbi,1)),

pbi,1 and pbi,2: adverse event probabilities for Group 1 and
Group 2; see Table on next slide. There is positive, albeit
small, posterior probability that θbi < 0 in the Bayesian
model. The first level of the Bayesian hierarchical mixture
model assumes that θbi = 0 with probability πb and is
normally distributed with probability 1− πb. The second
and third levels of the hierarchical specification gives the
prior distributions of πb and of the mean and variance of
the normally distributed component of the mixture model at
the first level.
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Multiplicity: Hierarchical Bayes mixture model

Bayesian specification attempts to model “the existing
structure and the available information” among types of
adverse events (AEs) “explicitly depending on their body
systems,” thus “borrowing information across types of AEs.”
Hence, “this is different from conclusions of more traditional
multiple comparison methods in which only the number of
types of AEs under consideration matters,” as in the FDR
and DFDR control methods. There is only one type of AE
(irritability in body system 8) with a high value (0.78) for the
posterior probability of θbi > 0. This AE type also has the
smallest P-value (0.003) for Fisher’s exact tests.
This 3-level mixture model has “borrowing” and “shrinking”
effect within each body system.
We develop new methods to significantly ease the MCMC
computation
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Multiplicity: Hierarchical Bayes mixture model

Table: Fisher’s 2-sided P-values (with asterisks if < 0.1 and posterior
probabilities under the 3-level hierarchical Bayesian model

2-sided Posterior probability
b i Type of AE P-value θbi > 0 θbi = 0
... ... ... ... ... ...
8 1 Crying 0.500 0.185 0.655
8 2 Insomnia 1.000 0.153 0.661
8 3 Irritability 0.003∗ 0.780 0.214
9 1 Bronchitis 0.375 0.059 0.900
... ... ... ... ... ...
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Multiplicity: Bayesian screening

Gould’s Bayesian screening:
Due to the fact that “testing hypotheses about treatment
group differences in adverse event incidence when the
adverse events have not been identified in the study
protocol amounts to using observed data to test
hypotheses that are generated by the same data.” He
advocates a Bayesian screening approach that “provides a
direct assessment of the likelihood of no material
drug-event association and quantifies the strength of the
observed association” for the Tier 2 AEs of the control and
treatment groups.
The model: pbi,2 equals to pbi,1 with probability π and has a
Beta distribution that is independent of the Beta distribution
for pbi,1 with probability 1− π, and that π also has a Beta
distribution. The parameters of the Beta prior distributions
are determined from the data so as to strike a good
balance between sensitivity and specificity of the classifier.
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Multiplicity: Bayesian screening

Screening rule:
log odds ratio θbi ≤ θ∗ for classifying the observed AE as
safe, and flagging concerns if θbi > θ∗.
Model (continued): when sample size is large, can model
AE types as Poisson distribution. Then compare risk ratio
λ1/λ0.
Posterior probabilities are much easier to compute than
Berry and Berry’s three-level hierarchical model.
This is implicitly related to empirical Bayes and use local
FDR, which is useful tool to quanitify and balance
specificity versus sensitivity.

Tze Leung Lai Department of Statistics, Stanford University Medical Product Safety: Biological Models and Statistical Methods



Causal inference from post-marketing data

Post-marketing data from clinical trials and observational
studies are important for regulatory agencies “to monitor the
safety of drugs after they reach the marketplace and to take
corrective action if drugs risks are judged unacceptable in light
of their benefits” .

Data from phase IV clinical trials and observational data
from spontaneous reporting of adverse events by users of
approved drugs.
Introduction to causal inference and associated statistical
models and methods.
Observational studies and causal inference methods in
these studies.
Structural equation models, causal diagrams and
graphical models of causal effects, using perspectives
from computer science
Prediction, statistical learning and data-driven decisions in
causal models
Unmeasured confounding in observational studies by
using instrumental variables
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Post-marketing data collection

Upon regulatory approval, a medical product is
continuously investigated through post-marketing studies.
Depending on the type and amount of evidence, the
objective and design considerations of post-marketing
studies could differ substantially.
If a product targeting a rare disease for which no
efficacious therapies are available is approved based on a
limited amount of evidence on clinical efficacy and safety,
then the regulatory agency may require the manufacturer
to conduct a randomized controlled trial to further confirm
the product’s benefit and risk. But if a product with a
well-established safety profile in clinical trials is approved
based on convincing evidence of efficacy, then a
post-marketing surveillance program consisting of
non-interventional epidemiological observational studies
may be required to demonstrate long-term safety.
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Post-marketing data collection

Different types of post-marketing clinical trials:
Clinical trials with safety endpoints
Observational pharmacoepidemiologic studies using
registries
Prospective cohort observational studies
Retrospective observational studies
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Causality, potential outcomes and counterfactuals

Conterfactuals, potential outcomes, and Rubin’s causal
model:

PC = P{Y (0) = 1|E = 1,Y (1) = 1,X},
where E = 1 represents “exposure” and Y is response
variable.
The terms “cause” and “treatment” are used
interchangeably in Rubin’s causal model. Each unit is
potentially exposable to any one of these treatments before
exposure, and has received only one treatment
post-exposure. Much of the literature considers the case
J = {t , c} consisting of two elements t (for treatment) and
c (for control). We consider here more general J , which
are finite sets that allow for different levels for the treatment
t (as in dose levels of a drug or amount of smoking for
cigarette smokers). The assignment variable Ti assigns to
the ith unit the cause or treatment in J that acts on it.
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Rubin’s causal model

We can write observations as {(Yi(Ti),Xi), i = 1, ...,n}, in
which Xi is the pre-exposure covariate of the i th unit. Causal
inference is about comparison of the distributions of potential
outcomes Yi(τ), τ ∈ J under the following two assumptions:

Stable Unit Treatment Value Assumption (SUTVA). Given
the observed covariates X1, ...,Xn, the distribution of
potential outcomes of one unit is independent of the
potential treatment assignments for other units.
Ignorability: Ti has the same conditional distribution given
{(Xi ,Yi(τ)) : τ ∈ J ,1 ≤ i ≤ n} as that given
X = (X1, ...,Xn), and P(Ti = τ |X) ≥ ε for some ε > 0 and
all τ ∈ J and 1 ≤ i ≤ n.
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Causality: Frequentist, Bayesian, and missing data
approaches

Frequentists’ approach:

E(Y (τ)) = E
{

E
[
n−1
τ

n∑
i=1

Yi(τ)1{Ti=τ}

∣∣∣∣X]}

= E
{

E
[
n−1
τ E(Y (τ)|X)

n∑
i=1

1{Ti=τ}

∣∣∣∣X]}
= E{E(Y (τ)|X)} = µ(τ).

Thus, the frequentist approach to causal inference uses
the usual tools of consistent and asymptotically normal
estimators of the means of potential outcomes, from which
confidence intervals for the mean causal effects can be
derived.
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Causality: Frequentist, Bayesian, and missing data
approaches

Bayesian approach:
Dawid et al. (2016) also introduce a Bayesian approach. In
principle, this approach begins with a prior distribution of a
multivariate parameter comprising the probabilities of the
four configurations of (Y (0),Y (1)) conditioned on X (since
Y (0) and Y (1) are binary outcomes) and then derive a fully
determined posterior distribution for equation in previous
slide. However, they point out that this is problematic
because Y (0) and Y (1) are never simultaneously
observable and therefore the parameter describing the
joint distribution of (Y (0),Y (1)) given X is not identifiable
from the data, making the Bayesian inference highly
sensitive to the specific prior assumptions made. They
therefore assign a joint prior distribution for the estimable
probabilities P(Y = 1|E = 1,X ) and P(Y = 1|E = 0,X ).
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Causality: Frequentist, Bayesian, and missing data
approaches

Bayesian approach (continued):
Rubin uses full prior specification in his Bayesian approach
to causal inference but emphasizes the importance of
ignorable treatment assignment mechanism for the causal
inference to be insensitive to the prior distribution. In
particular, the concept of ignorable treatment assignment
is introduced in the 1978 paper.
Rubin also embeds Bayesian causal inference in the
broader framework of Bayesian imputation methods for
missing data.
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Observational studies: confounding and adjustments

Matching, subclassification, and standardization
Matching, or more precisely matching samples, refers to
forming a sample of size n from the set of observed
(Xi ,Yi (c)), i = 1, ..., rn of rn units (r ≥ 1) assigned to the
control so that the the covariate values Xi ’s match (in some
way) the X̃j ’s in the observations (X̃j ,Yj (t)), j = 1, ...,n, from
the treatment group. Rubin proves that matching reduces
bias in estimating E(Y (t)− Y (c)) when the univariate Xi do
not have the same distribution as the X̃j .
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Observation studies: subclassification and
standardization

Subclassification is another method of adjustment for
confounding. The treatment and control groups are divided
into subclasses or strata on the basis of the covariate X, so
that each subclass can be regarded as having
approximately the same vaues of X. Although the method
is natural for discrete X that takes on a relatively small
number of values, it encounters major difficulties when the
covariate vector X is continuous and has a large number of
components.
Standardization refers to reweighting the observations for
confounder control.
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Other methods for observational studies

Propensity score
Control for confounding via estimated propensity score

Inverse probability weighting
Time-dependent confounding and g-estimation
Model-based adjustments and sensitivity analysis
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DAGs and causal effects

Directed acyclic graphs and symbolic derivation of causal
effects

Figure: Example 1 of DAGs

A causal diagram is known as a directed acyclic graph
(DAG). The graph represents three random variables
(E ,C,D) as nodes (or vertices). These three nodes are
connected by edges (the arrows). C is temporally prior to
E and D, and E is temporally prior to D. Two nodes are
adjacent if there is an edge between them. A path between
two nodes C and D is a sequence of nodes beginning with
C and ending with D, in which each node is connected to
the next by an edge.
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DAGs

Hernán et al(2017) characterize a causal DAG with the
following criteria: (1) the lack of an arrow from one node to
another can be interpreted as the absence of a direct
causal effect of the two variables, relative to the other
variables on the graph; (2) all common causes, even if
unmeasured, of any pair of variables on the graph are
themselves on the graph; and (3) any variable is a cause of
its descendants.
Causal Markov assumption: conditional on its direct
causes, a variable Vj is independent of any variable of
which it is not a cause. That is, conditional on its parents,
Vj is independent of its non-descendants. This statement
is mathematically equivalent to the statement that the
density f (V ) of the variables V in DAG G satisfies the
Markov factorization f (v) =

∏
i P(Xi |pai).
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Conditional independence in graphical models

Reference: Hernán et al. (2017), Pearl (1988, 1995, 2016),
Whittaker (1990), etc
Pearl summarizes the graphical methods that are used to
identify the conditional independence relationships are
based on the recursive product decomposition where

P(X1, ...,Xn) =
∏

i

P(Xi |pai),

where pai stands for the realization of some subset of the
variables that precede Xi in the order (X1,X2, ....,Xn). If we
construct a directed acyclic graph (DAG) in which the
variables corresponding to pai are represented as the
parents (or adjacent predecessors or direct influences) of
Xi , then we have a way to determine independence...
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d-separation test

The independencies implied by the decomposition can be
read off the graph using the d-separation test , defined as
follows:

A path p in a DAG G is blocked by a set of nodes Z if and
only if
(a) p contains a chain of nodes A→ B → C or a fork
A← B → C such that the middle node B is in Z (that is, B
is conditioned on), or
(b) p contains a collider A→ B ← C such that the collision
node B is not in Z , and no descendants of B is in Z .
If Z blocks every path between two nodes X and Y , then X
and Y are d-separated conditional on Z , and thus are
independent conditional on Z .
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d-separation test

Geiger et al. (1990) show that there is a one-to-one
correspondence between the set of conditional independence
between X and Y given Z implied by the recursive
decomposition, and the set (X ,Y ,Z ) that satisfy the
d-separation criteria in G.
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Examples of d-separation test

Figure: Example 1 of using d-separation to determine conditional
independence

Focus on the relationship between Z and Y . If we use an
empty conditioning set, they are d-separated because there is
no unblocked path between them.
If we condition on W , then Z and Y are d-connected because
the only path between Z and Y contains a fork (X ) that is not in
that set, and the only collider (W ) on the path is in the set, the
path is not blocked.
Z and Y are d-connected if we condition on U
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Examples of d-separation test

Figure: Example 2 of using d-separation to determine conditional
independence

If we add another path between Z and Y , then Z and Y are
conditionally dependent, because there is a path between them
(Z ← T → X ) that contains no colliders.
If condition on T , then that path is blocked, and Z and Y
become independent again.
Conditioning on {T ,W} will make Z and Y d-connected
because conditioning on T blocks the path Z ← T → Y , but
conditioning on W unblocks the path Z →W ← X → Y .
If we now change the conditioning set to {T ,W ,X}, then Z and
Y become independent again....
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Conclusion

There are other issues to be solved, e.g. confounding
covariates that cause the adverse events and adjustments
have to be made for causality analysis. The causaility
model we use is important.
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Conclusions

Techniques that can potentially be integrated to address
the challenges of using safety databases are

Statistics methods: propensity scores, graphical models,
instrumental variables, and inverse probability weighting .
Phamacoepidemiology: assessment of medication
adherence and medication errors (or of device misuse or
malfunctioning leading to device-related adverse
experiences for medical devices), reporting ratios and
disproportionality analysis, case-control approach and
self-controlled case series.
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