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Introduction

Precision Medicine in General

I Precision medicine aims to optimize the delivery of individualized
therapies by integrating comprehensive patient data.

I Stratified vs. personalized medicine.
I In terms of sources, data may come from randomized

experiments (efficacy) or from observational studies
(effectiveness).

I Two general approaches: estimating the stratified or
individualized treatment effects or determining the optimal
treatment regime (static or dynamic).

I Our focus is to estimate the individualized (static) treatment effects
based on data from randomized trials.

I Relevant Concepts: effect moderation or modification, subgroup
analysis, qualitative and quantitative treatment-by-covariates
interaction, optimal treatment regime, etc.
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Introduction

Rubin’s Causal Model

Rubin’s Causal Model

I Rubin’s causal model (Neyman 1990; Rubin, 1978) provides a
fine calibration of causal effects and a general framework for
making causal inference.

I Potential outcomes: Y0(ω) and Y1(ω) and the observed
outcome Y (ω) = {1− T (ω)}Y0(ω) + T (ω)Y1(ω). Available
data {(yi , ti , xi ) = (y(ωi ), t(ωi ), x(ωi )) : i = 1, . . . , n}.

I Causal inference is concerned with the comparison of the two
potential outcomes via the observed data, which can be made
at three levels.

1. Unit-Level : Y1(ω)− Y0(ω).
2. Subpopulation-Level : {ω : X(ω) ∈ A ⊂ X}:

E (Y1|X ∈ A)− E (Y0|X ∈ A).

3. Population-Level : E (Y1)− E (Y0) (ATE).
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Introduction

Rubin’s Causal Model

Individual Treatment Effects (ITE)

I The “individual treatment effect” (ITE) is defined as
E (Y1 − Y0|X = x), i.e., the conditional expectation of the
difference Y1 − Y0 given a subject with X = x.

I ITE is conceptually different from the unit level causal effect
Y1(ω)− Y0(w). Strictly speaking, ICE makes conditional
causal inference at the subpopulation level {ω : X(ω) ∈ A}
with A = {x}.

I ITE is the best that one could practically do with available
information to approximate the unit level causal effect.

I One nature approach is to relax conditioning on X = x to
conditioning on a (data-adaptive) neighborhood of x.
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Introduction

Tree Methods

Recent Statistical Approaches in Precision Medicine

Many recent proposals of statistical approaches in advancing precision
medicine (Lipkovich et al., 2017 SIM) are available. To name a few,

I Tree-structured methods are dominant:

I Interaction trees (IT; Su et al., 2009 JMLR);
I Virtual twins (VT; Foster, Taylor, and Ruberg, 2011 SIM);
I SIDES (Lipkovich et al., 2011 SIM);
I Qualitative IT (Dusseldorp and Van Mechelen, 2014 SIM);
I Unbiased (Loh, He, and Man, 2015 SIM);
I Optimal treatment regime (Zhao et al., 2012 JASA; Zhang et

al., 2012 Biometrics; Laber and Zhao, 2015 Biometrika; etc.).
I Parametric and semi-parametric (Cai et al., 2011 Biostat);

I Bayesian approach (Berger, Wang, and Shen, 2014 JBS ; Xu et al., 2016
JASA);

I LASSO for hierarchical interactions (Bien, Taylor, and Tibshirani, 2013
Annals and Tian et al., 2014 JASA);

I Logistic-normal mixture model with latent class (Shen and He, 2015
JASA).
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Introduction

Tree Methods

Why Tree-Based Methods?

I A tree model fits piecewise constant models by recursively
bisecting the predictor space. It starts simply with a
two-sample test statistic but facilitates a comprehensive
modeling by recursive partitioning. Among many other merits,
tree models

I Excel at modeling complex (nonlinear) interactions of higher
orders (albeit implicitly).

I Provide a natural way of grouping data with meaningful
interpretation.

I Are capable of modeling high-dimensional data of mixed types
(off-the-shelf) with automatic variable selection.
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Introduction

Tree Methods

Random Forests of Interaction Trees (RFIT)

I Tree-structured subgroup analysis (e.g., IT) supply inference
on stratified or subpopulation treatment effects. Then we can
move backward to ATE by integrating results or move forward
to ITE with ensemble learning methods.

I Our present objective focuses on implementation of Random
Forests of Interaction Trees (RFIT) for estimating ITE. Our
specific contributions include:

I Explore a new way of splitting data, alternative to greedy
search (GS);

I Standard error formula based on infinitesimal jackknife (IJ)
I Comparison with separate regression (SR).
I Implementation of other useful features of RF.
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RFIT

SSS for Splitting Data

One Single Split

I Given data {(yi ,Ti , xi ) : i = 1, . . . , n} obtained from
randomized trials, a split is induced by a binary question, e.g.,
‘if Xj is continuous, is Xj ≤ c for a cutoff point c?’.

I Every split leads to a 2× 2 table as below:

Child Node
Trt Left (L) Right (R)

1 (ȳ1L, n1L) (ȳ1R , n1R)
0 (ȳ0L, n0L) (ȳ0R , n0R)

I It is natural to consider model:

yi = β0 + β1Ti + β2δij + β3Ti · δij + εi ,

where δij = 1 {xij ≤ c} is the indicator associated with split

and εi
IID∼ N (0, σ2).
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RFIT

SSS for Splitting Data

The Splitting Statistic

I To assess differential treatment effects between two nodes, it is
natural to test for the interaction term, i.e., H0 : β3 = 0 where β3

corresponds to difference in differences (DID) in econometrics.

I The resultant t or z test is

z(Xj ; c) =
(ȳ1L − ȳ0L)− (ȳ1R − ȳ0R)√

σ̂2(1/n1L + 1/n0L + 1/n1R + 1/n0R)
,

where σ̂2 is the pooled estimator of σ2.

I In greedy search (GS), the best split solves maxXj ; c z
2(Xj , c), which

can be viewed as a two-step search maxXj maxc z
2(Xj , c).
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RFIT

SSS for Splitting Data

Exhaustive/Greedy Search (GS)

I GS is time consuming, involves discrete optimization with
erratic patterns, and suffers from end-cut preferences and
variable selection bias problems.

I Su et al. (2016) proposed a smooth sigmoid surrogate (SSS)
alternative to GS to amend its deficiencies.

I The main idea of SSS is to replace δi = 1 {xi ≤ c} in the
splitting statistic (z2 here) with a smooth sigmoid function,

si = π{a · (xij − c)}, withπ(x) = {1 + exp(−x)}−1.
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RFIT

SSS for Splitting Data
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Figure: The expit function π(x) = {1 + exp(−a(x − c)}−1 with c = 0
and different a values.
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RFIT

SSS for Splitting Data

Smooth Sigmoid Surrogate (SSS)

I Given predictor X , let δi = 1 {xi ≤ c} . First rewrite{
n1L =

∑n
i=1 Tiδi and n1R = n1 − n1L

n0L =
∑n

i=1(1− Ti )δi and n0R = n0 − n0L

I Denote the sums{
S1L =

∑
i yiTiδi and S1R = S1 − S1L

S0L =
∑

i yi (1− Ti )δi and S0R = S0 − S0L.

I It follows that, for k = 1, 0 and t = {L,R},

ȳkt = Skt/nkt and σ̂2 =
1

n − 4

 n∑
i=1

y2
i −

∑
k=0,1

∑
t={L,R}

nkt ȳ
2
kt

 .
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RFIT

SSS for Splitting Data

Smooth Sigmoid Surrogate (SSS)

I For each predictor Xj , estimate the cutoff c as

c?j = arg max
c

z̃2(Xj ; c), (1)

where z̃2(Xj ; c) denotes the approximated squared z test
statistic.

I Solving (1) is a one-dimensional smooth (yet nonconcave)
optimization problem.

I Brent’s (1973, Algorithms for Minimization without
Derivatives) method for 1-D smooth optimization.

I Strategies for seeking global optimum (unnecessary)
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RFIT

SSS for Splitting Data

Smoothed z2 with a = 1, 2, . . . , 100

SSS facilitates a parametric smoothing (with smoothing parameter a) to

GS by smoothing its generating process.
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Q(c
)

Data (n = 100) were generated from y = 0.5 + 0.5T + 0.5 z + 0.5T · z + ε

with x ∼ unif(0, 1), z = 1{x ≤ .5}, and ε ∼ N(0, 1).
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RFIT

SSS for Splitting Data

Comparison of SSS vs. GS

I Data are generated from model

y = 0.5 + 0.5T + 0.5 ∆ + 0.5 · T ∆ + ε,

where ∆ = ∆(x ; c0) = I (x ≥ 0.5), x ∼ uniform[0, 1], and
ε ∼ N(0, 1).

I Two sample sizes n = 50 and n = 500

I For SSS, different a = 1, 2, . . . , 100 values are considered.

I For each model configuration, 500 simulation runs are made.

I Performance Criterion MSE =
∑500

i=1(ĉi − c)2/500.
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RFIT

SSS for Splitting Data

Empirical density of ĉ : GS vs. SSS

0.0 0.2 0.4 0.6 0.8 1.0

0.
0

0.
5

1.
0

1.
5

c

D
en

si
ty

(a)

0 20 40 60 80 100

0.
04

0.
05

0.
06

0.
07

0.
08

0.
09

a
M

SE

(b)

0.0 0.2 0.4 0.6 0.8 1.0

0.
0

0.
5

1.
0

1.
5

2.
0

2.
5

3.
0

c

D
en

si
ty

(c)

0 20 40 60 80 100

0.
01

0
0.

01
5

0.
02

0
0.

02
5

0.
03

0

a

M
SE

(d)



18/58

Random Forests of Interaction Trees for Estimating Individualized Treatment Effects in Randomized Trials

RFIT

SSS for Splitting Data

Computing Complexity

Proposition

Consider the interaction tree setting with one continuous predictor
X that has O(n) distinct values. Both GS and SSS are used to
find its best cutoff point. In terms of computation complexity, GS
is at best O{ln(n) n} with the updating scheme and O(n2) without
the updating scheme. Comparatively, SSS is only O(n).
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RFIT

SSS for Splitting Data

Computing Time Comparison

CPU Time (in seconds) averaged over 10 runs. X is generated
from a discrete uniform distribution {1/K , 2/K , . . . ,K/K}, thus K
is the number of distinct values of X .

K = 10 K = 100 K = 500
GS SSS GS SSS GS SSS

n = 50 0.000 0.001 0.003 0.000 0.003 0.000
100 0.000 0.000 0.006 0.000 0.003 0.004
500 0.002 0.000 0.012 0.003 0.047 0.000

1000 0.004 0.000 0.023 0.002 0.100 0.000
2000 0.003 0.004 0.038 0.005 0.201 0.003
5000 0.008 0.002 0.094 0.002 0.462 0.001

10,000 0.017 0.005 0.182 0.005 0.899 0.010
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RFIT

SSS for Splitting Data

Variable Selection Bias

I Variable selection bias (VSB): A predictor with more values
or levels is more likely to be selected as the splitting variable
than a predictor with fewer values or levels.

I VSB is deemed inherent in CART with greedy search. Loh
(2002; GUIDE) led the efforts in addressing this problem. His
approach is to first determine the ‘most important’ splitting
variable (an equally difficult problem) and then find its best
cutoff point.

I SSS offers a way of avoiding variable selection bias in GS.
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RFIT

SSS for Splitting Data

χ2 Approximation with Numerically Determined DF

I For each Xj , obtain the maximized z̃2(Xj , ĉ) and its
distribution can be approximated by a χ2 distribution with
certain df.

I The df is numerically explored with extensive Monte Carlo
experiments.

I If Xj is binary, df = 1;
I If Xj is ordinal, df ≈ 2 (maximally selected statistic). Minor

adjustment for small K ≤ 5 can be applied, where K is the
number of distinct values of Xj .

I If Xj is nominal with K distinct levels, df ≈ 0.0443 + 0.6381K .

I The best split is selected according to smallest p-value or
largest log-worth (defined as − log10 p-value).
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RFIT

SSS for Splitting Data

Handling Nominal Covariates

I For a nominal covariate with K distinct levels, there are a total of
2K−1 − 1 ways of bisecting data.

I To speed up, one may first ‘ordinal’ize its levels by sorting its levels
according to estimated treatment effect at each level and then treat
it as if ordinal. However, this ‘ordinalization’ step introduces
over-optimism.

I Exact inference would involve the distribution of order statistics
from independent but not identically distributed variables, which
involves the concepts of (NP-hard) permanent (see, e.g., Vaughan
and Venables, 1972 JRSSB) and selection differential (Nagaraja,
1982 AoS). However, Nagaraja only considered the IID or balanced
case and hence the results cannot be used here.

I From numerical experiences, we notice that the null distribution of
z̃2 resembles χ2 very much, whose DF varies with K only.
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RFIT

SSS for Splitting Data

A Computational Approach to Find df

I Fixed a K , we simulate data from the null setting (i.e., X is
not an effect-modifier of trt).

I Obtain z̃2(ĉ) at the best cutoff point ĉ according to SSS.
I Repeat the experiment for many times to obtain an empirical

distribution of z̃2(ĉ).
I Approximate this empirical distribution with a χ2 distribution.

A nonlinear least square problem is involved, presenting a
one-D optimization with df being the decision variable.

I Repeat the above procedure for different K values and obtain
the estimated df of the best approximating χ2 distribution.

I Plot df versus K . Fit a model to quantify their relationship.
It turns out to be linear. A simple linear regression yields

df ≈ 0.0443 + 0.6381K .
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RFIT

SSS for Splitting Data

Empirical Distribution of z̃2

Split on a nominal variable with K distinct levels. The red curve is
density of the best χ2 approximation.
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RFIT

SSS for Splitting Data

Approximate DF Formula via Simple Linear Regression
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df = 0.0443 + 0.6381 K
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RFIT

SSS for Splitting Data

DF for Ordinal Covariates
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RFIT

Estimating ITE with RFIT

Individualized Treatment Effects (ITE)

I Estimated ITE δ = E (Y1 − Y0|X = x) can be useful in various
ways,

I Of key importance in deploying tailored plans in personalized
medicine;

I Affords deeper study of treatment efficacy;
I Used as a preprocessor in other methods, e.g., virtual twins

(VT; Foster, Taylor, and Ruberg, 2011), Zhang et al., (2012;
STAT ), and Laber and Zhao (2015; Biometrika).
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RFIT

Estimating ITE with RFIT

A Predictive Modeling Problem with Missing Data

Refer to the following data layout, which presents a missing data
problem:

id T x y Y1 Y0

1 0 x1 y1 · Y01

2 0 x1 y1 · Y01

· · · · · ·
n0 0 xn0 yn0 · Y0n0

n0 + 1 1 xn0+1 yn0+1 Y1(n0+1) ·
n0 + 2 1 xn0+2 yn0+2 Y1(n0+2) ·

· · · · · ·
n0 + n1 1 xn0+n1 yn0+n1 Y1(n0+n1) ·
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RFIT

Estimating ITE with RFIT

Separate Regression (SR) for Estimating ITE

Regress (RF; super learner, etc.) Y on x with data in the treated group

(trt=1) and then use the fitted model to predict Y1 in the untreated

(trt=0) group. Similarly, build another model using data in the untreated

group and make prediction for Y0 in the treated group.

id trt x y Y1 Y0

1 0 x1 y1 Ŷ11 Y01

2 0 x1 y1 Ŷ12 Y02

· · · · · ·
n0 0 xn0 yn0 Ŷ1n0 Y0n0

n0 + 1 1 xn0+1 yn0+1 Y1(n0+1) Ŷ0(n0+1)

n0 + 2 1 xn0+2 yn0+2 Y1(n0+2) Ŷ0(n0+2)

· · · · · ·
n0 + n1 1 xn0+n1 yn0+n1 Y1(n0+n1) Ŷ0(n0+n1)
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RFIT

Estimating ITE with RFIT

Random Forests of Interaction Trees (RFIT)

Let L be the training data and L′ be the test data.
Set m and B.
For b = 1, 2, . . . ,B, do

I Obtain bootstrap sample Lb.
I Repeat till a large tree Tb is obtained.

� Randomly select m covariates.
� For j = 1, 2, . . . ,m, do

◦ Apply SSS to find the best binary cut for Xj .
◦ Obtain its associated p-value and log-worth.

� Bisect Lb according to the best split of data with maximum
logworth.

I Send data L′ down tree Tb.
I Compute the predicted ITE δ̂i ′b for each i ′-th individual in L′.

Average over B bootstrap samples δ̂i ′ =
∑B

b=1 δ̂i ′b/B.
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RFIT

IJ-Based SE Formula

SE for Ensemble Learners

I The infinitesimal jackknife (IJ), also called nonparametric
delta or influence function method, of Efron (2014, JASA)
provides a general way of obtaining closed-form SE formulas
for bootstrap based ensemble learners.

I IJ inspects the effect of an infinitesimal contamination at the
i-th observation on the estimator.

I Simple to implement and flexible to use for many purposes
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RFIT

IJ-Based SE Formula

IJ-Based SE Formula

Proposition

The IJ estimate of variance of δ̂(x) is given by

V̂ =
n∑

i=1

Z̄ 2
i , (2)

where Z̄i =
∑B

b=1 Zbi/B and Zbi = (Nbi − 1){δ̂b(x)− δ̂(x)} with
Nbi being the number of times that the i-th observation appears in
the b-th bootstrap resample. In other words, the quantity Z̄i is the
bootstrap covariance between Nbi and δ̂b(x).
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RFIT

IJ-Based SE Formula

Bias-Corrected SE

Proposition

Especially for small or moderate B, V̂ is biased upwards. A
bias-corrected version is given by

V̂c = V̂ − 1

B2

n∑
i=1

B∑
b=1

(Zbi − Z̄i )
2.

Further assuming approximate independence of Nbi and δ̂b(x),
another computationally easier version is

V̂c = V̂ − n − 1

B2

B∑
b=1

{δ̂b(x)− δ̂(x)}2.
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Simulation Studies

RFIT vs. SR

Simulation Setting

I First simulate five (p = 5) predictors xj ∼ uniform[0, 1] for
j = 1, . . . , p independently.

I Then we generate y ′0 = µ0(x) + α + ε0 with a nonlinear
polynomial

µ0(x) = −2− 2x1 − 2x2
2 + 2x3

3

and α and ε0 being independent from N (0, 1).

I Next, we generate y ′1 = µ1(x) + α + ε1, where
µ1(x) = µ0(x) + δ(x) and ε1 ∼ N (0, 1) is independent of
both α and ε0.
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Simulation Studies

RFIT vs. SR

Notes on Simulation Setting

I A random effect term α is introduced to mimic some common
characteristics shared by repeated measures Y ′0 and Y ′1 taken
from the same subject.

I The unit-level effect Y ′1 − Y ′0 equals δ(x) + (ε1 − ε0), where
(ε1 − ε0) represents additional random errors that can not be
accounted for by covaraites x.

I The ITE E (Y ′1 − Y ′0|x) = δ(x).
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Simulation Studies

RFIT vs. SR

Four Models for ITE

I Four models (I)–(IV) are considered for the ITE δ(x), as given
below:

I: δ(x) = −2 + 2x1 + 2x2

II: δ(x) = −2 + 2 I (x1 ≤ 0.5) + 2 I (x2 ≤ 0.5) I (x3 ≤ 0.5)

III: δ(x) = −6 + 0.1 exp(4x1) + 4 exp{20(x2 − 0.5)}+ 3x3 + 2x4 + x5

IV: δ(x) = −10 + 10 sin(πx1x2) + 20(x3 − 0.5)2 + 10x4 + 5x5.

I Models III & IV derived from two nonlinear models in
Friedman’s (1991; AoS) MARS paper.
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Simulation Studies

RFIT vs. SR

Other Simulation Settings

I Simulate randomized treatment assignment variable T
independently from Bernoulli(0.5) and hence the observed
response y = Ty ′1 + (1− T )y ′0.

I In order to evaluate their performance, a test sample D′ of
size n′ = 2000 is generated beforehand.

I The mean square error (MSE)

MSE =
∑n′

i=1{δ̂(xi )− δ(xi )}2/n′, averaged over simulation
runs, is used as performance measure.

I Two sample sizes n = 100 and n = 500 and a total of 200
simulation runs is used for each model configuration.
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Simulation Studies

RFIT vs. SR

MSE in Estimating ITE: RFIT vs. GS
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RFIT vs. SR

Why RFIT Outperforms SR?

I RFIT has a much easier learning task than SR!
I Suppose that E (Y ′0|x) = µ0(x) and

E (Y ′1|x) = µ1(x) = µ0(x) + δ(x). SR has to estimate both
µ0(x) and µ1(x) while RFIT estimates δ(x) directly.

I For example, consider the simplest scenario µ0(x) = µ1(x) with
δ(x) = 0.

I Like other smoothing procedures, RF has a bias problem
(Breiman, 1999). We suspect that SR incurs more bias than
RFIT.
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RFIT vs. SR

True vs. Predicted ITE: RFIT and SR
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Evaluation of SE

Simulation Setting

I To investigate the validity of SE, we generated one test data
set D′ of size n′ = 50 from Model III and set it aside.

I 200 Simulation runs are taken. In each, a training data set D
of size n = 500 is obtained.

I For each D, B = 2, 000 bootstrap samples is used to train
RFIT and then the trained RFIT is applied to estimate ITE for
each observation in D′ together with standard errors.

I At the end of the experiment, we have 200 predicted ITE δ̂ for
each observation in D′, together with 200 SEs. Accordingly,
we compute the standard deviation (SD) of these ITE
estimates δ̂ and average the SE values.

I If the SE formula works well, the averaged SE values should
be close to their corresponding SD values.
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Simulation Studies

Evaluation of SE

SE in Estimating ITE with RFIT
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Simulation Studies

Evaluation of SE

Observations from Numerical Experiences

I We experimented with other models and similar results were
obtained.

I One issue pertains to the number B of bootstrap samples
needed. According to Efron (2014), a large B, e.g.,
B = 2, 000 is needed to guarantee the validity of IJ-based
standard errors.

I We experimented with different B values. Generally speaking,
ITE estimation stabilizes quickly even with a small B, e.g.,
B = 100; however, negative values may frequently occur to
the bias-corrected variance estimates when B is small or
moderate, e.g., B = 500. Thus a large number B of bootstrap
samples are needed to have sensible results for the SE
formulas.
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The BCEI Study

The Breast Cancer Education Intervention (BCEI) study (Meneses
et al., 2007, ONF) is a randomized controlled longitudinal
psycho-educational support intervention trial on quality of life
(QoL) targeting women with early-stage breast cancer survivors in
the first year of post-treatment survivorship.

I Founded by NIH (R01) and initialized in 2001;

I 261 BCS’s were randomized into the experimental (Exp) and
the wait control (WC) groups and followed at baseline, Month
3, and Month 6;

I Four subjects in Exp dropped out and one died in WC during
the followup period. 125 in Exp and 131 in WC completed the
study.
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The BCEI Study

Effectiveness of BCEI on QOL

I The outcome variable, Quality of
Life (QoL), is obtained from a
50-item instrument with four
subdomains: Physical,
Psychological, Social, and Spiritual.

I Each item scores on a 0-10 rating
scale, with lower scores indicating
better QoL. The overall QoL score
is the grand average.

I The effectiveness of BECI is found
statistically significant. P-values are
< .0001 with and without covariate
adjustment.
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ITE with Error Bar by ID
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The BCEI Study

ITE with Error Bar by Rank
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The BCEI Study

Other Features of RFIT

A Distance Matrix for Differential Treatment Effect

I Growing B trees by taking bootstrap samples and apply each
tree to the whole data L;

I For each tree Tb, let t(i) denotes the terminal node the ith
observation falls into. For any pair of observations (i , i ′),

define a distance or proximity measure d
(b)
ii ′ such that

d
(b)
ii ′ =

{
0 if t(i) = t(i ′);
− log10(pii ′) if t(i) 6= t(i ′)

where pii ′ is the p-value from a two-sample statistical test
that compares t(i) and t(i ′).
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The BCEI Study

Other Features of RFIT

Computing the Distance Matrix

I Let q be the number of terminal nodes in Tb. Introduce an
n × q (incidence) matrix Ab = (ait) such that ait = 0 if
observation i falls into terminal node t of Tb. Let
Bb = (− log10 pii ′) be the q × q distance matrix among the q
terminal nodes of tree Tb. Then it follows that

Db = (d
(b)
ii ′ ) = AbBb At

b.

I In ordinary random forests, Bb = J− I, where J is the q × q
matrix of all 1’s and I is the unit matrix. Thus
d

(b)
ii ′ =

∑q
t=1 aitai ′t = 1 if the i-th and i ′-th subjects fall into

different terminal nodes; and 0 otherwise.
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The BCEI Study

Other Features of RFIT

Distance Matrix

I Average the distances obtained from B trees:

dii ′ =
∑B

b=1 d
(b)
ii ′ /B. Then D = (dii ′) is the n × n distance

matrix for all n subjects in terms of heterogeneity of
treatment effects.

I Entries in the distance matrix D measure how two subjects
are different in terms of treatment effects.

I The way of constructing the distance matrix D takes into
account the fact that different terminal nodes may show
homogeneous treatment effects and is applicable to
high-dimensional data with covariates of mixed types.
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Other Features of RFIT

A Distance Matrix for Differential Effects of BECI

Matrix D visualized via a force-directed graph drawing algorithm
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Other Features of RFIT

Algorithm: Variable Importance

Initialize all Vj ’s to 0 and Set m.
For b = 1, 2, . . . ,B, do

I Obtain bootstrap sample Lb and the out-of-bag sample

L(c)
b = L − Lb.

I Based on Lb, grow a large IT tree Tb by searching over m
randomly selected covariates at each split.
I Send L − Lb down Tb to compute G (Tb).
I For each covariate Xj , j = 1, . . . , p, do

◦ Permute the values of Xj in L(c)
b ;

◦ Send the permuted L(c)
b down Tb to compute Gj(Tb).

◦ Compute ∆Vj =
G (Tb)− Gj(Tb)

G (Tb)
if G (Tb) > Gj(Tb); and 0

otherwise.
◦ Update Vj ← Vj + ∆Vj .

Average Vj ← Vj/B.



53/58

Random Forests of Interaction Trees for Estimating Individualized Treatment Effects in Randomized Trials

The BCEI Study

Other Features of RFIT

Variable Importance from RFIT: The BCEI QoL Data
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Other Features of RFIT

Partial Dependence Plot

I First proposed by Friedman (1991, Annals of Statistics);
implemented in R packages randomForests and others.

I Can be naturally extended to interaction trees:

fj(xj) = Ex(−j)
δ(x), for j = 1, . . . , p.

I To estimate, we compute δ̃(x) for a number of values of xj
and then plot δ̃(x) versus xj .

δ̃(xj) =
1

n

n∑
i=1

δ̂(xj , xi(−j))

=
1

n

n∑
i=1

{
Ȳ (xj ,T = 1, xi(−j))− Ȳ (xj ,T = 0, xi(−j))

}
.
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Other Features of RFIT

Partial Dependence Plot: the BCEI QoL Data
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Discussion

I SSS yields a superior performance to GS in many aspects and
amends its deficiencies. There are interesting issues yet to
explore.

I Built on the basis of IT, RFIT outperforms SR in estimating
individual treatment effects and offers a number of useful
features.

I IJ supplies a closed form SE for ITE estimates from RFIT.
I Future research avenues:

I Extension to observational data (Su et al., 2012 JMLR);
I More ‘honest’ estimate of ITE with RFIT;
I Copula-based predictive modeling of individualized treatment

effect;
I ‘Soft sphere tree’ (SST) in p � n scenarios.
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Thanks! Questions?
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