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Introduction

• the receiver operating characteristic (ROC) curve:

a popular tool for evaluating accuracy of a diagnostic tool (biomarker)

• providing an exhaustive look at the relation between sensitivity (true

positive rate) and specificity (true negative rate) over all possible

decision points
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• the area under the ROC curve (AUC)

summary measure derived from the ROC curve that can provide an

overall assessment of diagnosis accuracy

• larger AUC implies higher diagnosis accuracy

• AUC amounts to the probability that the biomarker is concordant

with the disease outcome

• X1, X2 the values of a biomarker X from the populations of two

categories:

AUC = P(X1 > X2)

(assuming population 1 ranks higher than population 2)



• the hypervolume under the ROC manifold (HUM):

extension of AUC to multi-category diagonosis/classification (Nakas

& Yiannoutsos 2004 Stat Med)

• X1, . . . , XM the values of a biomarker X from the populations of M

categories:

HUM = P(X1 > X2 > · · · > XM)

(assuming populations 1 to M are ranked in descending order)

• accuracy index for multi-category diagnosis



• multiple biomarkers/diagnostic tests:

a usual practice is to find some suitable linear combination of

them, to improve the diagnostic accuracy attained by individual

biomarkers/diagnostic tests (Li & Fine 2008 Biostat; Kang et al.

2013 Stat Med)

• optimal linear combination of biomarkers/diagnostic tests:

diagnosis accuracy criterion such as AUC

• computationally challenging when using HUM as the criterion function

and the number of categories is more than three



our study:

• proposing overall accuracy indices much simpler than HUM for

multi-class diagnosis

• using the new accuracy measures as objective functions to derive

parametric and nonparametric procedures for identifying optimal

linear combinations of biomarkers in multi-category diagnosis



Diagnostic accuracy indices

• M multiple diagnostic categories; p biomarkers

• X1,X2, . . . ,XM the p-dimensional vectors of values of p biomarkers

from the populations of M categories

• for a p-dimensional vector β and the associated linear combinations

of the biomarkers, consider the probability

P(βTXM > βTXM−1 > · · · > βTX1)

which reflects the diagnostic power for the linear combination of

the biomarkers and amounts to HUM (Nakas & Yiannoutsos 2004

Stat Med)



• Let

PA =
M−1∑

i=1

P(βTXi+1 > βTXi)/(M − 1)

PM = min
1≤i≤M−1

P(βTXi+1 > βTXi)

• by Fréchet inequality for joint probability

max {0, (M − 1)PA − (M − 2)} ≤ HUM

= P(βTXM > βTXM−1 > · · · > βTX1)

≤ PM



• P(βTXi+1 > βTXi) is just the AUC of the linear combination of

the markers for discriminating populations between the (i+1)- and

i-th categories

• PA and PM reflect the average and worst-case diagnostic accuracies

across adjacent-category discriminations

• PA and PM involve only pairwise comparisons between two adjacent

categories, , whose calculation is much simpler than HUM

• PA and PM themselves may serve as convenient and useful overall

accuracy indices in multi-category diagnosis



• For given β, the labeling of the diagnosis categories are defined

in such a way that the corresponding PA, PM, or HUM is largest

among all possible ways of labeling (Scurfield 1996 J Math Psychol)

• In general we need to evaluate the index over for all M ! ways of

labeling to identify the correct labeling

• Finding the optimal linear combination of multiple markers thus

becomes computationally challenging when there are more than

three diagnosis categories



• Also, evaluating HUM would introduce further difficulty when there

are more diagnosis categories since it involves M-dimensional summation

or integration

• In contrast, PA or PM would substantially reduce computation

burden since they just require calculations of two-category AUCs

involving only 1-dimensional integration or two-fold summation



Computation procedures for optimal linear combination of

biomarkers

The parametric method

• the biomarker Xi from the ith diagnostic category follows a multivariate

normal distribution with mean vector µi and covariance matrix Σi:

Xi ∼ N(µi,Σi), i = 1, . . . ,M

• The AUC comparing the distributions of the linear combinations in

categories g and h:

AUCg,h(β) = P(βTXh > βTXg) =
∫ 1

0
Φ



βT(µh − µg)− c(u)

√
βTΣgβ√

βTΣhβ


 du



• Under the normal assumption, we can then plug the AUC formula

into PA or PM , and solve for β that maximizes the resulting objective

function

• In the special case

µ2 − µ1 = µ3 − µ2 = · · · = µM − µM−1 = δ

Σ1 = Σ2 = · · · = ΣM = Σ

the coefficient vector of the linear combination that maximizes PA

is the same as the one that maximizes PM , and both ∝ Σ−1δ

• Also, in this special case with M = 3, the optimal linear combination

based on PA (and PM) is the same as that using HUM (Zhang and

Li 2011 ANZ J Stat)



• when using HUM as the criterion, the optimal linear combination

of biomarkers for multi-class diagnosis under normality involves

evaluation of multidimensional integration in general, which is

computationally more difficult than using the PA or PM criterion



The nonparametric method

• a common nonparametric estimate of the AUC for comparing the

distributions of βTXg and βTXh (1 ≤ g < h ≤ M) is the Mann-Whitney

statistic (Hanley & McNeil 1982 Radiology):

ÂUCg,h =
1

ngnh

ng∑

s=1

nh∑

r=1

I
(
βTXh,r > βTXg,s

)

where ni denotes the size of the sample drawn from the ith diagnosis

category, and Xi,t denotes the vector of the biomarkers from the

tth subject in the sample of the ith category

• Substitute the nonparametric estimate for pairwise AUCs in PA or

PM and find the β that maximizes the resulting objective function



• the involved computation is challenging especially when the dimension

p of the biomarkers X is more than three given the non-smoothness

of the nonparametric estimate

• We adopt the stepwise procedures, including the step-down and

step-up procedures to find the optimal linear combination based

on the criterion function PA or PM and the nonparametric AUC

estimate (Kang et al. 2013 Stat Med; Pepe & Thompson 2000

Biostat)



The step-down procedure:

Step 1 : For each of the p biomarkers, evaluate PA (or PM) with the

nonparametric estimates of the pairwise AUCs in adjacent categories

Step 2 : Sort the p biomarkers according to the PA (or PM) values in

descending order. That is, the first biomarker has the largest PA

(or PM) value, the second biomarker has the second largest PA (or

PM) value and so on

Step 3 : Combine the first two biomarkers by the linear combination

V = X(1) + λX(2),



where X(1) (X(2)) denotes the first (second) biomarker and the

subscripts for category and subject have been suppressed, use the

nonparametric estimate of the pairwise AUCs for the combined

biomarker V when evaluating PA (or PM), and find the value λ that

maximizes PA (or PM). The resulting λ gives a combined biomarker

V = X(1) + λX(2)

Step 4 : Run Step 3 with X(1) replaced by the newly obtained biomarker

V and X(2) replaced by the third biomarker, to obtain an updated

combination of the biomarkers

Step 5 : Repeat Step 4 until all p biomarkers are included in the linear

combination V



The step-up procedure:

• performed in the same way as the step-down procedure, except that

in Step 2 the biomarkers are sorted according to the PA (or PM)

values in ascending order



• a common nonparametric estimate of the HUM for the linear combination

of biomarkers with coefficient vector β is:

1

n1 · · ·nM

n1∑

r1=1

· · ·
nM∑

rM=1

I
(
βTXM,rM > βTXM−1,rM−1

> · · · > βTX1,r1

)

which involves M-fold summation and hence is feasible only for

small M (M ≤ 3) (Kang et al. 2013 Stat Med)



The min-max procedure:

• An even simplified procedure using only the two most extreme

biomarkers in each subject for constructing linear combinations of

biomarkers (Liu et al. 2011 Stat Med)

• Consider the linear combination Xh,r,max + λXh,r,min for the rth

subject in the hth category, where Xh,r,max = max1≤j≤pXh,r,j is

the maximum biomarker value, and Xh,r,min = min1≤j≤pXh,r,j is

the minimum biomarker value for the rth subject in the hth category



• The pairwise AUCs of the min-max combination for comparing

categories g and h is empirically estimated by

1

ngnh

ng∑

s=1

nh∑

r=1

I
(
Xh,r,max + λXh,r,min > Xg,s,max + λXg,s,min

)

• The λ value maximizing the corresponding PA or PM function then

gives the optimal min-max combination based on the PA or PM

criterion

• All the biomarkers should be standardized to have the same scale

when applying the min-max procedure



Simulation studies

• Five biomarkers (p = 5) for three (M = 3) diagnosis categories

• The distribution of the biomarkers in each category is given by a

multivariate normal distribution or a multivariate skew t distribution

(Azzalini & Capitanio 2003 JRSSB)

• Three scenarios for the sizes of the samples from different categories:

(20,20,20), (30, 40, 50), (50, 50, 50)



Multivariate normal setting

• The means of the biomarkers in the three categories are

(0.1,0.1,0.1,0.1,0.1), (0.8,1.1,1.4,1.7,2.0), and (1.6,2.2,2.8,3.4,4.0)

respectively

• Biomarkers in the three categories have a common covariance matrix

given by the “compound symmetric” structure with diagonal elements

(marginal variances) of 1 and off-diagonal elements (pairwise correlations)

of 0.5



Multivariate skew t setting (Azzalini & Capitanio JRSSB 2003)

• The location parameters of the distributions of biomarkers in the

three categories are all the zero vector

• The dispersion parameters in the three categories are given by

the compound symmetric matrix with diagonal elements of 1 and

off-diagonal elements of 0.5

• the skewness parameters in the three categories are

(0.1,0.1,0.1,0.1,0.1), (0.8,1.1,1.4,1.7,2.0), and (1.6,2.2,2.8,3.4,4.0)

respectively



• A training and an independent test samples are generated, with the

training sample used to identify the optimal linear combinations,

while the test sample used to evaluate the diagnosis accuracy of

the identified linear combinations of the biomarkers



Methods for identifying the optimal linear combination of biomarkers

• Using the criteria PA or PM obtained by the parametric method

based on the normality assumption, and the nonparametric method

with step-down, step-up, and min-max procedures

• Using the empirical HUM criterion obtained by the nonparametric

method with step-down and step-up procedures



Assessment of the diagnosis accuracy for different methods

• Nonparametric estimates of PA, PM , and HUM based on the test

data



Multivariate normal setting

PA PM HUM

index Normal Step-down Min-Max Normal Step-down Min-Max Step-down
n = (20,20,20)

P̂A 0.920(0.038) 0.920(0.038) 0.917(0.038) 0.920(0.039) 0.919(0.038) 0.914(0.038) 0.920(0.037)

P̂M 0.915(0.039) 0.916(0.038) 0.900(0.043) 0.915(0.039) 0.914(0.039) 0.898(0.042) 0.915(0.038)

ĤUM 0.840(0.076) 0.841(0.074) 0.835(0.075) 0.840(0.076) 0.839(0.076) 0.829(0.075) 0.840(0.074)

n = (30,40,50)

P̂A 0.931(0.024) 0.929(0.025) 0.908(0.022) 0.930(0.024) 0.931(0.020) 0.907(0.027) 0.929(0.025)

P̂M 0.924(0.026) 0.921(0.027) 0.891(0.028) 0.923(0.026) 0.920(0.024) 0.891(0.032) 0.922(0.027)

ĤUM 0.863(0.048) 0.858(0.049) 0.817(0.044) 0.861(0.048) 0.863(0.039) 0.815(0.054) 0.858(0.049)

n = (50,50,50)

P̂A 0.933(0.021) 0.930(0.022) 0.909(0.024) 0.933(0.020) 0.931(0.021) 0.907(0.024) 0.930(0.022)

P̂M 0.928(0.022) 0.926(0.022) 0.891(0.026) 0.929(0.020) 0.926(0.021) 0.891(0.026) 0.926(0.022)

ĤUM 0.866(0.042) 0.861(0.043) 0.818(0.047) 0.866(0.039) 0.862(0.042) 0.815(0.048) 0.861(0.043)



Multivariate skew t setting

PA PM HUM

index Normal Step-down Min-Max Normal Step-down Min-Max Step-down
n = (20,20,20)

P̂A 0.563(0.043) 0.568(0.041) 0.578(0.038) 0.532(0.054) 0.548(0.047) 0.561(0.042) 0.570(0.043)

P̂M 0.502(0.021) 0.501(0.023) 0.502(0.019) 0.486(0.046) 0.493(0.035) 0.499(0.021) 0.499(0.026)

ĤUM 0.249(0.054) 0.256(0.051) 0.271(0.047) 0.210(0.061) 0.230(0.055) 0.247(0.053) 0.260(0.052)
n = (30,40,50)

P̂A 0.558(0.041) 0.564(0.039) 0.576(0.038) 0.547(0.043) 0.557(0.041) 0.561(0.043) 0.566(0.040)

P̂M 0.491(0.053) 0.492(0.056) 0.496(0.050) 0.486(0.054) 0.490(0.053) 0.493(0.047) 0.493(0.055)

ĤUM 0.240(0.053) 0.248(0.050) 0.266(0.049) 0.225(0.053) 0.238(0.051) 0.245(0.056) 0.251(0.050)
n = (50,50,50)

P̂A 0.571(0.027) 0.576(0.024) 0.579(0.022) 0.542(0.039) 0.553(0.031) 0.559(0.033) 0.578(0.024)

P̂M 0.504(0.009) 0.503(0.010) 0.502(0.009) 0.496(0.025) 0.500(0.014) 0.501(0.010) 0.501(0.010)

ĤUM 0.261(0.034) 0.267(0.030) 0.273(0.026) 0.219(0.047) 0.233(0.039) 0.244(0.043) 0.271(0.029)



Summary: comparison of computation methods

• When the biomarkers are multivariate normal and the PA or PM

criterion is used for identifying the optimal linear biomarker combination,

the parametric procedure based on the normality assumption and

the nonparametric step-down procedure perform quite similarly, and

perform better than the min-max method

• When the biomarkers follow multivariate skew t, the min-max method

performs best, followed by the nonparametric step-down procedure,

and the parametric procedure based on the wrong normality assumption

performs worst



Summary: comparison of optimization criteria

• the optimal linear combinations obtained by the PA, PM and HUM

criteria achieve similar diagnosis accuracy when the biomarkers

follow multivariate normal

• When biomarkers follow multivariate skew t, the diagnosis accuracy

of the optimal linear combination identified by the PA criterion is

very similar to that by the HUM criterion, and both of them are

slightly better than the accuracy obtained by the PM criterion



Summary: comparison of coefficient results

• The PA criterion in general yields coefficients of the optimal linear

combination closer to those obtained by the HUM criterion than

the PM criterion (results not shown)



Summary: comparison of computation time

• the PA- and PM-based methods are much more efficient in computation

than the HUM-based method



Application: The Alzheimer’s disease data

• 14 neuropsychological biomarkers as diagnostic tools for 3 categories

of Alzheimer’s disease

• 118 subjects of age 75 are divided into three categories: non-demented

(44 subjects), very mildly demented (43 subjects), and mildly demented

(21 subjects)

• According to Xiong et al. (2006), the estimated HUMs of individual

biomarkers using the parametric method range from 0.347 to 0.752



• Identify the optimal coefficients using the parametric and nonparametric

PA and PM methods, the nonparametric HUM method, and the

naive method which sets equal weights to all 14 markers

• The coefficients from each method are standardized to have unit

length.

• Different methods are assessed through the PA, PM and HUM

performance indices estimated by the nonparametric method with

the same dataset



The optimal coefficients
Method f1 kt kpar kfr zp4 zp5 zp6 zinfo zbc zbd zb zment
Naive 0.267 0.267 0.267 0.267 0.267 0.267 0.267 0.267 0.267 0.267 0.267 0.267
PA-par 0.175 0.251 0.197 0.400 0.354 -0.079 0.258 -0.226 0.402 -0.495 0.038 -0.203
PA-npar 0.182 0.541 0.004 0.273 0.334 -0.323 0.192 -0.462 0.128 -0.286 -0.118 0.090
PM-par -0.127 0.247 0.360 0.080 0.147 0.123 0.411 -0.072 0.196 -0.424 0.291 0.060
PM-npar -0.099 0.658 0.000 0.500 0.072 -0.007 0.428 -0.007 -0.092 -0.026 -0.323 -0.020
HUM 0.188 0.500 0.354 0.373 0.355 -0.038 0.184 -0.278 0.087 -0.154 -0.164 -0.096

Method P̂A P̂M ĤUM
Naive 0.886 0.882 0.792
PA-par 0.913 0.900 0.827
PA-npar 0.913 0.906 0.826
PM-par 0.905 0.904 0.813
PM-npar 0.901 0.901 0.805
HUM 0.906 0.892 0.823



Summary of the results

• The optimal linear combination identified by the parametric and

nonparametric PA criteria perform the best among all the methods;

they achieve highest PA, PM and HUM accuracy indices

• The linear combination identified by the parametric PM criterion

performs slightly worse than those obtained by the PA and the

HUM criteria

• The naive (equal-weight) method has the worst performances in

this dataset



Application: The heart disease data

• 303 heart disease patients from five categories representing different

presence statuses of the heart disease

• The numbers of subjects in the five categories are 164, 55, 36, 35,

and 13, respectively

• Four biomarkers are available for disease classification



• The distributions of the biomarkers do not follow a specific ordering

across the five categories

• Recall that the diagnosis accuracy index PA, PM or HUM is defined

as the maximum value of the index across all possible (5! = 120)

orderings of the categories

• To find the best linear combination of the biomarkers, it may be

more appropriate to conduct the calculations without assuming

a specific ordering of the diagnosis categories, even though the

disease categories are defined on an ordinal scale



• The need to evaluate the objective function for a large number of

orderings of the categories renders the HUM-based method infeasible

since it already involves five-dimensional summation

• The proposed PA and PM criteria involve only two-dimensional

summation for evaluating pairwise AUCs over adjacent categories,

hence are computationally much more efficient



The optimal coefficients

Method trestbps chol thalach oldpeak P̂A P̂M ĤUM
Naive 0.5000 0.5000 0.5000 0.5000 0.5493 0.5226 0.0147
PA-par 0.2548 0.1268 -0.3577 0.8894 0.6190 0.5127 0.0451
PA-npar 0.0034 0.1563 -0.9406 0.3013 0.6166 0.5235 0.0704
PM-par 0.1421 -0.6734 -0.6319 0.3564 0.5817 0.5209 0.0350
PM-npar 0.2526 0.1467 -0.9287 0.2285 0.6100 0.5363 0.0624



Results

• The empirical estimates of HUMs for these four biomarkers are

0.0111 (trestbps), 0.0109 (chol), 0.0297 (thalach), and 0.0251

(oldpeak), respectively

• The PA-based methods generally perform well in terms of the accuracy

performance measures PA, PM , and HUM

• All the proposed linear combinations of the four biomarkers attain

higher HUM than the best single biomarker, while the linear combination

from the naive method does not



Thank You !!


