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Background 

 Many unknowns when a new molecular entity enters to clinical 

development.  

 

 Expectations from efficacy to safety are clearly specified by the Target 

Product Profile (TPP), which is built upon the medical need, competitors’ 

data, market research, and regulatory requirements where known. 

 

 TPP generally sets up “goal posts” for a compound’s efficacy: minimally 

acceptable, target and potential upside threshold values (Lalonde et al., 2007) 

 

 Clinical trials should be distinguished by phase, “learning” or  

“confirmatory”, based on their objectives (Sheiner,1997)  
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 An Overview of Drug Development Process 

Objectives 

 Understand drug toxicity, PK/PD profile, 

 MTD, POC, identify the right population 

and the optimal dose(s)  

Learning 

 Phase 

Confirmatory  

Phase 

Objectives 

 Confirm efficacy findings from  

 early phase and collect sufficient  

 safety data  

Target 

discovery and 

validation 

 

Toxicity studies 

        and 

PK/PD studies 

 

POC and  

Dose-finding 

Clinical trials 

Phase 3     

Clinical 

trials 

PK=Pharmacokinetics; PD=Pharmacodynamics; POC=Proof-of-Concept. 



An Evolving Process – Targeted Patient Population 
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Empirical 
Medicine 

• Treatments that target on a patient population with broad clinical  
characteristics  

Precision 
Medicine 

• Treatments that interact with a specific biological target or 
pathway to provide desired therapeutic effect 

Personalized 
Medicine 

• Treatments prescribed  based on individual’s molecular profile  

• Especially suitable for finding effective treatment for complex and 
heterogeneous diseases such as cancer (Hanahan and Weinberg, 2011) 



“Subgroup Analysis”   

• Conducting “subgroup analysis” for clinical trial data is to 

investigate consistency or heterogeneity of the treatment effect 

across subgroups, defined based on background characteristics 
(Alosh et al., 2015).  

 

 It mostly focuses on testing whether the findings from a clinical trial 

are generalized to the overall population or are limited to a 

subgroup  

 

 It has its own issues and challenges  
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“Subgroup Identification”  

 “Subgroup identification” is the first step toward developing a 

“precision medicine” or “personalized medicine”  

 

 It is to search for a sub-population that might have enhanced 

treatment effect, especially when 
• The test compound failed to show efficacy in the overall population 

• The MOA suggested that better efficacy would be seen in a subgroup 

characterized by a biomarker signature, genomic or protonic expression   

 

 It is a concept and practice in line with the objectives in “learning 

phase” of new drug development 
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Our Practice – Conventional Approach 

 Doing subgroup analysis for potential biomarkers one at a time 

and conducting treatment group comparisons at each level of the 

subgroup  

 

 The drawbacks 

• Very labor intensive 

• Struggling with the right cut point for continuous variables 

• Can easily report false positive findings 

• Can still miss the right subgroup  
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Our Practice – Improved Approach 

 Rapidly developed statistical methods and software have enabled 

much more efficient and accurate search (Loh 2002, Lipkovich et al., 2011, Foster 

et al., 2011, Loh et al., 2015).  

 

 Recently, we brought in the method of Subgroup Identification 

based on Differential Effect Search (SIDES) and created a user-

friendly software with Windows interface. 

 

 “Subgroup Identification” undertaken with greater speed and 

broader scope with demonstrated benefit across different 

therapeutic areas. 
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An example of SIDES application: a subgroup with 

enhanced treatment effect has been identified 

Response rate in comparison with an approved 

treatment  - ITT Population 
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 Trt_Study 2 

 Trt_ Study 3 

Test compound 

  Trt_Study 1  

Response rate in comparison with an approved 

treatment --- A Biomarker High Subgroup 

   Test_ITT 

Test_Subgroup 

  Trt_Study 1  

 Trt_Study 2 

 Trt_ Study 3 



Hypothesis Supporting Biologics Development  

 Biologics entering clinical development often come with a known 

mechanism of action (MOA) 

 

 The MOA suggests that some biomarkers might have predictive property 

for clinical outcome   

 

 Phase 2 clinical trials are often designed with the best effort to test the 

hypothesis 
• Collecting relevant biomarker data 

• Allocating sample size for the potential biomarker positive subpopulation  

• Performing pre-specified and ad hoc analysis 
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A Real World Case  

 A new biologic compound came to Phase 2 

 

 Its MOA had suggested several potential predictive biomarkers 

 

 The study was sized to allow adequate power for a biomarker positive 

subpopulation to detect a desired treatment effect  

 

 It was assumed that median was the cut point to classify a biomarker high 

or low group  

 

 Clinical outcomes and MOA related biomarkers were collected 
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Findings from the study  
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Allcomers Subgroup 1 Subgroup 2 Subgroup 3

Primary endpoint - percentage of event rate 
reduction vs. placebo 

The desired 

treatment effect   

Sample size:   N         27% of N        13% of N                 10% of N 



Challenges remain 

 When efficacy findings that confirm MOA hypothesis are obtained 

from a sub-population with small sample size, unknowns still exist: 
• Is the efficacy finding replicable? 

• What is the true effect size on this sub-population?  

• What is the right dose for this sub-population? 

 

 How to create a clinical development path to move forward with a 

balance of speed and probability of late phase success? 
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Clinical Development Plan with Multiple Choices  

15 

Option 1 

Current Phase 2 

Phase 3 – Study 1 

Phase 3 – Study 2 

Option 2 

Phase 3 – Study 1 

Phase 3 – Study 2 

Current Phase 2 
New  

Phase 2 

Option 3 
Phase 3 – Study 1 

Phase 3 – Study 2 

An adaptive enrichment 

Phase 2 



Population Enrichment Designs 

 “Enrichment is defined as the prospective use of any patient characteristic 

to select a study population in which detection of a drug effect (if one is in 

fact present) is more likely than it would be in an unselected population” 
(FDA draft guidance, 2012) 

 

 Classification of enrichment strategies 

• Strategies to decrease heterogeneity  

• Prognostic enrichment strategies (studying on a high risk subpopulation to 

increase background event rate or to reduce placebo response) 

• Predictive enrichment strategies (studying on the subpopulation who are more 

likely to respond to a particular intervention)   

 

 

•   
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A hypothetical population enrichment design using 

predictive strategy 

• A test compound pursuing the indication of preventing End Stage Renal  

Disease (ESRD, defined as needing dialysis or kidney transplant) in 

patients with renal deficiency  

 

• A 20% reduction on ESRD was considered to be clinically meaningful 

 

• This compound has demonstrated compelling efficacy in reduction of 

UACR (urinary albumin/creatinine ratio) in Phase 2 clinical trials 

 

• Its effect on UACR was quickly seen after 4 weeks of treatment; 50% 

subjects had ≥ 30% reduction 
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Sample size needed for a Phase 3 time-to-event 

clinical trial in general population 

 Primary endpoint: time-to-ESRD or death 

 90% power to detect HR=0.80 at 1-sided α=0.025  

 Assume placebo event rate 6% 

 Performing an interim analysis when 50% of the events have been  

collected for futility and sample size re-estimation  

 Accrual: 2 years, follow-up: 4 years 

     Required number of events d = 846  

     Required total sample size N=5192  

 

Can we use enrichment design to reduce the sample size and to 

increase probability of Phase 3 success? 
18 



Reduction in UACR predicts reduction in ESRD 

or Death 

1. Analysis for combined data from two large renal outcome trials on an 

anti-hypertensive agent (Schmieder et at., 2011).  

 

2. Meta-analysis on 9 renal outcome trials (Lambers and De Zeeuw, 2010).  

 

3. Subgroup analysis results from the largest renal outcome study 

RENAAL (Brenner et at. 2010). 
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Analysis for combined data from two large renal 

outcome trials on an anti-hypertensive agent 
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 Two large size, event outcome studies on telmisartan were combined to 

evaluate the predictivity of changes in albuminuria on mortality, CV, and renal 

outcomes (Schmieder et at., 2011) 

100% -50%  0 
% change in UACR 

    Subjects with UACR at  

  both baseline and 2-year  

         visit N=23,480 

  Subjects with ≥ 50%  

   decrease, N=4994  

  Subjects with ≥ 100% 

     increase, N=6518 
  Subjects with minor 

   changes, N=11,968 

 Albuminuria worsened   Albuminuria improved 
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   Change in UACR Predicted Event Outcomes  
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Figure 1. Schmieder et al. 2011 21 
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Meta-analysis for 9 Renal Outcome Trials  

 Figure 1. Lambers Heerspink  and De Zeeuw Nephron. Clin. Prac. 2010 
 

30% reduction on UACR  

corresponding to HR=0.70  
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Subgroup Analysis Results from RENAAL 

--- A placebo controlled Phase 3 study for losartan 
HR (95% CI) 

All Patients    N=1513 (751 Losartan, 762 Placebo) 

Primary composite endpoint 

Doubling of serum creatitine 

ESRD  

Death 

ESRD or Death 

Doubling of serum creatitine or ESRD 

0.84 (0.72 - 0.98)   p=0.02 

 0.75 (0.61 – 0.92)  p=0.006 

 0.72 (0.58 – 0.89)  p=0.002 

1.02 (0.81 – 1.27)  p=0.88 

0.80 (0.68 – 0.95)  p=0.01 

0.79 (0.64 – 0.95)  p=0.01 

> 20% reduction in UACR   N =1146 
Renal Endpoint (ESRD) 
 

ESRD or Death 

0.67 (0.55 – 0.81) p<0.001 
 

0.66 (0.55 – 0.79) p=0.001 

> 30% reduction in UACR   N =1092 
Renal Endpoint (ESRD) 
 

ESRD or Death 

0.61 (0.49 – 0.75) p<0.001 
 

0.61 (0.51 – 0.75) p<0.001 

> 40% reduction in UACR   N =1020 
Renal Endpoint (ESRD) 

 

ESRD or Death 

0.60 (0.47 – 0.76) p<0.001 

 

0.63 (0.51 – 0.78) p<0.001 
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Responder Enrichment Event Outcome Trial Design 
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• With enrichment strategy, greater treatment effect can be assumed as alternative (HR=0.70) 

 

• N=2392 responders to be randomized; N= 4784 subjects are needed to enter the  

enrichment period (assuming 50% response rate) 

 

• Recall: without enrichment, the sample size would be N=5789. 

    
4 years event outcome period 

24 

Responders  

(had ≥30% reduction in UACR) 

Placebo 

Test compound 

4 weeks open-label  

enrichment period 
Allcomers 



Adaptive Enrichment Designs 

 Applicable in the situation when it is not clear whether an investigation 

compound works for allcomers or a sub-population nor it is clear what the 

predictive biomarkers are    

 

 The idea: learn from allcomers at interim  adapt entry criteria to enrich if 

warranted  continue to learn more about the enriched population within 

the same study.  

 

 Growing body of reports [13-17] on different types of adaptive enrichment 

designs with key differences in 

• The algorithm for subgroup identification 

• The decision rules for population enrichment  
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A Bayesian Adaptive Subgroup-Identification 

Enrichment Design (ASID) 

  A MedImmune and John Hopkins’ University collaboration project (Xu et 

al., under preparation) 

 

 The design engine includes 

1. An algorithm to search for the subgroup with enhanced treatment 

effect in Bayesian framework 

2. Decision rules to decide on which population to continue after interim 

3. Flexible, additional adaptive elements after population adaptation:  

• sample size re-estimation 

• adding more doses for dose-finding 

  Note: Design details and simulation results will be presented at JSM 2017 26 



Design Set Up 

 A randomized, proof-of-concept study of two arms: an investigational 

compound and a control with total sample size N 

 

 Clinical response variable can be continuous, binary, categorical, counting 

or survival 
 

 K biomarkers are identified with potential predictivity based on the 

compound’s MOA 

 

• Interim analysis will be performed when data from N1 subjects are 

available, N1 ~ 1/3 – ½ of N 
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The idea for subgroup-identification:  

        Random partition for the biomarker space 

 Subject i is characterized by his/hers clinical response yi, biomarkers Xi= 

(Xi1, Xi2, …, Xik), and the treatment assignment, zi 

 

 Denote Ω to be the biomarker space 

 

 Define “a partition” as a family of subsets π = {S1, S2, …, SM}, where Sj are 

mutually exclusive and their union is Ω 

 

 Model the probability that a biomarker will be split at each round and 

model the cut point based on variable type 

 

 Prior information can be incorporated 
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Sampling Model 

• Patient Subgroup:  

• Binary Outcome:  

• Categorical Outcome 

• Continuous Outcome 

• Survival Outcome 

• In summary 

Where c denotes the parameters in the model that describes the random partition π  
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Adaptive Enrichment Design Diagram 
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Use interim data to learn and make decision  

• Search for optimal subgroup using Bayesian random partition 

• Follow decision rules to decide whether need to enrich 

Modify entry criteria to enroll more responsive sub-population 

• Enroll N-N1 subjects 

    and consider to 

• re-estimate the sample size  

• add more doses for dose-finding 

Continue with  

original population for  

potential success 

            or 

Stop the study due to  

futility 

    or 

Continue with  

original population due  

to inconclusive finding 

No  

Yes 



Decision Rules 

 Denote δall and δj to be the parameter presenting treatment effect in the overall 

population and Subgroup j, respectively. 

 

 Specify probability thresholds c1 and c2, with c1 ≥ c2 

  

 Decision rules  
1. If Prob {δall ≥ LRV} ≥ c1 then continue with original population,  

2. Otherwise, if Prob {δj  ≥ LRV} } ≥ c2 for at least one subgroup j, then enrich the population to the union of 

the subgroups meeting condition Prob {δj  ≥ LRV} } ≥ c2 

3. Otherwise, if Prob {δall ≥ TV} < 10%, stop the trial for futility 

4. Otherwise, conduct 2nd interim analysis when N2 more subjects’ data become available and repeat the 

steps 1-3, where N2 ~ 1/3 of N. 

 

 At the time of performing 2nd interim on N1+N2 subjects, if no decision can be made at 

Step 3, then continue the trial to finish up remaining subjects of N-N1-N2.  
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Potential Outcomes at the First Interim 
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At the first interim 

   N1 subjects 

Continue the study with original population 

            (If Prob {δall ≥ LRV} ≥ c1) 

Continue the study with modified entry criteria to 

enroll subjects in the sub-population 

(if Prob {δj  ≥ LRV} } ≥ c2 for at least a subgroup j) 

Stop the study due to futility 

  (if Prob {δall ≥ TV} < 10%)  

Continue the study and plan to perform another  

interim analysis with N2 more subjects 



Concluding Remakes 

• Recent development of statistical methods and their companion software 

have enabled structured and efficient search of sub-population with 

enhanced treatment effect  

 

• Challenges remain as to how to construct a clinical program to advance  

the compound with initially identified sub-population  

 

• Adaptive enrichment design can learn and enrich in the same study to 

support a compound’s advancement with the balance of speed and quality 

 

• ASID partition biomarker space in Bayesian framework and can be an 

efficient adaptive enrichment design option for early phase trials 
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