Classification with Ultrahigh-Dimensional Features

Yi Li

Department of Biostatistics, University of Michigan

Workshop on Quantitative Methods for Drug Discovery and Development Singapore, July 2017

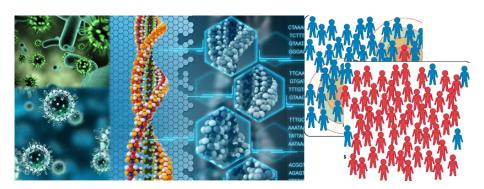
Outline

- Background
- Motivation and Challenges
- Methods
- Simulation
- A Data Example
- Conclusion

Outline

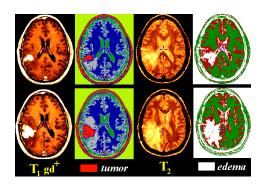
- Background
- Motivation and Challenges
- Methods
- Simulation
- A Data Example
- Conclusion

From Molecular Diversity to Population Classification



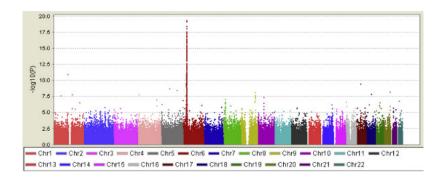
Some Applications for Ultrahigh-Dimensional Classification

Distinguish tumor and normal brain tissues



Applications for Ultrahigh-Dimensional Classification

Predict disease status based on genomic profiles



Applications for Ultrahigh-Dimensional Classification

Classify portfolios based on returns

Applications for Ultrahigh-Dimensional Classification

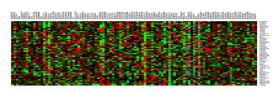
Facial recognition

Outline

- Background
- Motivation and Challenges
- Methods
- Simulation
- 6 A Data Example
- 6 Conclusion

A Motivating Study

- Goal: Classify kidney transplant patients with gene expression profiles
- To distinguish different types of kidney transplant recipients is crucial for
 - balancing immuno-suppression to prevent rejection
 - minimizing drug-introduced toxicities
 - risk prediction for new patients and facilitating personalized transplant policy making
- Dataset: Post-transplant rejection project [Flencher et al., 2004] contains 62 kidney transplant patients with 4 post-transplantation rejection types and their genome-wide gene profiles across 12,625 genes



Introduction

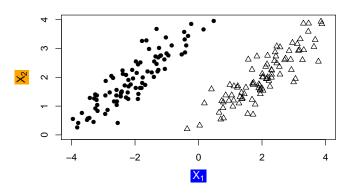
- A common goal is to identify a small number of relevant genetic variants or genes for further investigation
- Screening reduces ultrahigh dimensionality to a handleable scale
- Currently identified genetic variants or genes only explain a small proportion of disease heritability. More relevant features should be included, especially those low-risk susceptibility variants

Introduction (Cont.)

- Most screening methods focus on detecting marginally strong signals. Weak signal detection has drawn much attention recently
- Many classification rules use the independence rule and ignore inter-feature correlations, failing to detect Marginally Uninformative but Jointly Informative (MUJI) signals

Are MUJI Features Famous?

What is a MUJI Feature?



X₁: Marginally Informative

 X_2 : Marginally Uninformative but Jointly Informative with X_1

A Quick Literature Review of High-Dimensional Classification

Methods	Ultrahigh-dimensional	Consider	Able to detect
	screening method other than	inter-feature	marginally
	regularization method?	correlation?	weak features?
Guo 2010	X	X	X
Witten & Tibshirani 2011	X	X	X
Clemmensen 2011	X	X	X
Fan & Lv 2008	\checkmark	X	X
Xu et al. 2014	X	\checkmark	\checkmark
Cai & Sun 2014	\checkmark	X	X
Cai & Liu 2011	X	\checkmark	\checkmark
Fan, Hong & Tong 2012	X	\checkmark	\checkmark
Mai et al. 2012	X	\checkmark	\checkmark
Gaynanova et al 2016	X	\checkmark	\checkmark

Proposed Covariance-Insured Screening and Classification Method

- Can handle ultrahigh-dimensional cases
- Utilize inter-feature correlations
- Can detect MUJI signals that would be missed by marginal screening methods
- Can be used to classify features from a much wider class of distributions than Gaussian distribution
- Computationally efficient
- Recovers all informative features with a large probability
- Has optimal post-screening misclassification error

Outline

- Background
- Motivation and Challenges
- Methods
- Simulation
- A Data Example
- Conclusion

Two-Class Classification

- Y_i : a class label taking values in $\{1,2\}$
- Conditional on Y_i , X_i follows a multivariate sub-Gaussian distribution with a mean vector μ_k and a marginal variance proxy σ^2

$$X_i | \{Y_i = k\} \sim SG(\mu_k, \sigma^2), \quad i = 1, \dots, n \text{ and } k = 1, 2.$$

- Sub-Gaussian distribution contains a wide class of distributions such as Gaussian, binary and all bounded random variables
- Assume that the two classes have a common covariance matrix

$$\mathbf{\Sigma} = E[(\mathbf{X}^{(k)} - \boldsymbol{\mu}_k)(\mathbf{X}^{(k)} - \boldsymbol{\mu}_k)']$$

 Most marginal screening processes assume a diagonal Σ and ignore the inter-feature correlations

Non-informative features

• Let $\omega_k = \mathbb{P}(Y_i = k)$, k = 1, 2. For multivariate Gaussian distributed features, consider the pairwise difference

$$\begin{split} &\log \mathbb{P}(Y_i = 1 | \mathbf{X}_i = \mathbf{x}) - \log \mathbb{P}(Y_i = 2 | \mathbf{X}_i = \mathbf{x}) = \log \omega_1 - \log \omega_2 \\ &- \frac{1}{2} \sum_{j=1}^{p} (\mu_{1j} + \mu_{2j}) \sum_{j'=1}^{p} \Omega_{jj'} (\mu_{1j'} - \mu_{2j'}) + \sum_{j=1}^{p} x_j \left\{ \sum_{j'=1}^{p} \Omega_{jj'} (\mu_{1j'} - \mu_{2j'}) \right\} \end{split}$$

Variable j is non-informative for distinguishing the two classes if and only if

$$\sum_{j'=1}^{p} \Omega_{jj'} (\mu_{1j'} - \mu_{2j'}) = 0$$

where $\Omega_{jj'}$ is the (j, j')'th entry of the precision matrix (Xu et al. 2014)

MUJI features

Definition

Feature X_j is called a MUJI signal, if and only if it satisfies the following two conditions:

$$\mu_{1j} - \mu_{2j} = 0 \tag{A}$$

$$\sum_{j'=1}^{p} \Omega_{jj'}(\mu_{1j'} - \mu_{2j'}) \neq 0.$$
 (B)

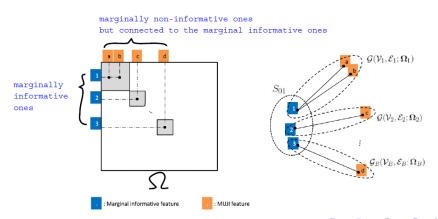
A MUJI feature must be partially correlated with at least one marginally informative feature!

Challenges in Finding MUJI Features

- ullet Marginal methods do not consider the off-diagonal elements of Ω
- Estimating Ω is infeasible when p is large

Our Proposal: Covariance-insured Screening (CIS)

- Identify marginally strong features
- Identify marginally weak/non-informative features that are (partially) correlated with them
- Detecting connected components of marginally informative features in a graph is the Key!



Detecting Connected Components of a Marginally Informative Feature

• Detect connected components of marginally informative features via thresholding sample covariance matrix $\tilde{\Sigma}^{\alpha} \equiv \hat{\Sigma} \mathbb{1}\{|\hat{\Sigma}| \geq \alpha\}$

Theorem

Let $\mathcal{G}(\mathcal{V}_j, \mathcal{E}_j; \Omega_j)$ be the connected component of a marginally informative feature j in $\mathcal{G}(\mathcal{V}, \mathcal{E}; \Omega)$, and $\mathcal{G}(\tilde{\mathcal{V}}_j, \tilde{\mathcal{E}}_j; \tilde{\Sigma}_j^{\alpha})$ be the connected component of feature j in $\mathcal{G}(\mathcal{V}, \tilde{\mathcal{E}}; \tilde{\Sigma}^{\alpha})$, then for sufficiently large n and $\alpha = O(\sqrt{n^{\xi-1}})$, we have

$$P\left(\mathcal{G}(\mathcal{V}_j,\mathcal{E}_j;\boldsymbol{\Omega}_j)\subseteq\mathcal{G}(\tilde{\mathcal{V}}_j,\tilde{\mathcal{E}}_j;\boldsymbol{\tilde{\Sigma}}_j^{\alpha})\right)\geq 1-C_1\exp(-C_2n^{\xi}),$$

where C_1 , C_2 are some positive constants and $0 < \xi < 1$.

How Does It Work?

The goal is to estimate Ω or the conditional dependency graph ${\mathcal E}$

- Given an estimate $\hat{\Sigma}$ of Σ (which is easy to get!), call variables i, j conditionally dependent $\hat{\Sigma}_{ij} \geq \alpha$ (Luo et al., 2014)
- ullet This would give us an estimate of edge set ${\mathcal E}$
- "From a distance" Ω resembles Σ , which makes sense intuitively: the inverse of a block-diagonal matrix is also block-diagonal
- The results hold for sub-Gaussian data

Covariance-insured Screening and Classification (K = 2)

Screening step

1 Select marginally informative signals

$$\left|\bar{X}_{.j}^{(1)} - \bar{X}_{.j}^{(2)}\right| = \left|\frac{1}{n_1}\sum_{Y_j=1}X_{ij} - \frac{1}{n_2}\sum_{Y_j=2}X_{ij}\right| > \tau$$

2 Construct the thresholded sample covariance matrix

$$\tilde{\Sigma}_{jj'}^{\alpha} = \hat{\Sigma}_{jj'} \mathbb{1}\{|\hat{\Sigma}_{jj'}| \geq \alpha\}, \ 1 \leq j, j' \leq p$$

3 For each selected marginally informative signal, detect its connected component $\tilde{\Sigma}_k^{\alpha}$ and set the estimated precision matrix

$$\hat{\boldsymbol{\Omega}}^{\alpha,\tau} = \text{diag}((\tilde{\boldsymbol{\Sigma}}_{\mathcal{S}_1}^{\alpha})^{-1}, \cdots, (\tilde{\boldsymbol{\Sigma}}_{\mathcal{S}_{k(\alpha,\tau)}}^{\alpha})^{-1})$$

4 Select informative features by

$$S^{\text{CIS}}(\alpha,\tau;\nu_n) = \left\{j \in \cup_{g=1}^{k(\alpha,\tau)} S_g: \left| \sum_{j' \in S_{g(j)}} (\tilde{\Sigma}_{S_{g(j)}}^\alpha)_{jj'}^{-1} (\bar{X}_{.j'}^{(1)} - \bar{X}_{.j'}^{(2)}) \right| \geq \nu_n \right\}$$

Covariance-insured Screening and Classification (Cont.)

Post-screening classification

5. Classify a new observation X_{new} to class 1 if

$$(\mathbf{X}_{\mathsf{new}} - \hat{oldsymbol{\mu}}^{\mathsf{CIS}})' \hat{oldsymbol{\Omega}}^{\mathsf{CIS}} (\hat{oldsymbol{\mu}}_{\mathsf{1}}^{\mathsf{CIS}} - \hat{oldsymbol{\mu}}_{\mathsf{2}}^{\mathsf{CIS}}) > 0,$$

where $\hat{\boldsymbol{\mu}}_1 = \sum_{\{i:Y_j=1\}} \mathbf{X}_i/n_1$, $\hat{\boldsymbol{\mu}}_2 = \sum_{\{i:Y_j=2\}} \mathbf{X}_i/n_2$, $\hat{\boldsymbol{\mu}} = (\hat{\boldsymbol{\mu}}_1 + \hat{\boldsymbol{\mu}}_2)/2$, $\hat{\boldsymbol{\Omega}} = \hat{\boldsymbol{\Omega}}^{\alpha,\tau}$ and superscript "CIS" restricts features to $S^{\text{CIS}}(\alpha,\tau;\nu_n)$

Rank Importance of Variables

• Importance Score (IS) evaluates the importance of a feature *j*:

$$extit{IS}_j = \left| \sum_{j' \in \mathcal{S}_{g(j)}} (ilde{\Sigma}^lpha_{\mathcal{S}_{g(j)}})^{-1}_{jj'} (ar{X}^{(1)}_{\cdot j'} - ar{X}^{(2)}_{\cdot j'})
ight|$$

 \bullet IS incorporates inter-feature correlations. When Ω is diagonal, it reduces to the absolute mean differences

Theoretical Framework

- $S_0 = \{j: \sum_{j'=1}^p \Omega_{jj'}(\mu_{1j'} \mu_{2j'}) \neq 0, j = 1, \cdots, p\}$ be the true informative set
- $S_{01} = \{j : \mu_{1j} \mu_{2j} \neq 0, j = 1, \dots, p\}$ is the true marginally informative set
- $S_{02}=\{j: \mu_{1j}-\mu_{2j}=0, \sum_{j'=1}^{p}\Omega_{jj'}(\mu_{1j'}-\mu_{2j'}) \neq 0, j=1,\cdots,p\}$ is the MUJI set
- $S_0 = S_{01} \cup S_{02}$

A Sparse and Weak Feature Model

- Assume that μ_2 is only different from μ_1 in ϵ fraction of coordinates, i.e., $|S_{01}| = \epsilon p$.
- Let I_1, I_2, \cdots, I_p be p samples from Bernoulli(ϵ), and

$$\mu_{2j} = \mu_{1j} + \delta_j I_j, \quad 1 \le j \le p,$$

- Set $\tau = \min\{|\delta_j| : 1 \le j \le p, I_j = 1\} = \sqrt{r \log p}$ for some $r \in (0, 1)$
- Larger r, stronger signals
- Set $\epsilon=p^{-\beta}$ for some 0 < β < 1. Larger β , sparser the marginally informative signals
- Assume $|S_{02}| = p^{1-\gamma}$, for some $0 < \gamma < 1$. Larger γ , sparser the MUJI signals

Sure Screening Property

Let $S_0=\{j:\sum_{j'=1}^{p}\Omega_{jj'}(\mu_{1j'}-\mu_{2j'})\neq 0, j=1,\cdots,p\}$ be the true informative set (including marginally informative and MUJI features)

Proposition

With
$$\tau = O(\sqrt{r \log p})$$
, $\alpha = O(\sqrt{n^{\xi - 1}})$ and $\nu_n = O\left(\sqrt{r \log p}\right)$ and any $\iota > 0$, $S_{CIS}^{\alpha, \tau}$ satisfies

$$P(|S_0 \cap S_{CIS}^{\alpha,\tau}| \geq (1-\iota)|S_0|) \rightarrow 1 \text{ as } n \rightarrow \infty$$

False Positive Control Property

Proposition

For any $\gamma_n = O(p^{\varsigma})$ with $0 < \varsigma < 1$, $S_{CIS}^{\alpha,\tau}$ satisfies

$$P(|S_{CIS}^{\alpha,\tau} \cap S_0^c| \leq \gamma_n^{-1}|S_0^c|) \rightarrow 1 \text{ as } n \rightarrow \infty$$

Post-screening Misclassification Rate

- R_{OPT} : the misclassification rate of the oracle rule assuming that the parameters μ_1 , μ_2 and Σ are known
- $R_{\text{CIS_PSC}}$: the misclassification rate for the CIS classification rule $\mathbf{1}(\hat{\psi}^{CIS} \geq 0)$ with $\hat{\psi}^{CIS} = (\mathbf{X}_{\text{new}}^{CIS} \hat{\mu}^{CIS})^T \hat{\Omega}^{CIS} (\hat{\mu}_1^{CIS} \hat{\mu}_2^{CIS})$, then

Proposition

When classifying \mathbf{X}_{new} based on features selected from the screening step, we have

$$R_{CIS.PSC} - R_{OPT} \rightarrow_P 0$$

Discovery and Classification Boundaries

- A discovery boundary $d(\beta)$ divides the βr plane:
 - (a) If $r > d(\beta)$, it is possible to find a decision rule ψ such that at least some features in S_0 , if not all, can be discovered by $\psi(\tau)$
 - (b) If $r < d(\beta)$, it is impossible to find a decision rule ψ to find any informative features in S_0
- A classification boundary $c(\beta)$ divides the βr plane:
 - (a) If $r>c(\beta)$, it is possible to find a decision rule ψ such that the two classes can be reliably separated
 - (b) If $r < c(\beta)$, it is impossible to find a decision rule ψ to reliably separate the two classes

Discovery and Classification Boundaries (Cont.)

Proposition (**Discovery Boundary**)

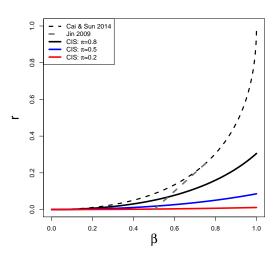
Let $\pi = \min\left\{\frac{\gamma - \log_p g(\alpha_{\min})}{\beta}, 1\right\}$, where $\alpha_{\min} = \min_{(j,j') \in \mathcal{E}} |\Sigma_{jj'}|$ and g is an increasing function. Then the discovery boundary of the CIS classification rule $\mathbf{1}(\hat{\psi}^{\text{CIS}}(\tau,\alpha,\nu) \geq 0)$ is always below that of the independence rule $\mathbf{1}(\hat{\psi}^{\text{ind}}(\tau) \geq 0)$

• $\pi\beta$ can be then interpreted as the effective sparsity of a marginal feature after taking into consideration its correlated MUJI features

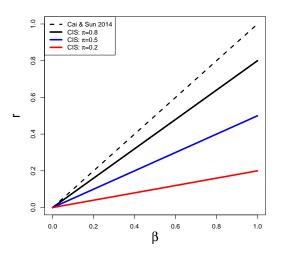
Proposition (Classification Boundary)

The classification boundary of the CIS classification rule $\mathbf{1}(\hat{\psi}^{\text{CIS}}(\tau,\alpha,\nu)\geq 0)$ is also always below that of the independence rule $\mathbf{1}(\hat{\psi}^{\text{ind}}(\tau)\geq 0)$

Discovery Boundaries



Classification Boundaries



Outline

- Background
- 2 Motivation and Challenges
- Methods
- Simulation
- 6 A Data Example
- Conclusion

3-Class Classification

- 10,000 variables and 100 patients in each class
- The first 20 variables have mean structures between classes as in the table below
- The remaining 9,980 variables are independently and identically distributed from N(0,1)

Mean of Variables

Variables	Class 1	Class 2	Class 3		
$X_1 - X_4, X_{11} - X_{14}$	0	0	-2.5		
X_5, X_{15}	-0.5	2	-2.5		
$X_6 - X_{10}, X_{16} - X_{20}$	1.5	-1.5	-1.5		
: Marginal informative feature	: MUJI feature				

Simulation Results

When marginally informative and MUJI signals are correlated with a compound symmetry (CS) structure with a correlation = 0.5

Method	class pair	FP#	FN#	se	sp	MMS	ER
$\alpha = 0.2$							
CIS	1-2	1.1	0.1	0.994	0.999	24	1.4
	2-3	9.3	0	1	0.999	19	3.1
MS	1-2	16.4	9.1	0.54	0.998	8685	3.1
	2-3	3.0	0	1	0.999	10	3.4
$\alpha = 0.5$							
CIS	1-2	11.8	2.5	0.88	0.999	48	2.7
	2-3	5.6	0	1	0.999	10	2.9
MS	1-2	18.0	9.0	0.55	0.998	8634	3.0
	2-3	3.5	0	1	0.999	10	3.4
$\alpha = 0.9$							
CIS	1-2	12.2	7.8	0.61	0.999	8698	1.6
	2-3	2.7	0	1	0.999	10	3.4
MS	1-2	17.3	9.1	0.54	0.998	8876	3.1
	2-3	2.7	0	1	0.999	10	3.4

Outline

- Background
- Motivation and Challenges
- Methods
- Simulation
- A Data Example
- Conclusion

Genomic Classification of Kidney Post-transplant Rejection Types

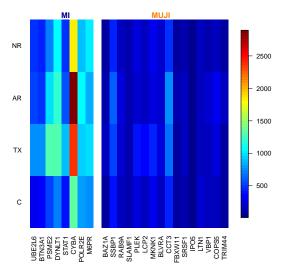
- 62 kidney tissue samples
- Four rejection types:
 - C 17 normal donor kidneys
 - TX 19 well-functioning transplants without rejections
 - AR 13 acute rejection
- ADNR 13 acute dysfunction without rejection
- 12,625 gene expressions from patient kidney biopsies before transplant

Data Analysis

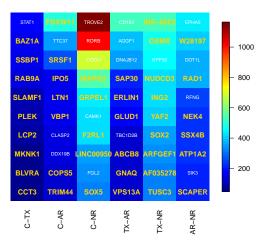
- The same data were analyzed in Xu et al. 2014
- Xu et al. 2014 method can not handle ultrahigh-dimensional data. They used an ad-hoc way to pre-select a subset of genes, and only involved 200 genes with the largest variations
- This could miss many MUJI genes
- We applied the CIS procedure for the purposes of MUJI gene identification and post-transplantation rejection type classification

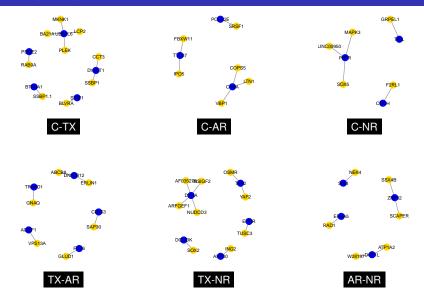
Results

Mean expression scores for top marginally informative and MUJI genes

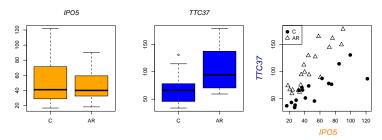


Importance scores



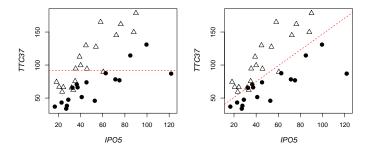


gene IPO5



gene	$\hat{\delta}_i^*$ of	rank of	correlated	cor-	rank of
j	gene	gene	gene	relation	IS_j
IPO5	0.20	10279th	TTC37	0.7	4th

 $^{^{\}star}$ $\hat{\delta}_{j}$ = standardized marginal mean difference of gene j.



- Left panel: based only on TTC37, the minimal misclassification number is 10
- Right panel: based on TTC37 and its correlated MUJI gene IPO5, the minimal misclassification number is 2

- Use the leave-one-out procedure to predict each individual's class
 - Leave ith subject out at a time and use the rest as the training set
 - Apply the classification rule $\mathbf{1}(\hat{\delta}^{\text{CIS}}(\mathbf{X}_i; \rho, \tau, m) \geq 0)$ to predict the label Y_i between each pair of classes
 - Take a majority voting on the final predicted class for subject i
- In total 6 misclassifications out of 62 subjects

Outline

- Background
- Motivation and Challenges
- Methods
- Simulation
- A Data Example
- Conclusion

Summary

- Leverages inter-feature correlations but circumvent estimation of the full precision matrix
- Works well with sparse and weak signals. Can effectively select both marginally informative and MUJI signals
- With nice theoretical properties, including optimal post-screening misclassification rates and improved discovery and classification boundaries
- Can we go beyond LDA?

Thank You!

Sub-Gaussian Distributions

Definition

A random variable X is sub-Gaussian with variance proxy σ^2 if its moment generating function satisfies

$$E[\exp(sX)] \le \exp\left(\frac{\sigma^2 s^2}{2}\right)$$

for any $s \in \mathbb{R}$.

A random vector $\mathbf{X}=(X_1,\cdots,X_p)$ is said to be sub-Gaussian with variance proxy σ^2 if for any $\mathbf{a}\in\mathbb{R}^p$,

$$E[\exp(\mathbf{a}'\mathbf{X})] \leq \exp\left(\frac{\sigma^2\|\mathbf{a}\|_2^2}{2}\right).$$

Some Notations Used

- $\mathcal{G}(\mathcal{V},\mathcal{E};\mathbf{A})$ the graph induced by a $p\times p$ symmetric matrix \mathbf{A} , where the node set $\mathcal{V}=\{1,\cdots,p\}$ corresponds to the row indices of \mathbf{A} and the edge set \mathcal{E} contains all the edges. An edge between nodes j and j' exists if and only if $A_{jj'}\neq 0$
- Denote $\mathcal{G}(\mathcal{V}_l, \mathcal{E}_l, \mathbf{A}_l)$ the connected components of $\mathcal{G}(\mathcal{V}, \mathcal{E}; \mathbf{A})$

Additional Simulation Results

When marginally informative and MUJI signals are correlated with a AR(1) structure and a correlation coefficient $=0.5\,$

Method	class pair	FP#	FN#	se	sp	MMS	ER
$\alpha = 0.2$							
CIS	1-2	0.9	0.05	0.997	0.999	31	0.2
	2-3	9.9	0	1	0.999	17	0.9
MS	1-2	19.9	9.6	0.52	0.998	8774	2.1
	2-3	4.5	0	1	0.999	10	1.2
$\alpha = 0.5$							
CIS	1-2	9.1	<i>5.3</i>	0.74	0.999	127	0.6
	2-3	10.9	0	1	0.999	20	1.4
MS	1-2	11.2	11.0	0.45	0.999	9354	3.3
	2-3	4.6	0	1	0.999	10	1.4
$\alpha = 0.9$							
CIS	1-2	1.3	9.1	0.54	0.999	8247	0.4
	2-3	0.2	0.008	0.999	0.999	10	0.9
MS	1-2	1.9	11.7	0.41	0.999	7470	5.6
	2-3	0.2	0.02	0.998	0.999	10	1.0

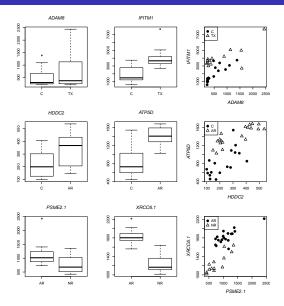
Computational efficiency

Comparisons of computing time (in minutes)

Methods	CIS-classification	ROAD	LPD	CED
p = 200	0.4	1.6	2.5	11.5
p = 1000	3.0	19.0	36.5	NA
p = 10000	4.5	NA	NA	NA
p = 50000	12.0	NA	NA	NA

^{*} Computational time longer than 5 hours is reported as NA.

More Examples of MUJI Genes Detected



More Examples of MUJI Genes Detected

Marginal and joint effects of MUJI genes

MUJI	$\hat{\delta}_{i}^{*}$ of	rank of	correleted	$\hat{\delta}_j$ of	rank of	ρ̂	rank of
gene	MUJI	MUJI	MI**	MI	MI		IS_j
	gene	gene	gene	gene	gene		
ADAM8	-0.48	5071	IFITM1	-1.35	22	0.70	18
HDDC2	-0.82	2497	ATP5D	-1.53	51	0.71	77
PSME2.1	0.84	3962	XRCC6.1	1.71	22	0.74	22

^{*} $\hat{\delta}_{j}$ = standardized marginal mean difference of gene j. ** MI= marginally informative