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SWOG 0421 study

1038 men with metastatic castration-resistant prostate cancer

Docetaxel administered every 21 days at a dose of 75 mg/m2

with or without the bone targeted atrasentan for up to 12
cycles

Co-primary outcomes: progression-free survival and overall
survival

Data from 751 patients for anlaysis; 371 patients are in the
docetaxel + atrasentan arm and 380 patients are in the
docetaxel + placebo arm

10 covariates: age, serum prostate-specific antigen (PSA),
indicator of bisphosphonate usage, indicator of metastatic
disease beyond the bones, indicator of pain at basline,
indicator of performance status, and 4 bone marker levels
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SWOG 0421 study
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Figure 1: Kaplan-Meier survival curve of overall survival in
castration-resistant prostate cancer patients by treatment received.
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Tailored therapies

“The right treatment for the right patient (at the right time)”

Motivations
Tailoring Therapies and Delayed Effects
Dynamic Treatment Regime & Biomarker Adaptive Designs

Tailored Therapies

Concepts & Tools

Symptoms
Demographics
Disease history
Biomarkers
Imaging
Bioinformatics
Pharmacogenomics
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Single decision: background

T : outcome of interest

A: binary treatment options, A ∈ {−1, 1},

X : baseline variables, X ∈ Rp,
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Single decision: background

Individualized treatment rule

d(X ) : Rp → {−1, 1},

patient presenting with X = x recommended d(x).

Example: if bone marker NTx level > 75 percentile ⇒
Docetaxel + atrasentan

Value: V (d) = Ed(T ); the average outcome if all patients are
assigned treatment according to d .

Optimal rule d∗ satisfies d∗ ∈ argmaxd V (d).
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Single decision: background

Under standard causal inference assumptions,

d∗(x) = sign{f ∗(x)},

where f ∗(x) = E (T |X = x ,A = 1)− E (T |X = x ,A = −1).

Let pX (x) denote the distribution of X in the trial population,
and qX (x) denote the distribution of X in the target
population

the support of qX (x) is contained in the support of pX (x)

the potential outcome mean given X is the same between the
trial population and the target population
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Developing robust and interpretable rules

A black box decision rule: generalize the rule to a larger
target population without introducing any bias

A parsimonious and interpretable decision rule, e.g., a linear
rule: possibly not the optimal linear rule in the target
population, unless the optimal rule is linear itself.
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Developing robust and interpretable rules

Optimize a general criterion on assessing the quality of a
treatment rule on the target population

Easily deployed in clinical practice.

E.g. clinical trials: susceptible to a lack of generalizability.

Covariate distribution over patients in a trial data may not be
representative of a future population targeted by a treatment
rule.

Also likely in other types of data.
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The Criterion
The MiLD
Implementation under Survival Data Setting
Theoretical Results

The General Criterion

Assuming that we already know the optimal treatment rule d∗, we
maximize the benefit function

B̃(d) = Ẽ [W (X )I{d(X ) = d∗(X )}],

W (X ): a predefined and non-negative function

Ẽ indicates that the expectation is taken with respect to the
distribution of X in the target population.

Optimal treatment assigned: d(x) = d∗(x)
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The General Criterion

B̃(d) = Ẽ [W (X )I{d(X ) = 1}|d∗(X ) = 1]P{d∗(X ) = 1}
+Ẽ [W (X )I{d(X ) = −1}|d∗(X ) = −1]P{d∗(X ) = −1}.

Choose linear decision rule that maximizes a lower bound of

B̃(d) = Ẽ [W (X )I (optimal treatment assigned|X )],

regardless of X and regardless of which treatment is optimal.
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The General Criterion: Choices of W (X )

W (x) = W1(x) = E{T |A = d∗(x),X = x} − E{T |A 6=
d∗(x),X = x} = |f ∗(x)|, where

f ∗(x) = E (T |X = x ,A = 1)− E (T |X = x ,A = −1)

→ maximize the value function in the target population.

W (X ) = W2(X ) ≡ 1

→ minimize the mis-allocation rate of the optimal treatment
in the target population.
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Minimax Linear Decisions (MiLD)

Goal: a high-quality rule for future patients to follow, using a
dataset that may be subject to biases.

Minimax Linear Decisions (MiLD)

A linear decision rule has the form of d(x) = sign(xᵀβ1 + β0).

Ẽ [W (X )I{sign(Xᵀβ1 + β0) = j}|d∗(X ) = j ] represents the
expected benefit that would have obtained if the patients were
to receive treatment j , whose optimal treatments would indeed
be j in the target population, j = ±1

Guarantee that the expected benefit for either group of
patients is not small
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Minimax Linear Decisions (MiLD)

Objective:

max
α,β1,β0

α s.t. inf
X∼f1

Ẽ {W (X )I (X ᵀβ1 + β0 ≥ 0)|d∗(X ) = 1} ≥ α,(1)

inf
X∼f−1

Ẽ {W (X )I (X ᵀβ1 + β0 < 0)|d∗(X ) = −1} ≥ α,

where f1 and f−1 are the density of X in patients whose optimal
treatment are 1 or −1 respectively.
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Minimax Linear Decisions (MiLD)

Let q̃1(x) denote the density of X for patients with d∗(X ) = 1 in
the target population. Then

Ẽ {W (X )I (X ᵀβ1 + β0 ≥ 0)|d∗(X ) = 1}

=

∫
W (x)I (xᵀβ1 + β0 ≥ 0)q1(x)dx

∝ P̃(X †
ᵀ
β1 + β0 ≥ 0),

where the density of X † is proportional to q̃1(x†)W (x†).
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Minimax Linear Decisions (MiLD)

Hence, (1) is equivalent to

max
α,β1,β0

α s.t. inf
X †∼f †1

P̃(X †
ᵀ
β1 + β0 ≥ 0) ≥ α, (2)

inf
X †∼f †−1

P̃(X †
ᵀ
β1 + β0 < 0) ≥ α,

where f †1 and f †−1 are the density of X † in patients with optimal
treatment being 1 or −1 respectively.

Problem: f †1 and f †−1 could be very different, and difficult to
characterize based on the trial data.
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Quantifying differences

Quantify the difference between the target population and the trial
population in terms of the first two moment conditions.

Table 1: Moment-based conditions, j = ±1

E{X †|d∗(X ) = j} Cov{X †|d∗(X ) = j}
Trial population µ†j Σ†j
Target population µ̃†j Σ̃†j

Assume that the quantities in the target population belong to

U†j = {(µ̃†j , Σ̃
†
j ) : (µ̃†j−µ

†
j )ᵀΣ̃†j (µ̃†j−µ

†
j ) ≤ ν2, ‖Σ̃†j−Σ†j ‖F ≤ ρj},

j = ±1, where ν ≥ 0 and ρj ≥ 0 are known constants, and
‖ · ‖F is the Frobenius norm defined as ‖M‖2

F = Tr(MᵀM).
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Minimax Linear Decisions (MiLD)

(2) is consequently written as

max
α,β1,β0

α s.t. inf
X †∼(µ̃†1 ,Σ̃

†
1)∈U†1

P̃(X †
ᵀ
β1 + β0 ≥ 0) ≥ α, (3)

inf
X †∼(µ̃†−1,Σ̃

†
−1)∈U†−1

P̃(X †
ᵀ
β1 + β0 < 0) ≥ α.

A linear decision rule that safeguards against the possible
difference of the distribution of X between the trial and the
target populations.
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Solving Minimax Linear Decisions (MiLD)

Employ minimax probability machine techniques (Lanckriet et
al, 2013)

Key step: generalized Chebychev inequality

inf
X †∼(µ̃†1 ,Σ̃

†
1)
P(X †

ᵀ
β1 + β0 ≥ 0) ≥ α,

holds if and only if

β0 + µ̃†ᵀ1 β1 ≥ κ(α)

√
βᵀ1 Σ̃†1β1,

where κ(α) =
√
α/(1− α)

(µ̃†j , Σ̃
†
j ) is unknown, j = ±1.
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Solving Minimax Linear Decisions (MiLD)

A further simplified objective function can be obtained as

min
β1

√
βᵀ1 (Σ†1 + ρ1Ip)β1 +

√
βᵀ1 (Σ†−1 + ρ−1Ip)β1, (4)

such that βᵀ1 (µ†1 − µ
†
−1) = 1.

Eliminate the equality constraint

β1 = β10 + Fu, where u ∈ Rp−1,
β10 = (µ†1 − µ

†
−1)/‖µ†1 − µ

†
−1‖2

2, and F ∈ Rp×(p−1) is an
orthogonal matrix whose columns span the subspace of
vectors orthogonal to µ†1 − µ

†
−1.
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Implementing MiLD

Step 1. Estimate d∗(x) using a nonparametric method with the
trial data, denoted by d̂(x).

Step 2. Estimate (µ̃†j , Σ̃
†
j ) using the initial estimate d̂(x), denoted

by (µ̂†j , Σ̂
†
j ).

Step 3. Implement MiLD based on the estimated (µ̂†j , Σ̂
†
j ).

22/ 39



Outline
Framework and Motivation

Methods
Simulation Studies and Data Analysis

The Criterion
The MiLD
Implementation under Survival Data Setting
Theoretical Results

Implementing MiLD: Survival Data

T = min(τ, T̃ ), where T̃ denotes survival time, and τ is the
end of the study; C : the censoring time.

{Yi = Ti ∧ Ci ,∆i = I (Ti ≤ Ci ),Xi ,Ai}, i = 1, ..., n, where
∆ = I (T ≤ C ) denotes the censoring indicator.

Random forest survival tree to estimate E (T |X ,A)

Techniques from importance sampling to estimate (µ†j ,Σ
†
j )

with a general weight W (x)

Sensitivity analysis on different combinations of (ν, ρj).
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Implementing MiLD: Survival Data

µ†j can be estimated by

µ̂†j =

∑n
i=1 XiW (Xi )I{d̂(Xi ) = j}∑n
i=1 W (Xi )I{d̂(Xi ) = j}

;

Σ†j can be estimated by

Σ̂†j =
n∑

i=1

[
W (Xi )I{d̂(Xi ) = j}∑n
i=1 W (Xi )I{d̂(Xi ) = j}

]2

(Xi − µ̂†j )ᵀ(Xi − µ̂†j ).
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Theoretical Results

Let β∗1 be the unique solution to (1) so that β∗1X is the

optimal linear rule maximizing B̃(d) for the target population.
β∗1 lies in the interior of a compact set B.

‖f̂ − f ∗‖2 = Op(rn), where ‖f ‖2 = E{f (X )2}1/2.

Margin condition: there exist K1, γ > 0 such that for all t > 0

P̃(|f ∗(X )| ≤ t) ≤ K1t
γ .

Under certain assumptions, it holds that

|β̂1 − β∗1 | = Op(r
2γ
γ+2
n + n−1/2).
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Simulation Setup: Scenario 1

The first half patients from
X1,X2 ∼ N(1, 1),X3, . . . ,X10 ∼ N(0, 1) and the second half
patients with X1, . . . ,X10 from N(0, 1).

T = min(T̃ , τ), where τ = 0.5 and

T̃ = exp[exp{0.6 ∗ X1 − 0.8 ∗ X2 + A ∗ c(X )}]ε.

Here, c(X ) = 1 for the first half patients and c(X ) = −1 for
the other half, and ε ∼ exp(1).

Censoring time C is generated from Uniform[0, 1].

The optimal decision boundary is d∗(X ) = sign(X1 + X2 − 1).
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Simulation Setup: Scenario 2

X1, . . . ,X10 ∼ N(0, 1).

T = min(T̃ , τ), where τ = 4 and

λ
T̃

(t|X ,A) = exp[0.6X1 +0.8X2−1+{2X1 +3(X2 +1)2−2}A

Censoring time C is generated from Uniform[0, 5].

The optimal decision boundary is
d∗(X ) = −sign{2X1 + 3(X2 + 1)2 − 2}.
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Simulation Setup: Scenario 3

X1, . . . ,X10 ∼ N(0, 1).

T = min(T̃ , τ), where τ = 4 and

log(T̃ ) = X1 + X2 + 1 + A(2X 3
1 + 2X2 + 0.5) + N(0, 1).

Censoring time C is generated from

log(C ) ∼ X1 + X2 + X3 + N(0, 1).

The optimal decision boundary is
d∗(X ) = sign(2X 3

1 + 2X2 + 0.5).
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Simulation Setup: Introduce mismatch between two
populations

Scen. 1’ Let the proportion of patients with d∗(x) = 1 is 1/3 in the
trial population, and 1/2 in the target population

Scen. 2’ X1 ∼ N(−0.25, 1.5) and other covariates following N(0, 1.5)
in the trial data

Scen. 3’ Selection bias: covariates predictive of participation in trial
could be predictive of treatment effects

logit{P(Participating the trial|X )} = −2X 3
1 − 1.

Patients with d∗(x) = 1 are less likely to participate in the
trial.
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Simulation setup

n = 250, 500 and 1000.

Methods for comparison

Cox regression

Inverse weighed outcome weighted learning: minimize

Pn

[
Y min{1− Af (X ), 0}/{P(A|X )ŜC (Y |A,X )}

]
, where f (X )

is in a linear form, Pn denotes the empirical averages, and
ŜC (t|A,X ) is the estimated censoring probability conditional
on patients characteristics.

MiLD-P (W (X ) = 1) and MiLD-V (W (X ) = |f ∗(X )|) with
different set of parameters (ρ, νj).

Different methods are validated on the large testing set of size
10000; 500 replications.
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Simulation results: misallocation rates
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Simulation results: misallocation rates
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Simulation results: misallocation rates
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Data analysis: SWOG 0421 study

1038 men with metastatic castration-resistant prostate cancer

Docetaxel administered every 21 days at a dose of 75 mg/m2

with or without the bone targeted atrasentan for up to 12
cycles

Co-primary outcome: progression-free survival and overall
survival

Data from 751 patients for anlayis; 371 patients are in the
docetaxel + atrasentan arm and 380 patients are in the
docetaxel + placebo arm

10 covariates: age, serum prostate-specific antigen (PSA),
indicator of bisphosphonate usage, indicator of
extraskeletalmets, indicator of pain at basline, indicator of
performance status, and 4 bone marker levels
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Data analysis

Table 2: Mean (s.e.) cross-validated values (days)

COX OWL MiLD-V MiLD-P
b = 0 b = 0.1 b = 0 b = 0.1

749.2 (69.8) 711.1 (71.2) 764.6 (70.2) 765.0 (68.9) 753.5 (69.4) 753.7 (69.4)

“s.e.” denotes standard errors.
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Data analysis

Table 3: Coefficients for the estimated linear decision rules by MiLD-V
and MiLD-P using the SWOG0421 data

MiLD-V MiLD-P
Intercept 0.021 0.037

Age 0.538 0.150
Baseline serum PSA -0.510 -0.734

Bisphosphonate usage (YES = 1) 0.787 1.235
Metastatic disease beyond the bones (YES = 1) -0.301 0.008

Pain (YES = 1) -0.272 0.050
Performance Status (‘2-3’ = 1) 0.515 0.796

BAP 0.382 0.972
CICP -0.023 0.302
NTx 0.137 0.657
PYD -0.339 -0.326
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Data analysis
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Figure 2: Kaplan-Meier survival curve of overall survival in
castration-resistant prostate cancer patients: (a) by treatment received;
(b) by accordance between treatment recommended by MiLD-V and
treatment received; (c) by accordance between treatment recommended
by MiLD-P and treatment received.
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Open questions

Can be applied to other types of data.

Better tools for higher dimensional data.

Multi-category treatments.

Multi-stage treatments.
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