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Personalized Medicine

Personalized Medicine: ”the tailoring of medical treatment to
the individual characteristics of each patient” (President’s
Council of Advisors on Science and Technology).

I Motivations:
I Heterogeneity in responses:

1. Across patients: what works for one may not work for
another (MDD response rate 47%, Trivedi et al., 2006).

2. Within a patient: what works now may not work later (MDD
relapse rate 50%, APA 2000).

I Presence of co-morbidity and side effects severity (Colins et
al. 2004)

I Current practice: largely based on “trial-and-error”
I Research goal: evidence-based tailored treatment to

distinguish in advance which treatment will most likely to
benefit a patient
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Individualized (Dynamic) Treatment Rules

Individualized (dynamic) treatment rules (ITR/DTR, Lavori &
Dawson 1998; Murphy 2005): decision rules prescribing medical
treatment/therapy for patients in a given state.

Mathematically, it is a mapping from currently available information
(e.g., biomarker, intermediate outcomes, a diagnostic test) into the
space of possible decisions (e.g., intensify a treatment or augment).

DTR Example 1: Adaptive Pharmacological Behavioral Treatments
for Children with Attention Deficit Hyperactive Disorder
(Nahum-Shani 2012).

I Prescribe low-dose medication as initial treatment; if a child
responds then continue; if a child does not respond then
augment with behavioral modification.
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Individualized (Dynamic) Treatment Rules

DTR Example 2: Healing Emotion After Loss (HEAL, Shear et
al. 2016)

I Administer grief-informed clinical management as the
initial treatment; if a patient responds then continue; if a
patient does not respond then offer an anti-depressant
(Citalopram).
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Types of Variables for Tailoring Treatments
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Three types of state variables (pre-treatment covariates):

I prognostic variables (associated with clinical outcomes, no
interaction with treatment A)

I predictive variables (quantitative interaction)

I prescriptive variables (qualitative interaction)
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Data-Driven Approaches fro Personalizing Treatment

Analytical challenges for discovering optimal ITR:
I Tailoring variables unknown
I Large number of candidate tailoring variables
I Structure among variables

Existing methods:
I Double robust regression (Zhang et al. 2012, 2014)
I Virtue twins (Foster et al. 2011); Interaction Trees (Su et

al. 2009)
I Q-learning (Murphy 2005; Qian and Murphy 2011;

Nahum-Shani et al. 2012); A-learning (Murphy 2003)
I O-learning (Zhao et al. 2012, 2014; Liu et al. 2014)
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Q-learning and O-learning

Q-learning: Decompose expected outcome into two
components and maximize over possible treatment options:

E(Y|X,A;ψ, β) = G(X;ψ) + H(X,A;β)

I Treatment-free model (effect of patient history on outcome
without treatment): G(X;ψ)

I Blip model (effect of treatment on the outcome): H(X,A;β)

I Pose models to maximize value function
I Multi-stage problems use backwards induction

O-learning: Directly maximize the value function among class
of treatment rules d

max
d∈D

Ed(Y)

Prior work on ITR focus on maximizing efficacy outcomes
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Introduction to Our Work
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Part I: Consider Both Efficacy and Safety Outcome

Why considering safety outcomes when Estimating ITR?

Complete picture of treatment decision making involves both efficacy
and safety

I Most efficacious treatment for a patient could also lead to a
greater safety concern (escalating dosage of insulin may increase
risk of hypoglycemia; Zhao et al. 2013)

I Patients with chronic disease and long duration treatment
exposed to higher risk of adverse events (severe hypoglycemia,
hospitalization; Wild et al., 2007)

Regulator/Industry: Important to characterize both the efficacy and
risk profiles among patient populations (FDA guideline on
evaluating cardiovascular risk for new antidiabetic therapies)

I In HEAL, dose of Citalopram had to be tapered due to FDA
warning of cardiovascular risk
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Consider Both Efficacy and Safety Outcomes

How to incorporate safety outcomes for estimating ITR?

I No treatment heterogeneity regarding safety outcomes
I Presence of heterogeneity:

I Well known example: abundance of drug-metabolizing
enzymes (cytochrome P45) varies across subjects, and thus
adverse reactions to the same drug dosage

I Risk of hypoglycemic events depends on patient
characteristics and choice of treatment regimen (Sinclair et
al., 2015)
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Statistical Methodologies
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Framework for ITR Under Risk Constraint

Notation:

I Y: efficacy outcome (e.g., symptom reduction; change in HbA1c)

I R: risk outcome (hypoglycemia episodes)

I Two treatment arms A ∈ {−1, 1}
I Patient health history X

I ITR D(X): mapping from X to {−1, 1}.

Goal: estimate optimal ITR D∗ while controlling for risk{
maxD ED(Y),

s.t. ED(R) ≤ τ,

I ED(Y): expected efficacy outcome under ITR: A = D(X)

I τ : pre-specified tolerance threshold of the risk
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Theoretical Optimal ITR Under Risk Constraint

Using data (Y,R,A,X) collected from RCT, equivalent to (Qian and
Murphy 2011):  maxD E

{
I(A=D(X))

p(A|X) Y
}

s.t. E
{

I(A=D(X))
p(A|X) R

}
≤ τ

Define D(X) = sign(f (X)), the above is equivalent to{
maxf E {δY(X)I(f (X) > 0)}
s.t. E[δR(X)I(f (X) > 0)] ≤ α

where
δY(X) = E[Y|X,A = 1]− E[Y|X,A = −1],

δR(X) = E[R|X,A = 1]− E[R|X,A = −1],

and α = τ − E[R|A = −1].
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Theoretical Optimal ITR Under Risk Constraint

Key theoretical result: The optimal treatment rule under risk constraint
is D∗(X) = sign(f ∗(X)), where

f ∗(X) =

{
sign(δY(X)), X ∈ A
sign (δY(X)− λ∗δR(X)) , X ∈ Ac

and A = {X : δY(X)δR(X) ≤ 0}. Here, λ∗ = 0 if E
[
δ+R (X)|X ∈ Ac

]
≤ α∗;

otherwise, λ∗ solves equation

E [δR(X)I{δR(X) > 0, δY(X)/δR(X) > λ}|X ∈ Ac]

+E [δR(X)I{δR(X) < 0, δY(X)/δR(X) < λ}|X ∈ Ac] = α∗

with α∗ = α−E[δR(X)I(δY(X)>0,X∈A)]
P(X∈Ac) .

Remark 1. Solving for D∗ is analogous to finding the optimal rejection region
at a given type I error rate as in the Neyman-Pearson lemma.

Remark 2. When no treatment heterogeneity on safety outcomes, apply with
δR(X) = c.
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Estimating Optimal ITR Under Risk Constraint

Method 1: BR-Q learning
I Predictive modeling-based learning algorithm (reduces to

Q-learning in the absence of R)
I Step 1. Fit regression model for Y given (A,X), obtain
δ̂Y(X) = Ê[Y|X,A = 1]− Ê[Y|X,A = −1]

I Step 2. Fit regression model for R given (A,X), obtain
δ̂R(X) = Ê[R|X,A = 1]− Ê[R|X,A = −1]

I Step 3. Apply the theorem:

f̂ (X) =

{
sign(δ̂Y(X)), X ∈ Â
sign

(
δ̂Y(X)− λ̂δ̂R(X)

)
, X ∈ Âc.
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Estimating Optimal ITR Under Risk Constraint

Method 2: BR-O learning

I Directly estimate D∗ under risk constraint without posing
a regression model (reduces to O-learning in the absence of
R):  maxD E

{
I(A=D(X))

p(A|X) Y
}
,

s.t. E
{

I(A=D(X))
p(A|X) R

}
≤ τ.

Maximizes empirical value function under constraint:
maxf n−1

n∑
i=1

Yi

P(Ai|Xi)
I (Ai = sign(f (Xi))) ,

s.t. n−1
n∑

i=1

Ri

P(Ai|Xi)
I (Ai = sign(f (Xi))) ≤ τ.
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Implementation of BR-O Learning
Challenges: constrained optimization with non-convex objective
function and non-convex constraint.

Solution: approximate I (Ai 6= sign(f (Xi))) in objective function by a
surrogate hinge loss, and approximate I (Ai = sign(f (Xi))) in the
constraint by a shifted ramp loss (Huang et al. 2014) as upper bound

ψδ(u) = f 1
δ (u)− f 0

δ (u)
= δ−1(u + δ)+ − δ−1(u)+.
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Implementation of BR-O learning

The optimization solved by difference of convex functions
algorithm (DCA) (Tao and An 1998) and quadratic
programming:

minf C
∑n

i=1
Y∗
pi
ξi +

1
2β

T
(0)Kβ(0),

s.t.
∑n

i=1
Ri
pi

[
δ−1{Aif (Xi) + δ}+ − δ−1{Aif (Xi)}+

]
≤ nτ,

ξi ≥ 1− A∗i
{
β0 +

∑n
j=1 βjK(Xi,Xj)

}
, ξi ≥ 0 ∀i.

Tuning parameters C and δ selected by cross validation.
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Numeric Results
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Simulation Design

I 20 covariates as X1, . . . ,X20 i.i.d. U(0, 1), n = 300
I Efficacy responses are normally distributed:

Y = 1− 2X1 + X2 − X3 + hY(X,A) + εY

hY = 2 ∗ (1− X1 − X2) ∗ A.

I Safety responses are truncated normal (truncated at 1):

R = 2 + X1 − 2X2 − X3 + hR(X,A) + εR

hR = (1 + X1 − X2) ∗ A.

I Prescriptive variables (X1,X2):
I Optimal boundary for Y not considering R:

1−X1 −X2 = 0, positive indicates A = 1 is more efficacious
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Theoretical Optimal Treatment Decision Boundaries

Figure: Regions of Optimal Treatments with and without Risk
Constraint and Relationship with Average Benefit and Risk (τ = 1):
linear boundary
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Theoretical Optimal Treatment Decision Boundaries

Figure: Regions of Optimal Treatments with and without Risk
Constraint and Relationship with Average Benefit and Risk
(τ = 1.75): nonlinear boundary
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Simulation Results

Figure: Average efficacy and safety outcome estimated by theoretical
formula, BR-Q learning and BR-O learning as a function of
pre-specified τ †
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†: Optimal average Y without safety constraint = 0.662
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Simulation Results

Compare optimal rule computed using theoretical result, BR-Q and BR-O.

Table: Estimated average risk and optimal benefit†.

Safety outcome R Efficacy outcome Y % Correct
τ Theo BR-Q BR-O‡ Theo BR-Q BR-O BR-Q BR-O

0.50 0.494 0.530 0.521 -0.006 0.041 0.031 0.969 0.984
0.75 0.745 0.750 0.697 0.352 0.333 0.258 0.926 0.896
1.00 0.995 0.994 0.919 0.538 0.523 0.448 0.926 0.878
1.25 1.243 1.233 1.158 0.630 0.616 0.574 0.926 0.887
1.50 1.490 1.445 1.327 0.655 0.647 0.617 0.923 0.880

†: Average safety outcome is 1.503, and optimal value function without safety
constraint is 0.662.
‡: “Theo”: computed from theoretical formula, “BR-Q”: Risk constrained
Q-learning, and “BR-O”: Risk constrained O-learning.
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Application to DURABLE Trial

DURAbility of Basal Versus Lispro Mix 75/25 Insulin Efficacy
(DURABLE) Trial (Buse et al., 2009):

I Randomized trial to compare the ability of two starter insulin
regimens (once-daily basal insulin Glargin or twice-daily
premixed insulin Lispro 75/25) to achieve glycemic control in
patients with type 2 diabetes

I Insulin-naive patients with type 2 diabetes who did not achieve
adequate control with oral antihyper-glycemic drugs

I Efficacy outcome: glycemic control (change in HbA1C from
baseline to end point)

I Safety outcomes: hypoglycemia (a plasma glucose value≤70
mg/dl or presence of typically associated symptoms)
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Application to DURABLE Trial

Overall analyses results (Buse et al., 2009):
I Efficacy: Lispro 75/25 better control on glycemic than GL

(p = 0.005)

I Safety: Lispro 75/25 had higher hypoglycemia rate compared to
GL (p = 0.007)

Application Data Description:

I Sample size: 965 Lispro Mix and 980 insulin Glargin.

I Efficacy endpoint: A1c change from baseline after 24 weeks
treatment.

I Safety endpoint: Hypoglycemic event rate per day.

I Candidate tailoring variables: 18 baseline covariates (weight,
BMI, blood pressure, heart rate, 7 points blood glucose values,
fasting blood glucose, fasting insulin etc.).

Yuanjia Wang, Department of Biostatistics, Columbia University



Application to DURABLE Trial

Table. Average benefit, risk over 100 repetitions (300 patients as
training set, the rest 1,645 patients as a testing dataset).

Risk(τ ) Method Risk-Training Risk-Testing Benefit-Training Benefit-Testing
0.063 BR-Q 0.0639(0.005) 0.0689(0.004) 1.8668(0.142) 1.7201(0.049)

BR-O 0.0626(0.003) 0.0640(0.006) 1.7824(0.142) 1.6980(0.042)

0.064 BR-Q 0.0644(0.006) 0.0690(0.004) 1.8682(0.141) 1.7209(0.050)
BR-O 0.0632(0.003) 0.0650(0.006) 1.7905(0.135) 1.7004(0.050)

0.065 BR-Q 0.0652(0.006) 0.0692(0.004) 1.8736(0.142) 1.7228(0.050)
BR-O 0.0638(0.003) 0.0650(0.006) 1.7983(0.135) 1.7030(0.051)

0.066 BR-Q 0.0657(0.006) 0.0694(0.004) 1.8780(0.146) 1.7241(0.051)
BR-O 0.0644(0.003) 0.0655(0.006) 1.8048(0.135) 1.7021(0.046)

0.067 BR-Q 0.0667(0.006) 0.0696(0.004) 1.8827(0.148) 1.7250(0.052)
BR-O 0.0654(0.003) 0.0660(0.006) 1.8273(0.131) 1.7093(0.048)

∞ BR-Q 0.0756(0.010) 0.0712(0.003) 1.9392(0.153) 1.7378(0.048)
BR-O 0.0769(0.010) 0.0714(0.005) 1.9895(0.146) 1.7360(0.052)

Conclusion: BR-O controls risk below τ with similar benefit as BR-Q
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Ranks of Important Biomarkers

Table: Ranking of Baseline Biomarkers Based on Average
Standardized Effects over 100 Repetitions.

τ = 0.063 0.064 0.065 0.066 0.067 ∞
Baseline A1C 1 1 1 1 1 1

BMI 2 2 2 2 2 2
Fasting Blood Glucose 3 3 3 3 3 3

Height 4 4 4 4 4 4
Adiponectin 5 5 5 5 5 5

Duration of diabetes 6 6 6 6 6 6
Body Weight 7 7 7 7 7 7

Diastolic blood pressure 8 8 8 8 8 8
Fasting Insulin 9 9 9 9 9 10

Heart rate 10 10 10 10 10 9
Systolic blood pressure 11 11 11 11 11 11

Glucose:Morning before meal 12 12 12 12 12 12
Glucose: 3am at night 13 13 13 13 13 14

Glucose:Evening before meal 14 14 14 14 14 13
Glucose:Morning 2 hours after meal 15 15 16 15 15 16

Glucose:Evening after meal 16 16 15 16 16 15
Glucose:Noon before meal 17 17 18 17 17 18

Glucose:Noon 2 hours after meal 18 18 17 18 18 17
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Estimated Optimal Treatment Decision Boundaries
Stratified by Baseline A1c

Figure: Black dahsed line: O-learning without risk constraint. Red
solid line: BR-O (τ = 0.065). Patients above the lines recommended to
take mix 75/25 and patients below recommended to take GL.
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Part I: Discussion

Two methods (BR-Q and BR-O) for estimating optimal ITR
while controlling for average risk.

I Both control theoretical risk adequately and approach
theoretical optimal efficacy level.

I In the application, BR-O slightly conservative on the
training, but controls risk better on testing.

I BR-O more computationally intensive

Extensions:
I Multiple efficacy and safety outcomes
I Multiple group-dependent thresholds
I Multi-stage trials (SMART, Lavori & Dawson 2000, 2004;

Murphy 2005)
I Real world observational studies
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Part II: Shifting Towards
Observational Studies
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Real World Setting: Electronic Health Records (EHRs)

I Clinical guidelines derived from RCTs may be of limited
use in real world clinical practice due to stringent
inclusion/exclusion criteria, lack of long term outcomes or
adverse events etc.

I Electronic health records (EHR) adoption has increased
more than nine-fold from 2008 to 2012 (Charles et al. 2013),
and the trend continues

I EHR data resources contain massive information: CUMC
clinical data warehouse (CDW) contains 20 years of health
information for about 4.5 million patients with diverse
ethnicity

I However, EHR data are not collected for research oriented
studies in the first place, hence might face potential
challenges (e.g, confounding; selection bias).
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Methods for Observational Studies

Existing O-learning methods mostly focus on inverse
probability weighting (IPW) of propensity scores to handle
confounding bias.

Matching methods provide a flexible alternative.
I Important tool to achieve covariates balance.
I Flexible matching methods: nearest neighborhood

matching, subclassification, full matching etc.
I For example, nearest neighbor matching with replacement

is useful when treatment assignment is imbalanced and
matching with replacement can reduce bias and avoid the
order issue in matching the treated units.

Yuanjia Wang, Department of Biostatistics, Columbia University



Comparison between IPW and Matching

I Matching approaches require less model specification and
can be nonparametric.

I IPW-based methods ensure different treatment groups
have similar distribution of confounders at the population
level.

I Some matching methods provide flexible tools to control
confounding in subgroups or even on individual subject.

I Feature selection, distance metric and measure of
covariates balance can be combined to optimize matching.

Yuanjia Wang, Department of Biostatistics, Columbia University



Matched Learning (M-learning)

Motivation: Two subjects are matched in confounders or
propensity scores but are observed to receive opposite
treatments, and the observed treatment leading to a larger
clinical outcome should be more likely to be the optimal
treatment for this subject.

Identify a matched setMi, let

Mi =
{

j : Aj = −Ai, d(Hj,Hi) ≤ δi
}
,

where d(·, ·) is a metric defined in the feature space and δi is a
pre-specified threshold to determine the size ofMi.

Yuanjia Wang, Department of Biostatistics, Columbia University



Matched Learning (M-learning)

For example, if we chooseMi to be the nearest neighbor, then
δi is the minimal distance between subject i and any subjects
with the opposite treatment.

Objective function (matching-based preference value function)
for maximization:

Vn(D; g) =
n∑

i=1

|Mi|−1
∑

j∈Mi

{
I(Rj ≥ Ri,D(Hi) = −Ai) + I(Rj ≤ Ri,D(Hi) = Ai)

}
g(|Rj − Ri|),

where |Mi| is the size ofMi, g(·) is a monotonically increasing
function specified by users to weight different subjects. Typical
choice of g(·) can be g(x) = 1 or g(x) = x.

Yuanjia Wang, Department of Biostatistics, Columbia University



Matched Learning (M-learning)

The value function is equivalent to

Vn(f ; g) = n−1
n∑

i=1

|Mi|−1
∑

j∈Mi

I(f (Hi)Aisign(Rj − Ri) ≤ 0)g(|Rj − Ri|)

where D(H) = sign(f (H)).

Note: Let Rj = β̂TXj and g(x) = 1, M-learning reduces to residualized
O-learning (Liu et al. 2014)!

In order to find the optimal ITR, we aim to maximize Vn(f ; g) using
quadratic programming.

Yuanjia Wang, Department of Biostatistics, Columbia University



Matched Learning Properties

I Fisher consistency can be established under conditions

I Double robust matching can be used to improve efficiency

I Residualized M-learning further improves efficiency

Yuanjia Wang, Department of Biostatistics, Columbia University



Simulation Designs

We considered four simulation designs:

1. RCT where treatment assignment does not depend on H;

2. Observational studies where treatment assignment depends on
H and propensity score model is correctly specified;

3. Observational studies where treatment assignment depends on
H but propensity score model is misspecified;

4. Observational studies in the presence of unmeasured
confounders where treatment assignment depends on H and
some components of H are not observed.

In the following simulations, we considered 1 : 1 nearest neighbor
matching (NNM) with replacement using Euclidean distance. The
procedures were repeated 100 times using 3-fold CV tuning and
tested on a large independent testing set.

Yuanjia Wang, Department of Biostatistics, Columbia University



Numeric Results
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Simulation Study Results

I M-learning has a better
performance than O-learning
for continuous outcome
especially when propensity
score model is misspecified
and in the presence of
unmeasured confounders.

I For discrete outcome, there is
no large difference between
performance of O-learning
and M-learning in
randomized experiment and
observational study.

Heatmap of Value Function in Linear Setting
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Simulation Study Results

I M-learning ranks the best
comparing to other two
methods in both scenarios.

I Matching by both propensity
score and prognostic score
significantly enhances the
performance of M-learning.

Heatmap of Value Function in Noninear Setting
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Selecting Second Line Treatment for Type II Diabetes
(T2D) using EHRs

Research Aim: Estimate optimal ITR for treating T2D

I Recommended first-line treatment: Metformin (Met).

I Compare ITR for second line therapy: Met + insulin vs Met +
Sulf (Sulfonylureas as a class of second line oral agents includes
Glipizide and Glyburide).

I Outcome: The primary outcome of interest is average HbA1c
level (%) within 1 year post second-line treatment initiation and
a lower value corresponds to a favorable outcome.

I Samples: CUMC Clinical Data Warehourse (CDW) adults age 18
or older and having at least one T2D diagnosis ICD-9 codes
between 1/1/2008 and 12/31/2012.
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Cohort Identification from EHR

Figure: New User Design of Ascertaining T2D Patients’ EHR
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Matches time-varying confounding and captures early
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Feature Extraction: Measurement Patterns Informative
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Main Information Captured in CDW EHRs

Figure: Schematics of EHR Data Processing Procedures
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Heatmap of Patient Records and Extracted Features

Group 1: moderately ill; regular, frequent documentation pattern; more co-morbidity
and non-diabetic medications; more patients received a OHA; (2) a moderately ill,
less-frequent measurements, less co-morbidity and medications; more patients
received OHA; (3) a fast progression; less measurements, a higher LDL, HDL; more
patients received insulin.
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Addressing major statistical challenges

I Confounding bias: matching based on propensity scores
constructed from different feature domains, a set of
features and prognostic score; use Mahalanobis distance as
matching similarity measure.

I Selection bias: use IPW and constructed two models to
compute weights

1. logistic regression model (whether a subject has any post
index measure)

2. proportional hazards model (time to first lab measurement
post index)

I Incompleteness in features: Multiple Imputation by
Chained Equations (MICE) under assumption of missing
at random (MAR).
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Selecting Second Line Treatment for T2D

Figure: Empirical Value Function of HbA1c in EHR Data (100 Times
2-fold Cross-Validations)
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Summary of Analyses Results

I Most influential features: pre-index rate of change of
glucose, LDL and BMI, initial value of HDL before
treatment, and race.

I 645 of the 787 patients are recommended to “Metformin +
Sulfonylureas”.

I Subgroup analysis demonstrates that under the
circumstances where the distribution of propensity scores
has poor overlap, M-learning will outperform O-learning

Yuanjia Wang, Department of Biostatistics, Columbia University



Part II Discussion

Demonstrates M-learning is useful with observational studies
I Extension to both efficacy outcomes and adverse events

I Derive multi-level random effects models to handle
multiple sources of selection bias and perform sensitivity
analysis.

I Consider latent confounders and model to alleviate
confounding bias.

I Validate results with RCT or population-based
observational data.
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