Deconstruction and Conditional Erasure of Correlations Joint work with Mario Berta, Fernando Brandao, and Mark Wilde (arXiv:1609.06994)

Christian Majenz
QMATH, University of Copenhagen

Beyond I.I.D. in Information Theory, National University of Singapore

Introduction:
 Decoupling and Erasure

Erasure of correlations

- Task introduced by Groisman, Popescu and Winter in '04

Erasure of correlations

- Task introduced by Groisman, Popescu and Winter in '04
- goal: decorrelate two systems by applying local noise

Erasure of correlations

- Task introduced by Groisman, Popescu and Winter in '04
- goal: decorrelate two systems by applying local noise

Step-by-step definition:

Erasure of correlations

- Task introduced by Groisman, Popescu and Winter in '04
- goal: decorrelate two systems by applying local noise

Step-by-step definition:

- bipartite quantum system $A \otimes E$ in mixed state $\rho_{A E}$

Erasure of correlations

- Task introduced by Groisman, Popescu and Winter in '04
- goal: decorrelate two systems by applying local noise

Step-by-step definition:

- bipartite quantum system $A \otimes E$ in mixed state $\rho_{A E}$
- apply random unitary channel

Erasure of correlations

- Task introduced by Groisman, Popescu and Winter in '04
- goal: decorrelate two systems by applying local noise

Step-by-step definition:

- bipartite quantum system $A \otimes E$ in mixed state $\rho_{A E}$
- apply random unitary channel
- correlations erased if approximately product

Erasure of correlations

- Task introduced by Groisman, Popescu and Winter in '04
- goal: decorrelate two systems by applying local noise

Step-by-step definition:

- bipartite quantum system $A \otimes E$ in mixed state $\rho_{A E}$
- apply random unitary channel
- correlations erased if approximately product
- how big do we have to choose k ?

$$
2^{-k} \sum_{i=1}^{2^{k}} U_{i}(\cdot) U_{i}^{\dagger}
$$

Erasure of correlations

- Task introduced by Groisman, Popescu and Winter in '04
- goal: decorrelate two systems by applying local noise

Step-by-step definition:

- bipartite quantum system $A \otimes E$ in mixed state $\rho_{A E}$
- apply random unitary channel
- correlations erased if approximately product
- how big do we have to choose k ?
- optimal: $k \approx n l(A: E)_{\sigma}$ for $\rho=\sigma^{\otimes n}$

$$
2^{-k} \sum_{i=1}^{2^{k}} U_{i}(\cdot) U_{i}^{\dagger}
$$

Erasure of correlations

- Task introduced by Groisman, Popescu and Winter in '04
- goal: decorrelate two systems by applying local noise

Step-by-step definition:

- bipartite quantum system $A \otimes E$ in mixed state $\rho_{A E}$
- apply random unitary channel
- correlations erased if approximately product
- how big do we have to choose k ?
- optimal: $k \approx n l(A: E)_{\sigma}$ for $\rho=\sigma^{\otimes n}$
\Rightarrow Operational interpretation of the quantum mutual information!

Erasure of correlations

- Different erasure model: partial trace (aka decoupling, Horodecki, Oppenheim and Winter '05)

Erasure of correlations

- Different erasure model: partial trace (aka decoupling, Horodecki, Oppenheim and Winter '05)
- Ubiquitous proof tool (quantum Shannon theory, thermodynamics etc.)

Erasure of correlations

- Different erasure model: partial trace (aka decoupling, Horodecki, Oppenheim and Winter '05)
- Ubiquitous proof tool (quantum Shannon theory, thermodynamics etc.)

Step-by-step definition:

- bipartite quantum system $A \otimes E$ in mixed state $\rho_{A E}$

Erasure of correlations

- Different erasure model: partial trace (aka decoupling, Horodecki, Oppenheim and Winter '05)
- Ubiquitous proof tool (quantum Shannon theory, thermodynamics etc.)

Step-by-step definition:

- bipartite quantum system $A \otimes E$ in mixed state $\rho_{A E}$
- divide $A \cong A_{1} \otimes A_{2}$

Erasure of correlations

- Different erasure model: partial trace (aka decoupling, Horodecki, Oppenheim and Winter '05)
- Ubiquitous proof tool (quantum Shannon theory, thermodynamics etc.)

Step-by-step definition:

- bipartite quantum system $A \otimes E$ in mixed state $\rho_{A E}$
- divide $A \cong A_{1} \otimes A_{2}$
- apply a unitary to A

Erasure of correlations

- Different erasure model: partial trace (aka decoupling, Horodecki, Oppenheim and Winter '05)
- Ubiquitous proof tool (quantum Shannon theory, thermodynamics etc.)

Step-by-step definition:

- bipartite quantum system $A \otimes E$ in mixed state $\rho_{A E}$
- divide $A \cong A_{1} \otimes A_{2}$
- apply a unitary to A
- trace out $A_{2} \Rightarrow$ approximate product state

Erasure of correlations

- Different erasure model: partial trace (aka decoupling, Horodecki, Oppenheim and Winter '05)
- Ubiquitous proof tool (quantum Shannon theory, thermodynamics etc.)

Step-by-step definition:

- bipartite quantum system $A \otimes E$ in mixed state $\rho_{A E}$
- divide $A \cong A_{1} \otimes A_{2}$
- apply a unitary to A
- trace out $A_{2} \Rightarrow$ approximate product state
- how big do we have to choose A_{2} ?

Erasure of correlations

- Different erasure model: partial trace (aka decoupling, Horodecki, Oppenheim and Winter '05)
- Ubiquitous proof tool (quantum Shannon theory, thermodynamics etc.)

Step-by-step definition:

- bipartite quantum system $A \otimes E$ in mixed state $\rho_{A E}$
- divide $A \cong A_{1} \otimes A_{2}$
- apply a unitary to A
- trace out $A_{2} \Rightarrow$ approximate product state
- how big do we have to choose A_{2} ?
- $\log \left|A_{2}\right| \approx \frac{n}{2} I(A: E)_{\sigma}$ for $\rho=\sigma^{\otimes n}$ (Horodecki, Oppenheim, Winter '05)

Erasure of correlations

- Different erasure model: partial trace (aka decoupling, Horodecki, Oppenheim and Winter '05)
- Ubiquitous proof tool (quantum Shannon theory, thermodynamics etc.)

Step-by-step definition:

- bipartite quantum system $A \otimes E$ in mixed state $\rho_{A E}$
- divide $A \cong A_{1} \otimes A_{2}$
- apply a unitary to A
- trace out $A_{2} \Rightarrow$ approximate product state
- how big do we have to choose A_{2} ?
- $\log \left|A_{2}\right| \approx \frac{n}{2} I(A: E)_{\sigma}$ for $\rho=\sigma^{\otimes n}$ (Horodecki, Oppenheim, Winter '05)
! Erasure models ar related, exact one shot equivalence if ancillary states are allowed

This talk

Erasure of correlations

Conditional Erasure

$I(A: E \mid R)_{\rho}$

Erasure of conditional correlations

Conditional correlations

- $\rho_{A E R}$

Conditional correlations

- $\rho_{A E R}$
- Conditional quantum mutual information

$$
I(A: E \mid R)_{\rho}=H\left(\rho_{A R}\right)+H\left(\rho_{E R}\right)-H\left(\rho_{A E R}\right)-H\left(\rho_{R}\right)
$$

Conditional correlations

- $\rho_{\text {AER }}$
- Conditional quantum mutual information $I(A: E \mid R)_{\rho}=H\left(\rho_{A R}\right)+H\left(\rho_{E R}\right)-H\left(\rho_{A E R}\right)-H\left(\rho_{R}\right)$
- Recoverability: if $I(A: E \mid R)=\varepsilon$ small, $\rho_{A E R} \approx_{\mathcal{O}(\varepsilon)} \mathcal{R}_{R \rightarrow R A}\left(\rho_{E R}\right)$ for some quantum channel \mathcal{R}. (Fawzi, Renner '14)

Conditional correlations

- $\rho_{\text {AER }}$
- Conditional quantum mutual information $I(A: E \mid R)_{\rho}=H\left(\rho_{A R}\right)+H\left(\rho_{E R}\right)-H\left(\rho_{A E R}\right)-H\left(\rho_{R}\right)$
- Recoverability: if $I(A: E \mid R)=\varepsilon$ small, $\rho_{A E R} \approx_{\mathcal{O}(\varepsilon)} \mathcal{R}_{R \rightarrow R A}\left(\rho_{E R}\right)$ for some quantum channel \mathcal{R}. (Fawzi, Renner '14)

Conditional correlations

- $\rho_{\text {AER }}$
- Conditional quantum mutual information $I(A: E \mid R)_{\rho}=H\left(\rho_{A R}\right)+H\left(\rho_{E R}\right)-H\left(\rho_{A E R}\right)-H\left(\rho_{R}\right)$
- Recoverability: if $I(A: E \mid R)=\varepsilon$ small, $\rho_{A E R} \approx_{\mathcal{O}(\varepsilon)} \mathcal{R}_{R \rightarrow R A}\left(\rho_{E R}\right)$ for some quantum channel \mathcal{R}. (Fawzi, Renner '14)

Conditional correlations

- $\rho_{\text {AER }}$
- Conditional quantum mutual information $I(A: E \mid R)_{\rho}=H\left(\rho_{A R}\right)+H\left(\rho_{E R}\right)-H\left(\rho_{A E R}\right)-H\left(\rho_{R}\right)$
- Recoverability: if $I(A: E \mid R)=\varepsilon$ small, $\rho_{A E R} \approx_{\mathcal{O}(\varepsilon)} \mathcal{R}_{R \rightarrow R A}\left(\rho_{E R}\right)$ for some quantum channel \mathcal{R}. (Fawzi, Renner '14)

Conditional correlations

- $\rho_{\text {AER }}$
- Conditional quantum mutual information $I(A: E \mid R)_{\rho}=H\left(\rho_{A R}\right)+H\left(\rho_{E R}\right)-H\left(\rho_{A E R}\right)-H\left(\rho_{R}\right)$
- Recoverability: if $I(A: E \mid R)=\varepsilon$ small, $\rho_{A E R} \approx_{\mathcal{O}(\varepsilon)} \mathcal{R}_{R \rightarrow R A}\left(\rho_{E R}\right)$ for some quantum channel \mathcal{R}. (Fawzi, Renner '14)

Conditional correlations

- $\rho_{\text {AER }}$
- Conditional quantum mutual information $I(A: E \mid R)_{\rho}=H\left(\rho_{A R}\right)+H\left(\rho_{E R}\right)-H\left(\rho_{A E R}\right)-H\left(\rho_{R}\right)$
- Recoverability: if $I(A: E \mid R)=\varepsilon$ small, $\rho_{A E R} \approx_{\mathcal{O}(\varepsilon)} \mathcal{R}_{R \rightarrow R A}\left(\rho_{E R}\right)$ for some quantum channel \mathcal{R}. (Fawzi, Renner '14)
\Rightarrow All correlations of A and E mediated by R

Conditional correlations

- $\rho_{A E R}$
- Conditional quantum mutual information $I(A: E \mid R)_{\rho}=H\left(\rho_{A R}\right)+H\left(\rho_{E R}\right)-H\left(\rho_{A E R}\right)-H\left(\rho_{R}\right)$
- Recoverability: if $I(A: E \mid R)=\varepsilon$ small, $\rho_{A E R} \approx_{\mathcal{O}(\varepsilon)} \mathcal{R}_{R \rightarrow R A}\left(\rho_{E R}\right)$ for some quantum channel \mathcal{R}. (Fawzi, Renner '14)
\Rightarrow All correlations of A and E mediated by R
$\Rightarrow E-R-A$ is approximate quantum Markov chain

Conditional correlations

- $\rho_{A E R}$
- Conditional quantum mutual information $I(A: E \mid R)_{\rho}=H\left(\rho_{A R}\right)+H\left(\rho_{E R}\right)-H\left(\rho_{A E R}\right)-H\left(\rho_{R}\right)$
- Recoverability: if $I(A: E \mid R)=\varepsilon$ small, $\rho_{A E R} \approx_{\mathcal{O}(\varepsilon)} \mathcal{R}_{R \rightarrow R A}\left(\rho_{E R}\right)$ for some quantum channel \mathcal{R}. (Fawzi, Renner '14)
\Rightarrow All correlations of A and E mediated by R
$\Rightarrow E-R-A$ is approximate quantum Markov chain
- I(A:E|R) measures conditional correlations

Erasure of conditional correlations

- i.i.d. setting

Erasure of conditional correlations

- i.i.d. setting
- Recall: Erasure of correlations in $\rho_{A E}$ operating on A costs $I(A: E)$ bits of noise.

Erasure of conditional correlations

- i.i.d. setting
- Recall: Erasure of correlations in $\rho_{A E}$ operating on A costs $I(A: E)$ bits of noise.
? Can we erase conditional correlations by injecting $I(A: E \mid R)_{\rho}$ bits of noise into A ?

Erasure of conditional correlations

- i.i.d. setting
- Recall: Erasure of correlations in $\rho_{A E}$ operating on A costs $I(A: E)$ bits of noise.
? Can we erase conditional correlations by injecting $I(A: E \mid R)_{\rho}$ bits of noise into A ?
! No, as shown by Wakakuwa et al. (2016, Poster at BIID2016)

Classical counterexample

? Can we erase conditional correlations by injecting $I(A: E \mid R)_{\rho}$ bits of noise into A ?

- Does not even hold classically. Counterexample:

Classical counterexample

? Can we erase conditional correlations by injecting $I(A: E \mid R)_{\rho}$ bits of noise into A ?

- Does not even hold classically. Counterexample:

Classical counterexample

? Can we erase conditional correlations by injecting $I(A: E \mid R)_{\rho}$ bits of noise into A ?

- Does not even hold classically. Counterexample:

Classical counterexample

? Can we erase conditional correlations by injecting $I(A: E \mid R)_{\rho}$ bits of noise into A ?

- Does not even hold classically. Counterexample:

Classical counterexample

? Can we erase conditional correlations by injecting $I(A: E \mid R)_{\rho}$ bits of noise into A ?

- Does not even hold classically. Counterexample:

Classical counterexample

- $I(X: Y \mid Z)=1=$ erasure cost when conditioning on Z

Classical counterexample

- $I(X: Y \mid Z)=1=$ erasure cost when conditioning on Z
- $\mathcal{O}(\log N)$ bits of noise necessary acting on X only

Classical counterexample

- $I(X: Y \mid Z)=1=$ erasure cost when conditioning on Z
- $\mathcal{O}(\log N)$ bits of noise necessary acting on X only
- intuition: surjective $f:[N] \rightarrow[M], M<N$ analogue of partial trace

Classical counterexample

- $I(X: Y \mid Z)=1=$ erasure cost when conditioning on Z
- $\mathcal{O}(\log N)$ bits of noise necessary acting on X only
- intuition: surjective $f:[N] \rightarrow[M], M<N$ analogue of partial trace
- for $Z=\left(i_{1}, i_{2}\right)$, correlation of X and Y are destroyed iff $f\left(i_{1}\right)=f\left(i_{2}\right)$

Classical counterexample

- $I(X: Y \mid Z)=1=$ erasure cost when conditioning on Z
- $\mathcal{O}(\log N)$ bits of noise necessary acting on X only
- intuition: surjective $f:[N] \rightarrow[M], M<N$ analogue of partial trace
- for $Z=\left(i_{1}, i_{2}\right)$, correlation of X and Y are destroyed iff $f\left(i_{1}\right)=f\left(i_{2}\right)$
- need this for most pairs $\left(i_{1}, i_{2}\right) \Rightarrow M$ small

Deconstruction, conditional erasure I

- State $\rho_{A E R}$

Deconstruction, conditional erasure I

- State $\rho_{A E R}$
- quantum conditional operation on A conditioned on R :

Deconstruction, conditional erasure I

- State $\rho_{A E R}$
- quantum conditional operation on A conditioned on R : operation on $A R$, but $\rho_{R E}$ approximately unchanged

Deconstruction, conditional erasure I

- State $\rho_{A E R}$
- quantum conditional operation on A conditioned on R : operation on $A R$, but $\rho_{R E}$ approximately unchanged
- erasure model: partial trace, ancilla

Deconstruction, conditional erasure I

- State $\rho_{A E R}$
- quantum conditional operation on A conditioned on R : operation on $A R$, but $\rho_{R E}$ approximately unchanged
- erasure model: partial trace, ancilla

Step-by-step definition:

Deconstruction, conditional erasure I

- State $\rho_{A E R}$
- quantum conditional operation on A conditioned on R : operation on $A R$, but $\rho_{R E}$ approximately unchanged
- erasure model: partial trace, ancilla

Step-by-step definition:

- add ancillary system A^{\prime} in a fixed state

Deconstruction, conditional erasure I

- State $\rho_{A E R}$
- quantum conditional operation on A conditioned on R : operation on $A R$, but $\rho_{R E}$ approximately unchanged
- erasure model: partial trace, ancilla

Step-by-step definition:

- add ancillary system A^{\prime} in a fixed state
- apply a unitary $U_{R A A^{\prime}}$

Deconstruction, conditional erasure I

- State $\rho_{A E R}$
- quantum conditional operation on A conditioned on R : operation on $A R$, but $\rho_{R E}$ approximately unchanged
- erasure model: partial trace, ancilla

Step-by-step definition:

- add ancillary system A^{\prime} in a fixed state
- apply a unitary $U_{R A A^{\prime}}$ that negligibly disturbs $\rho_{E R}$

Deconstruction, conditional erasure I

- State $\rho_{A E R}$
- quantum conditional operation on A conditioned on R : operation on $A R$, but $\rho_{R E}$ approximately unchanged
- erasure model: partial trace, ancilla

Step-by-step definition:

- add ancillary system A^{\prime} in a fixed state
- apply a unitary $U_{R A A^{\prime}}$ that negligibly disturbs $\rho_{E R}$
- divide system $A A^{\prime}$ into two parts, $A A^{\prime} \cong A_{1} A_{2}$

Deconstruction, conditional erasure I

- State $\rho_{A E R}$
- quantum conditional operation on A conditioned on R : operation on $A R$, but $\rho_{R E}$ approximately unchanged
- erasure model: partial trace, ancilla

Step-by-step definition:

- add ancillary system A^{\prime} in a fixed state
- apply a unitary $U_{R A A^{\prime}}$ that negligibly disturbs $\rho_{E R}$
- divide system $A A^{\prime}$ into two parts, $A A^{\prime} \cong A_{1} A_{2}$
- trace out A_{2}

Deconstruction, conditional erasure II

- Different goals:

Deconstruction, conditional erasure II

- Different goals:
- make $E-R-A_{1}$ an approximate quantum Markov chain, deconstruction of correlations

Deconstruction, conditional erasure II

- Different goals:
- make $E-R-A_{1}$ an approximate quantum Markov chain, deconstruction of correlations
- make A_{1} product with $E R$, conditional erasure of correlations (\Rightarrow deconstruction of correlations)

State redistribution

State redistribution

- Alice, Bob and a referee share a pure state $|\psi\rangle\left\langle\left.\psi\right|_{A B C R}\right.$

State redistribution

- Alice, Bob and a referee share a pure state $|\psi\rangle\left\langle\left.\psi\right|_{A B C R}\right.$
- Alice has $A C$, Bob has B, Referee has R

State redistribution

- Alice, Bob and a referee share a pure state $|\psi\rangle\left\langle\left.\psi\right|_{A B C R}\right.$
- Alice has $A C$, Bob has B, Referee has R
- their task: Alice has to send A to Bob

State redistribution

- Alice, Bob and a referee share a pure state $|\psi\rangle\left\langle\left.\psi\right|_{A B C R}\right.$
- Alice has $A C$, Bob has B, Referee has R
- their task: Alice has to send A to Bob
- they can use entanglement

State redistribution

- Alice, Bob and a referee share a pure state $|\psi\rangle\left\langle\left.\psi\right|_{A B C R}\right.$
- Alice has $A C$, Bob has B, Referee has R
- their task: Alice has to send A to Bob
- they can use entanglement
- optimal comunication rate $\frac{1}{2} l(A: R \mid C)$ (Devetak \& Yard '06)

Characterization theorem

Theorem (Berta, Brandao, CM, Wilde)
Conditional erasure of correlations is equivalent to quantum state redistribution. Asymptotically, deconstruction needs at least a rate of $I(A: E \mid R)$ bits of noise.

Characterization theorem

Theorem (Berta, Brandao, CM, Wilde)

Conditional erasure of correlations is equivalent to quantum state redistribution. Asymptotically, deconstruction needs at least a rate of $I(A: E \mid R)$ bits of noise.

- Equivalence: state redistribution is possible with communication rate $r / 2$ iff conditional erasure of correlations is possible with noise rate r

Characterization theorem

Theorem (Berta, Brandao, CM, Wilde)

Conditional erasure of correlations is equivalent to quantum state redistribution. Asymptotically, deconstruction needs at least a rate of $I(A: E \mid R)$ bits of noise.

- Equivalence: state redistribution is possible with communication rate $r / 2$ iff conditional erasure of correlations is possible with noise rate r
- Both tasks have same optimal rate $I(A: E \mid R)$ of noise asymptotically

Characterization theorem

Theorem (Berta, Brandao, CM, Wilde)

Conditional erasure of correlations is equivalent to quantum state redistribution. Asymptotically, deconstruction needs at least a rate of $I(A: E \mid R)$ bits of noise.

- Equivalence: state redistribution is possible with communication rate $r / 2$ iff conditional erasure of correlations is possible with noise rate r
- Both tasks have same optimal rate $I(A: E \mid R)$ of noise asymptotically
- Operational interpretation of quantum conditional mutual information!

Applications

- 2-party state $\rho_{A B}$, measurement $\Lambda_{A \rightarrow X}$

Applications

- 2-party state $\rho_{A B}$, measurement $\Lambda_{A \rightarrow X}$
- (unoptimized) quantum discord: $D(\bar{A}: B)_{\rho, \Lambda}=I(A: B)_{\rho}-I(X: B)_{\wedge(\rho)}$

Applications

- 2-party state $\rho_{A B}$, measurement $\Lambda_{A \rightarrow X}$
- (unoptimized) quantum discord: $D(\bar{A}: B)_{\rho, \Lambda}=I(A: B)_{\rho}-I(X: B)_{\wedge(\rho)}$
- original interpretation: decrease of correlations under interaction with environment ("einselection", Zurek '00)

Applications

- 2-party state $\rho_{A B}$, measurement $\Lambda_{A \rightarrow X}$
- (unoptimized) quantum discord: $D(\bar{A}: B)_{\rho, \Lambda}=I(A: B)_{\rho}-I(X: B)_{\wedge(\rho)}$
- original interpretation: decrease of correlations under interaction with environment ("einselection", Zurek '00)
- if $\Lambda=\Lambda_{A \rightarrow X}^{(2)} \circ \Lambda_{A \rightarrow A}^{(1)}$, and the action of $\Lambda^{(2)}$ is reversible on $\Lambda^{(1)}(\rho)$ then the loss of correlations has already occurred

Theorem (Berta, Brandao, CM, Wilde)
$D(\bar{A}: B)_{\rho, \Lambda}$ is equal to the rate of noise necessary to implement the loss of correlations incurred by $\rho^{\otimes n}$ under the action of $\Lambda^{\otimes n}$.

Applications

- 2-party state $\rho_{A B}$, measurement $\Lambda_{A \rightarrow X}$
- (unoptimized) quantum discord: $D(\bar{A}: B)_{\rho, \Lambda}=I(A: B)_{\rho}-I(X: B)_{\wedge(\rho)}$
- original interpretation: decrease of correlations under interaction with environment ("einselection", Zurek '00)
- if $\Lambda=\Lambda_{A \rightarrow X}^{(2)} \circ \Lambda_{A \rightarrow A}^{(1)}$, and the action of $\Lambda^{(2)}$ is reversible on $\Lambda^{(1)}(\rho)$ then the loss of correlations has already occurred

Theorem (Berta, Brandao, CM, Wilde)
$D(\bar{A}: B)_{\rho, \Lambda}$ is equal to the rate of noise necessary to implement the loss of correlations incurred by $\rho^{\otimes n}$ under the action of $\Lambda^{\otimes n}$.

Applications

- 2-party state $\rho_{A B}$, measurement $\Lambda_{A \rightarrow X}$
- (unoptimized) quantum discord: $D(\bar{A}: B)_{\rho, \Lambda}=I(A: B)_{\rho}-I(X: B)_{\wedge(\rho)}$
- original interpretation: decrease of correlations under interaction with environment ("einselection", Zurek '00)
- if $\Lambda=\Lambda_{A \rightarrow X}^{(2)} \circ \Lambda_{A \rightarrow A}^{(1)}$, and the action of $\Lambda^{(2)}$ is reversible on $\Lambda^{(1)}(\rho)$ then the loss of correlations has already occurred

Theorem (Berta, Brandao, CM, Wilde)
$D(\bar{A}: B)_{\rho, \Lambda}$ is equal to the rate of noise necessary to implement the loss of correlations incurred by $\rho^{\otimes n}$ under the action of $\Lambda^{\otimes n}$.

- proof idea: $D(\bar{A}: B)_{\rho, \Lambda}=I(E: B \mid X)_{\mathcal{V}(\rho)}, V_{A \rightarrow X E}$ Stinespring dilation of Λ

Applications

- 2-party state $\rho_{A B}$, measurement $\Lambda_{A \rightarrow X}$
- (unoptimized) quantum discord:
$D(\bar{A}: B)_{\rho, \Lambda}=I(A: B)_{\rho}-I(X: B)_{\wedge(\rho)}$
- original interpretation: decrease of correlations under interaction with environment ("einselection", Zurek '00)
- if $\Lambda=\Lambda_{A \rightarrow X}^{(2)} \circ \Lambda_{A \rightarrow A}^{(1)}$, and the action of $\Lambda^{(2)}$ is reversible on $\Lambda^{(1)}(\rho)$ then the loss of correlations has already occurred

Theorem (Berta, Brandao, CM, Wilde)

$D(\bar{A}: B)_{\rho, \Lambda}$ is equal to the rate of noise necessary to implement the loss of correlations incurred by $\rho^{\otimes n}$ under the action of $\Lambda^{\otimes n}$.

- proof idea: $D(\bar{A}: B)_{\rho, \Lambda}=I(E: B \mid X)_{\mathcal{V}(\rho)}, V_{A \rightarrow X E}$ Stinespring dilation of Λ
- Other application related to Squashed entanglement: $E_{s q}(A: B)_{\rho}=\inf _{\sigma} I(A: B \mid E)_{\sigma}$, inf over all $\sigma_{A B E}$ with $\operatorname{tr}_{E} \sigma_{A B E}=\rho_{A B}$

The End

Erasure of correlations

backup slide

Proof idea: Equivalence of SRD and CEoC

$" \Rightarrow "$:

Proof idea: Equivalence of SRD and CEoC

$" \Rightarrow "$:

- Alice's part of a state redistribution protocol:

Proof idea: Equivalence of SRD and CEoC

$" \Rightarrow$ ":

- Alice's part of a state redistribution protocol:
- append mixed ancilla (Alice's half of entangled states)

Proof idea: Equivalence of SRD and CEoC

$" \Rightarrow$ ":

- Alice's part of a state redistribution protocol:
- append mixed ancilla (Alice's half of entangled states)
- apply a unitary

Proof idea: Equivalence of SRD and CEoC

$" \Rightarrow$ ":

- Alice's part of a state redistribution protocol:
- append mixed ancilla (Alice's half of entangled states)
- apply a unitary
- get rid of a subsystem (the message to bob)

Proof idea: Equivalence of SRD and CEoC

$" \Rightarrow "$:

- Alice's part of a state redistribution protocol:
- append mixed ancilla (Alice's half of entangled states)
- apply a unitary
- get rid of a subsystem (the message to bob)
- correctness of SRD protocol implies negligible disturbance and approximate decoupling condition

Proof idea: Equivalence of SRD and CEoC

$" \Rightarrow "$:

- Alice's part of a state redistribution protocol:
- append mixed ancilla (Alice's half of entangled states)
- apply a unitary
- get rid of a subsystem (the message to bob)
- correctness of SRD protocol implies negligible disturbance and approximate decoupling condition
$" \Leftarrow ":$

Proof idea: Equivalence of SRD and CEoC

$" \Rightarrow$ ":

- Alice's part of a state redistribution protocol:
- append mixed ancilla (Alice's half of entangled states)
- apply a unitary
- get rid of a subsystem (the message to bob)
- correctness of SRD protocol implies negligible disturbance and approximate decoupling condition
$" \Leftarrow "$:
- Replace the decoupling protocol in the standard state merging protocol by the conditional erasure protocol at hand

