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Introduction:
Decoupling and Erasure
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Erasure of correlations

» Task introduced by Groisman, Popescu and Winter in '04

» goal: decorrelate two systems by applying local noise
Step-by-step definition:

- bipartite quantum system A ® E in mixed state pae

- apply random unitary channel

- correlations erased if approximately product

- how big do we have to choose k?

- optimal: k=~ nl(A: E), for p=c®"

= Operational interpretation of the quantum mutual
information!
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Different erasure model: partial trace (aka decoupling,
Horodecki, Oppenheim and Winter '05)

Ubiquitous proof tool (quantum Shannon theory,
thermodynamics etc.)

Step-by-step definition:

bipartite quantum system A ® E in mixed state pag

divide A= A; ® Ay

apply a unitary to A

trace out A, = approximate product state

how big do we have to choose Ay?

log |Az| = §1(A: E)s for p = 0®" (Horodecki, Oppenheim,
Winter '05)

Erasure models ar related, exact one shot equivalence if
ancillary states are allowed
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Conditional correlations

> PAER

» Conditional quantum mutual information
I(A: E|R), = H(par) + H(per) — H(paer) — H(pr)

» Recoverability: if /(A: E|R) = ¢ small,
PAER ~0(c) RrR—RA (pER) for some quantum channel R.
(Fawzi, Renner '14)

Y

All correlations of A and E mediated by R

E — R — Ais approximate quantum Markov chain

Y

» I(A: E|R) measures conditional correlations
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> i.i.d. setting

> Recall: Erasure of correlations in pag operating on A costs
(A : E) bits of noise.

? Can we erase conditional correlations by injecting /(A : E|R),
bits of noise into A?

I No, as shown by Wakakuwa et al. (2016, Poster at BIID2016)



Classical counterexample

? Can we erase conditional correlations by injecting /(A : E|R),
bits of noise into A?

» Does not even hold classically. Counterexample:



Classical counterexample

? Can we erase conditional correlations by injecting /(A : E|R),
bits of noise into A?

» Does not even hold classically. Counterexample:




Classical counterexample

? Can we erase conditional correlations by injecting /(A : E|R),
bits of noise into A?

» Does not even hold classically. Counterexample:




Classical counterexample

? Can we erase conditional correlations by injecting /(A : E|R),
bits of noise into A?

» Does not even hold classically. Counterexample:




Classical counterexample

? Can we erase conditional correlations by injecting /(A : E|R),
bits of noise into A?

» Does not even hold classically. Counterexample:




Classical counterexample

» I(X : Y|Z) =1 =erasure cost when conditioning on Z



Classical counterexample

» I(X : Y|Z) =1 =erasure cost when conditioning on Z

» O(log N) bits of noise necessary acting on X only



Classical counterexample

» I(X : Y|Z) =1 =erasure cost when conditioning on Z

» O(log N) bits of noise necessary acting on X only

> intuition: surjective f : [N] — [M], M < N analogue of partial
trace



Classical counterexample

» I(X : Y|Z) =1 =erasure cost when conditioning on Z

» O(log N) bits of noise necessary acting on X only

> intuition: surjective f : [N] — [M], M < N analogue of partial
trace

for Z = (i1, ip), correlation of X and Y are destroyed iff
f(in) = f(i)

v



Classical counterexample

» I(X : Y|Z) =1 =erasure cost when conditioning on Z

» O(log N) bits of noise necessary acting on X only

> intuition: surjective f : [N] — [M], M < N analogue of partial
trace

» for Z = (i1, i), correlation of X and Y are destroyed iff
f(i) = f(i2)

» need this for most pairs (i1, ) = M small
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» State paer
» quantum conditional operation on A conditioned on R:
operation on AR, but pgrg approximately unchanged
> erasure model: partial trace, ancilla
Step-by-step definition:
- add ancillary system A’ in a fixed state
- apply a unitary Uraas that negligibly disturbs pgr
- divide system AA’ into two parts, AA' = A1 A,

[

- trace out As

A
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» Different goals:

» make E — R — A; an approximate quantum Markov chain,
deconstruction of correlations

» make A; product with ER, conditional erasure of correlations
(= deconstruction of correlations)

A
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v

Alice, Bob and a referee share a pure state |¢){(¢)|agcr
Alice has AC, Bob has B, Referee has R
their task: Alice has to send A to Bob

v

v

v

they can use entanglement
optimal comunication rate 3/(A: R|C) (Devetak & Yard '06)

v

|¢ (1/J|ABCR
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» Equivalence: state redistribution is possible with
communication rate r/2 iff conditional erasure of correlations
is possible with noise rate r

» Both tasks have same optimal rate /(A : E|R) of noise
asymptotically

» Operational interpretation of quantum conditional mutual
information!
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Applications

> 2-party state pag, measurement Aa_, x
» (unoptimized) quantum discord:
D(A: B)pyn=1(A:B), — (X : B)a)
> original interpretation: decrease of correlations under
interaction with environment ("einselection”, Zurek '00)
2)

> if A= /\/(4_>X o /\/(L\ILA, and the action of A is reversible on

A)(p) then the loss of correlations has already occurred

Theorem (Berta, Brandao, CM, Wilde)

D(A: B) p,A IS equal to the rate of noise necessary to implement
the loss of correlations incurred by p®" under the action of A®™.

» proof idea: D(A : B)pn = I(E : BIX)y(,), Vasxe Stinespring
dilation of A

» Other application related to Squashed entanglement:
Esq(A: B), =inf, I(A: B|E),, inf over all oage with
tre oABE = pAB
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Proof idea: Equivalence of SRD and CEoC

=
> Alice's part of a state redistribution protocol:
» append mixed ancilla (Alice's half of entangled states)
> apply a unitary
» get rid of a subsystem (the message to bob)
» correctness of SRD protocol implies negligible disturbance and
approximate decoupling condition

I
> Replace the decoupling protocol in the standard state merging
protocol by the conditional erasure protocol at hand
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