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Introduction:
Decoupling and Erasure



Erasure of correlations

I Task introduced by Groisman, Popescu and Winter in ’04

I goal: decorrelate two systems by applying local noise

- bipartite quantum system A⊗ E in mixed state ρAE

- apply random unitary channel

- correlations erased if approximately product

- how big do we have to choose k?

- optimal: k ≈ nI (A : E )σ for ρ = σ⊗n
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I Task introduced by Groisman, Popescu and Winter in ’04

I goal: decorrelate two systems by applying local noise

Step-by-step definition:

- bipartite quantum system A⊗ E in mixed state ρAE

- apply random unitary channel

- correlations erased if approximately product

- how big do we have to choose k?

- optimal: k ≈ nI (A : E )σ for ρ = σ⊗n

⇒ Operational interpretation of the quantum mutual
information!
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I Different erasure model: partial trace (aka decoupling,
Horodecki, Oppenheim and Winter ’05)
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- apply a unitary to A
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Erasure of correlations

I Different erasure model: partial trace (aka decoupling,
Horodecki, Oppenheim and Winter ’05)

I Ubiquitous proof tool (quantum Shannon theory,
thermodynamics etc.)

Step-by-step definition:

- bipartite quantum system A⊗ E in mixed state ρAE

- divide A ∼= A1 ⊗ A2

- apply a unitary to A

- trace out A2 ⇒ approximate product state

- how big do we have to choose A2?

- log |A2| ≈ n
2 I (A : E )σ for ρ = σ⊗n (Horodecki, Oppenheim,

Winter ’05)

! Erasure models ar related, exact one shot equivalence if
ancillary states are allowed
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Conditional correlations

I ρAER

I Conditional quantum mutual information
I (A : E |R)ρ = H(ρAR) + H(ρER)− H(ρAER)− H(ρR)

I Recoverability: if I (A : E |R) = ε small,
ρAER ≈O(ε) RR→RA (ρER) for some quantum channel R.
(Fawzi, Renner ’14)
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I i.i.d. setting

I Recall: Erasure of correlations in ρAE operating on A costs
I (A : E ) bits of noise.

? Can we erase conditional correlations by injecting I (A : E |R)ρ
bits of noise into A?

! No, as shown by Wakakuwa et al. (2016, Poster at BIID2016)
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Characterization theorem

Theorem (Berta, Brandao, CM, Wilde)

Conditional erasure of correlations is equivalent to quantum state
redistribution. Asymptotically, deconstruction needs at least a rate
of I (A : E |R) bits of noise.

I Equivalence: state redistribution is possible with
communication rate r/2 iff conditional erasure of correlations
is possible with noise rate r

I Both tasks have same optimal rate I (A : E |R) of noise
asymptotically

I Operational interpretation of quantum conditional mutual
information!
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Applications

I 2-party state ρAB , measurement ΛA→X

I (unoptimized) quantum discord:
D(A : B)ρ,Λ = I (A : B)ρ − I (X : B)Λ(ρ)

I original interpretation: decrease of correlations under
interaction with environment (”einselection”, Zurek ’00)

I if Λ = Λ
(2)
A→X ◦ Λ

(1)
A→A, and the action of Λ(2) is reversible on

Λ(1)(ρ) then the loss of correlations has already occurred

Theorem (Berta, Brandao, CM, Wilde)
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Proof idea: Equivalence of SRD and CEoC

”⇒”:

I Alice’s part of a state redistribution protocol:
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I apply a unitary
I get rid of a subsystem (the message to bob)

I correctness of SRD protocol implies negligible disturbance and
approximate decoupling condition

I Replace the decoupling protocol in the standard state merging
protocol by the conditional erasure protocol at hand
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