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Classical communication over a quantum channel

We are going to consider coding of classical-quantum channels.

For c-q channel W, a (n, R, €¢)-code is an encoder E and decoding POVM {D;}
such that

2nR

2% mZZI Tr [W@’” (®7:1E,-(m)) Dm] >1—c¢

We will be concerned with the trade-off between the block-length n, the rate R,
and the error probability €. We define the optimal rate/error probability as

R*(W; n,e) := max{R | 3(n, R, €)-code},
e*(W; n,R) := min{e | 3(n, R, €)-code}.
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For a constant error probability €, the Strong Converse Theorem tells us the rate
approaches a constant known as the capacity

n[}m R*(W;n,e) = C(W).

Equivalently this means that the error probability must to go 0 to 1 either side of
the capacity

lim e (W;n,R) =

n—oo

0 :R<C(W)
1 :R>C(W)



Asymptotics

For a constant error probability €, the Strong Converse Theorem tells us the rate
approaches a constant known as the capacity

lim R*(W;n,e) = C(W).

n— oo

Equivalently this means that the error probability must to go 0 to 1 either side of
the capacity

lim € (W;n,R) =

n—oo

0 :R<C(W)
1 :R>C(W)

This tells us we can have either R = C OR € — 0.

How fast are these convergences? Can we do both?
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How fast are the convergences R — C or e — 0 as n — oo?
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How fast are the convergences R — C or e — 0 as n — oo?
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How fast are the convergences R — C or e — 0 as n — oo?
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How fast are the convergences R — C or e — 0 as n — oo?
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How fast are the convergences R — C or e — 0 as n — oo?
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What if we want R — C AND ¢ — 07
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What if we want R — C AND ¢ — 07

0-

C R>

For any {a,} such that a, — 0 and \/na, — co we have

or equivalently

2

R*(n,e,) = C — V2Va, + o(a,) for e, =e ",

na2
2V

Ine*(n,Ry) = —=-2 + o(na?) for R,=C— a,.
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This talk® = Refined small deviation anlaysis

Next talk® = Refined large deviation anlaysis

2Chubb, Tan, and Tomamichel (arXiv:1701.03114).
3Cheng and Hsieh (arXiv:1701.03195).
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Take {X;} iid with E[X;] = 0 and Var[X;] =: V, and X, := 23" | X,




Take {X;} iid with E[X;] = 0 and Var[X;] =: V, and X, := 23" | X,




Take {X;} iid with E[X;] = 0 and Var[X;] =: V, and X, := 137 | X..

—n-I(t)+o(n) t>0

For any {a,} such that a, — 0 and \/na, — oo

- naz .
InPr[X, > a,| = —2—\; + o(nay).




We want to test between two hypotheses, p and o. For a binary POVM
{A, I — A}, we define the type-l and type-Il errors as

a(A; p,o) = Tr(l — A)p, B(A; p, o) := Tr Ao,

and the e-hypothesis-testing divergence

Di(pllo) := —log min {B(A;p,0)[a(A;p,0) < €}



Hypothesis testing

We want to test between two hypotheses, p and o. For a binary POVM
{A,I — A}, we define the type-l and type-ll errors as

alA; p,o) = Tr(l — A)p, B(A; p,o) := Tr Ao,

and the e-hypothesis-testing divergence

Di(pllo) := —log min {B(A;p,o)|a(A;p,0) <€}

If we now consider testing between p®" and ¢®", then the asymptotic behaviour
is given by Quantum Stein’s Lemma.

Asymptotics (Hiai and Petz 1991, Ogawa and Nagaoka 1999)
For any € € (0,1)

1
F L DE(,@n) s8N —
nllm nDh(p le®™) = D(p||o).
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LD§(p®"l0®") = D(pllo) + / LeDb1(e) + O (%£7) for €€ (0,1).




LD;(p®"|0®") = D(pllo) + / “eZ b7 (e) + O (*B7)  for €€ (0,1).

Inen =—n-E(R)+o(n) for LD;"(p®"|c®") = R < D(pl|lo).

n32

For any {a,} such that a, — 0 and /na, — co and €, := e~ ",

%Dﬁ"(p@’"llff@") = D(pllo) = v2V(pllo)an + o(an).




Reducing hyp. testing to concentration inequalities

To give a moderate deviation analysis of the HTD, we will use concentration
bounds. First we see it is related to tail bounds of the Nussbaum-Szkota
distributions!

P77 (a, b) := ral (@alve)|* and  Q7(a, b) := sp|(dalton)|?,

where we have eigendecomposed our states p := > r.[¢a)(¢a| and
0=, 5h|¥b) (1| These reproduce the first two moments of our states

D(PP7Q") = D(plle) and  V(PP7[Q"") = V(pllo).

INussbaum and Szkota 2009.
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Reducing hyp. testing to concentration inequalities

To give a moderate deviation analysis of the HTD, we will use concentration
bounds. First we see it is related to tail bounds of the Nussbaum-Szkota
distributions!

P77 (a, b) := ral (@alve)|* and  Q7(a, b) := sp|(dalton)|?,

where we have eigendecomposed our states p := > r.[¢a)(¢a| and
0=, 5h|¥b) (1| These reproduce the first two moments of our states

D(PP7|Q™7) = D(plle) ~ and  V(P*?[|Q7) = V(pllo).
Specifically for iid Z; = log P?° /@Q”° and (a;, b;) ~ PP%, then?
Pr [Z Z;
i=1
Pr [Z Z

i=1

%D;n (p®nHU®n) > sup {R

< 6,—,/2} — O(Iog 1/6n)7

%D;n (p®nHa®n) < sup {R

< 26,,} + O(log 1/ey).

INussbaum and Szkota 2009.
2Tomamichel and Hayashi 2013
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For this we can use the one shot bounds

R*(l, 6) > sup D;/z(ﬂ'xy”’ﬂ'x ® 7Ty) — 0(1), (Wang and Renner 2012)
Px

R*(1,e) <inf sup D,z,e(pHU) +0(1), (Tomamichel and Tan 2015)
9 pelm(W)

where mxy = > Px(x)[x)(x|x ® P(;)-



For this we can use the one shot bounds

R*(l, 6) > sup D;/z(ﬂ'xy“’ﬂ'x ® 7Ty) — 0(1), (Wang and Renner 2012)
Px

R*(1,e) <inf sup D,z,e(pHU) +0(1), (Tomamichel and Tan 2015)
9 pelm(W)

where mxy = > Px(x)[x)(x|x ® P(\f)-

This give n-shot bounds
1
R*(m,n) = sup ;D;"/2(7rxnyn||7rxn ®@ myn) — O(1/n),
Xﬂ

1
R*(nye,) <inf  sup  =D(p"[|o") + O(1/n).
" pneIm(Weny N



Bounding the rate

For this we can use the one shot bounds

R*(l, 6) > sup D;/z(ﬂ'xyﬂﬂ'x ® 7Ty) — O(l)7 (Wang and Renner 2012)
Px

R*(1,€¢) <inf sup Dﬁe(pHU) + O(1), (Tomamichel and Tan 2015)
7 pelm(W)

where mxy = > Px(x) [x)(x]x ® p(f).

This give n-shot bounds

* 1 €n
R*(n, €,) > sup - D} P (qtxnyn||mxe @ myn) — O(1/n),
o
1
R*(n,e,) <inf  sup =D (p"||o") + O(1/n).
a” pr€lm(W®n) n

We now want to show that a moderate deviation analysis of the rate follows from
that of the hypothesis testing divergence.
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In general we have

" 1
R*(n, €n) = sup = D" *(mxnyn||mxn @ myn)
Pxn n

where mxnyn = 2 Pxa(%) %) (%] 0 @ o0

If we assume iid input Px» = (Px)*" then we can apply the moderate deviation result:

1 _cn/ on
> sup =D, (mxy
Py N

R*(n, €n)

(mx @ wy)™")

2 sup D (mxy|mx @ my) — /2V (mxy||[mx @ my)an.
Px

There exists® a distribution Px such that
D(TX\/‘,TX ,Ty)* C and V(',Txy‘ﬁx ﬁy)* V.
and so substituting this in gives

R*(n,en) = C —V2Va,.

3Tomamichel and Tan 2015.
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In general we have
* > 1 €n/?2
R*(n,€n) Z sup —D;"" " (mxnyn|[mxn @ wyn)
Pxn n
where mxnyn = 2 Pxa(%) %) (%] 0 @ o0
If we assume iid input Pxn = (Px)*" then we can apply the moderate deviation result:

R*(n,€n) 2 sup lD;"/2 (w?ﬂ”(wx ® 7ry)®")
Py N

Z sup D (TrxyHﬂ'x 4 7Ty) — \/2V(ﬂ'xyl|ﬂ'x [ ﬂ'y)a,,.
Px




Achievability

In general we have

* 1
R (n, 6,,) Z sup 7D;"/2(7T)(nyn||71'xn X 7Tyn)
Pxn n

where mxayn = 3¢ Pxo(X) %) (%10 @ p00.

If we assume iid input Pxn = (Px)*" then we can apply the moderate deviation result:

* 1 € n n
R*(n,en) 2 sup ;Dh"/z (miev]| (mx @ my ) €")
X

ZSUPD(TI’XYnﬂ')(@ﬂ'y)— \/2V(7TxyH7Tx ®7ry)a,,.
Px

There exists® a distribution Px such that

D(rxy|nrx @ 7my)=C and  V(mxy|nx @7y) =V,

and so substituting this in gives

R*(n,en) 2 C —V2Va,.

3Tomamichel and Tan 2015.
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We start with

1
R*(n,e,) Sinf sup =D (p"||o").
" pneIm(Weny N

As W is c-q we have that p" := ®7_pj, so

R*(n,en) < inf sup fD o <®/)
o W)

“Im

)

We need to find a choice of ¢” such that the above is appropriately bounded

1 n
Pl (@ﬂf

i=1

(7”) < C-— V2Va,
for any {p;} C Im(W).



We start with

1
R*(n,e,) Sinf sup =D (p"||o").
" pneIm(Weny N

As W is c-q we have that p" := ®7_, p;, so

R*(n,e,) Sinf  sup —DZE" (@ pillo

" {pi}Clm(W) N

) |



We start with

1
R*(n,en) Sinf sup FD,Z,E"(p"Ha”).

7" prem(Wen)
a") .

We need to find a choice of ¢” such that the above is appropriately bounded

1 o &
;D§"<®pi
i=1

for any {pi} C Im(W).

As W is c-q we have that p" := ®7_, p;, so

1 n
R*(n,e,) Sinf  sup = D2 Di
7 (pyCmow) N @

a”) S C—vV2Va,



To find a 0", we first need to split our sequences into ‘high’ and ‘low’ sequences
1 n
High: — Zl D (pillpn) > C—n
=

1o _
Low: —% D (pillpn) < C—n
i=1

where 7, ;= 37 p;.

For the high sequences we will need a second-order (moderate deviations) bound,
but for low first-order (Stein’s lemma) will suffice.



The average of a high sequence is close* to the divergence centre o*

1 _ o :
= E D (pil|pn) = C = pn~ 0" :=argmin max D(pl|lo)
n Py o pEIm(W)

4Tomamichel and Tan 2015
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The average of a high sequence is close* to the divergence centre o*
1 n
- D (pil|pn) = C — on = 0" :=argmin max D(pl|lo
- Z (pill ) P gmin max  D(pllo)

Moreover, the channel dispersion can be characterised as

viw) = {p}qfn(W){ Z (p,||0)| ZD (pillpn) = }

4Tomamichel and Tan 2015
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High sequences

The average of a high sequence is close* to the divergence centre o*
1 _ - *
- Z D (pillpn) = C = pn = 0" :=argmin max D(p|lo)
n o

pEIm(W)

Moreover, the channel dispersion can be characterised as

1 n
v - V ! - D illpn) = .
)= {p,}qmm{ Z (ille™) ‘,,E’_li (pil170) c}

If we let 0" := (0*)®", then by continuity arguments

1 n
- Dﬁe" <® pi
i—1

(a*)®"> S 0(llo) -

2 n
EZ V(pillo*)an < C — V2Va,
i=1

4Tomamichel and Tan 2015
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For low sequences we have no control over the variance term.

Consider a covering® N\ such that for every p there exists a 7 € A/ such that
D(p||7) < n/2. We now define our ¢" as

1
V| Z\_

If we now let 7, € N be the specific element of the covering which is closest to p,, then
we can use Dj(p|luo + (1 — p)o’) < Di(pllo) — log i as well as (non-uniform) Stein’s

lemma
1 /' n
i=1

< EZD(MT”) Fo(1)

—D <®/u

n

1
ZD pillpn) + D(pnll™n) + o(1)

n

< C—-—n/2+0(1)

5Tomamichel and Tan 2015, Hayden, Leung, Shor, and Winter 2004.



For low sequences we have no control over the variance term.

Consider a covering® A such that for every p there exists a 7 € A such that
D(p||T) < n/2. We now define our " as

o" |N| Z 7on.

TEN

5Tomamichel and Tan 2015, Hayden, Leung, Shor, and Winter 2004.
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Low sequences
For low sequences we have no control over the variance term.

Consider a covering® A such that for every p there exists a 7 € A such that
D(p||T) < n/2. We now define our " as

Xn
0" = Ly e
‘N| TEN

If we now let 7, € N be the specific element of the covering which is closest to p,, then
we can use Df(p|luo + (1 — p)o’) < Di(pllo) — log u as well as (non-uniform) Stein's

lemma
n>
o

I/\

1 n
D,Zf" <® pi
i=1

Dy <® pi

- Z D(pillTa) + o(1)

>+O(1/n)

IA

= 7ZD pillPn) + D(pnllTn) + o(1)

i=1

| /\

—n/2+ o(1)

5Tomamichel and Tan 2015, Hayden, Leung, Shor, and Winter 2004.
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We know that

. 1 2 n

High : = 2 ;

' n h <®p (o
Low : —D25" <® pi

*)®"> < C—vV2Va, + o(an),

27'@”) < C—n/2+o(1).

TEN



We know that

. 1 2 n

High : = 2 ;

' n h <®p (o
Low : —Dze" <® pi

®”> < C—V2Va,+ o(a,),

ZT®”> < C—n/2+o(1).

TEN

If we now take
1 Len, 11 ®
—2(0) +2NZT
TeEN
then

1 o &
;ng"<®pi
=1

cr") < C—-+v2Va,+ o(an),

for arbitrary {p;}.
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Conclusion and further work

@ We have give a moderate deviation analysis for the performance of c-q channels,
and hypothesis testing of product states, specifically for €, := exp(—naf,)

ROW; n, en) = COW) — \/2V(W)a, + o(an),
%DZ"(pIIU) = D(pllo) — v/2V(pllo)an + oan).

@ Our proof covers the strong converse and V = 0 cases which had not been
considered in the classical literature.

@ This proof naturally extends to image-additive channels (separable encodings) and
arbitrary input alphabets.

@ Can we improve the o(an) error terms? It seems they might actually be
O(a2 + log n).

@ What about other channels (entanglement-breaking) or other capacities (quantum,
entanglement-assisted)?

ArXiv: 1701.03114 (to appear in Comm. Math. Phys.)
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