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Classical communication over a quantum channel

We are going to consider coding of classical-quantum channels.

For c-q channel W, a (n,R, ε)-code is an encoder E and decoding POVM {Di}
such that

1

2nR

2nR∑
m=1

Tr
[
W⊗n

(
⊗n

i=1Ei (m)
)
Dm

]
≥ 1− ε

We will be concerned with the trade-off between the block-length n, the rate R,
and the error probability ε. We define the optimal rate/error probability as

R∗(W; n, ε) := max {R | ∃(n,R, ε)-code} ,
ε∗(W; n,R) := min {ε | ∃(n,R, ε)-code} .
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Asymptotics

For a constant error probability ε, the Strong Converse Theorem tells us the rate
approaches a constant known as the capacity

lim
n→∞

R∗(W; n, ε) = C (W).

Equivalently this means that the error probability must to go 0 to 1 either side of
the capacity

lim
n→∞

ε∗(W; n,R) =

{
0 : R < C (W)

1 : R > C (W)

This tells us we can have either R → C OR ε→ 0.

How fast are these convergences? Can we do both?

C. T. Chubb Moderate deviations 3/18



Asymptotics

For a constant error probability ε, the Strong Converse Theorem tells us the rate
approaches a constant known as the capacity

lim
n→∞

R∗(W; n, ε) = C (W).

Equivalently this means that the error probability must to go 0 to 1 either side of
the capacity

lim
n→∞

ε∗(W; n,R) =

{
0 : R < C (W)

1 : R > C (W)

This tells us we can have either R → C OR ε→ 0.

How fast are these convergences? Can we do both?

C. T. Chubb Moderate deviations 3/18



Small and large deviations

How fast are the convergences R → C or ε→ 0 as n→∞?

n = 10, 000
n = 1

R

ε

C
0

1

Small deviation (Tomamichel and Tan 2015)

R∗(n, ε) = C +
√

V
n

Φ−1(ε) + o
(

1√
n

)
ε ∈ (0, 1

2
)

Large deviation (Partial progress)

ln ε∗(n,R) = −n · E(R) + o(n) R < C
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Small and large deviations
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Moderate deviations
What if we want R → C AND ε→ 0?

R

ε

C0

1

Moderate deviation (This work, Cheng and Hsieh 2017)

For any {an} such that an → 0 and
√
nan →∞ we have

R∗(n, εn) = C −
√

2Van + o(an) for εn = e−na
2
n ,

or equivalently

ln ε∗(n,Rn) = −na2
n

2V
+ o(na2

n) for Rn = C − an.
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Related work

asymmetric binary channel coding quantum hypothesis classical-quantum

hypothesis testing testing channel coding

large dev. (<) ×
moderate dev. (<) [This talk2, next talk3] [This talk2, next talk3]

small dev.

moderate dev. (>) [This talk2] [This talk2] [This talk2] [This talk2]

large dev. (>)

This talk2 = Refined small deviation anlaysis

Next talk3 = Refined large deviation anlaysis

2Chubb, Tan, and Tomamichel (arXiv:1701.03114).
3Cheng and Hsieh (arXiv:1701.03195).
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Concentration inequalities

Take {Xi} iid with E[Xi ] = 0 and Var[Xi ] =: V , and X̄n := 1
n

∑n
i=1 Xi .

Asymptotic (Law of large numbers)

lim
n→∞

Pr
[
X̄n ≥ t

]
=

{
1 t < 0,

0 t > 0.

Small deviation (Berry-Esseen)

Pr
[
X̄n ≥ ε√

n

]
= Q

(
ε√
V

)
+O

(
1√
n

)
ε ∈ (0, 1)

Large deviation (Cramér)

ln Pr
[
X̄n ≥ t

]
= −n · I (t) + o(n) t ≥ 0

Moderate deviation

For any {an} such that an → 0 and
√
nan →∞

ln Pr
[
X̄n ≥ an

]
= −na2

n

2V
+ o(na2

n).
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Hypothesis testing

We want to test between two hypotheses, ρ and σ. For a binary POVM
{A, I − A}, we define the type-I and type-II errors as

α(A; ρ, σ) := Tr(I − A)ρ, β(A; ρ, σ) := TrAσ,

and the ε-hypothesis-testing divergence

Dε
h(ρ‖σ) := − log min

0≤A≤I
{β(A; ρ, σ) |α(A; ρ, σ) ≤ ε} .

If we now consider testing between ρ⊗n and σ⊗n, then the asymptotic behaviour
is given by Quantum Stein’s Lemma.

Asymptotics (Hiai and Petz 1991, Ogawa and Nagaoka 1999)

For any ε ∈ (0, 1)

lim
n→∞

1

n
Dε

h(ρ⊗n‖σ⊗n) = D(ρ‖σ).
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Deviation results for hypothesis testing

Small deviation (Tomamichel and Hayashi 2013, Li 2014)

1
n
Dε

h(ρ⊗n‖σ⊗n) = D(ρ‖σ) +
√

V (ρ‖σ)
n

Φ−1(ε) +O
(

log n
n

)
for ε ∈ (0, 1).

Large deviation (Hayashi 2006, Nagaoka 2006)

ln εn = −n · E(R) + o(n) for 1
n
Dεn

h (ρ⊗n‖σ⊗n) = R < D(ρ‖σ).

Moderate deviation (This work, Cheng and Hsieh 2017)

For any {an} such that an → 0 and
√
nan →∞ and εn := e−na2

n ,

1

n
Dεn

h (ρ⊗n‖σ⊗n) = D(ρ‖σ)−
√

2V (ρ‖σ)an + o(an).
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Reducing hyp. testing to concentration inequalities

To give a moderate deviation analysis of the HTD, we will use concentration
bounds. First we see it is related to tail bounds of the Nussbaum-Szko la
distributions1

Pρ,σ(a, b) := ra|〈φa|ψb〉|2 and Qρ,σ(a, b) := sb|〈φa|ψb〉|2,

where we have eigendecomposed our states ρ :=
∑

a ra |φa〉〈φa| and
σ :=

∑
b sb |ψb〉〈ψb|. These reproduce the first two moments of our states

D (Pρ,σ‖Qρ,σ) = D(ρ‖σ) and V (Pρ,σ‖Qρ,σ) = V (ρ‖σ).

Specifically for iid Zi = logPρ,σ/Qρ,σ and (ai , bi ) ∼ Pρ,σ, then2

1

n
Dεn

h

(
ρ⊗n

∥∥σ⊗n) ≥ sup

{
R

∣∣∣∣∣Pr

[
n∑

i=1

Zi

]
≤ εn/2

}
−O(log 1/εn),

1

n
Dεn

h

(
ρ⊗n

∥∥σ⊗n) ≤ sup

{
R

∣∣∣∣∣Pr

[
n∑

i=1

Zi

]
≤ 2εn

}
+O(log 1/εn).

1Nussbaum and Szko la 2009.
2Tomamichel and Hayashi 2013

C. T. Chubb Moderate deviations 10/18



Reducing hyp. testing to concentration inequalities

To give a moderate deviation analysis of the HTD, we will use concentration
bounds. First we see it is related to tail bounds of the Nussbaum-Szko la
distributions1

Pρ,σ(a, b) := ra|〈φa|ψb〉|2 and Qρ,σ(a, b) := sb|〈φa|ψb〉|2,

where we have eigendecomposed our states ρ :=
∑

a ra |φa〉〈φa| and
σ :=

∑
b sb |ψb〉〈ψb|. These reproduce the first two moments of our states

D (Pρ,σ‖Qρ,σ) = D(ρ‖σ) and V (Pρ,σ‖Qρ,σ) = V (ρ‖σ).

Specifically for iid Zi = logPρ,σ/Qρ,σ and (ai , bi ) ∼ Pρ,σ, then2

1

n
Dεn

h

(
ρ⊗n

∥∥σ⊗n) ≥ sup

{
R

∣∣∣∣∣Pr

[
n∑

i=1

Zi

]
≤ εn/2

}
−O(log 1/εn),

1

n
Dεn

h

(
ρ⊗n

∥∥σ⊗n) ≤ sup

{
R

∣∣∣∣∣Pr

[
n∑

i=1

Zi

]
≤ 2εn

}
+O(log 1/εn).

1Nussbaum and Szko la 2009.
2Tomamichel and Hayashi 2013

C. T. Chubb Moderate deviations 10/18



Bounding the rate

For this we can use the one shot bounds

R∗(1, ε) ≥ sup
PX

D
ε/2
h (πXY ‖πX ⊗ πY )−O(1), (Wang and Renner 2012)

R∗(1, ε) ≤ inf
σ

sup
ρ∈Im(W)

D2ε
h (ρ‖σ) +O(1), (Tomamichel and Tan 2015)

where πXY =
∑

x PX (x) |x〉〈x |X ⊗ ρ
(x)
Y .

This give n-shot bounds

R∗(n, εn) ≥ sup
PXn

1

n
D
εn/2
h (πX nY n‖πX n ⊗ πY n)−O(1/n),

R∗(n, εn) ≤ inf
σn

sup
ρn∈Im(W⊗n)

1

n
D2εn

h (ρn‖σn) +O(1/n).

We now want to show that a moderate deviation analysis of the rate follows from
that of the hypothesis testing divergence.
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Achievability

In general we have

R∗(n, εn) & sup
PXn

1

n
D
εn/2
h (πXnY n‖πXn ⊗ πY n )

where πXnY n =
∑
~x PXn (~x) |~x〉〈~x |Xn ⊗ ρ(~x)

Y n .

If we assume iid input PXn = (PX )×n then we can apply the moderate deviation result:

R∗(n, εn) & sup
PX

1

n
D
εn/2
h

(
π⊗n
XY

∥∥(πX ⊗ πY )⊗n)
& sup

PX

D (πXY ‖πX ⊗ πY )−
√

2V (πXY ‖πX ⊗ πY )an.

There exists3 a distribution PX such that

D (πXY ‖πX ⊗ πY ) = C and V (πXY ‖πX ⊗ πY ) = V ,

and so substituting this in gives

R∗(n, εn) & C −
√

2Van.

3Tomamichel and Tan 2015.
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Optimality

We start with

R∗(n, εn) . inf
σn

sup
ρn∈Im(W⊗n)

1

n
D2εn

h (ρn‖σn).

As W is c-q we have that ρn := ⊗n
i=1ρi , so

R∗(n, εn) . inf
σn

sup
{ρi}⊂Im(W)

1

n
D2εn

h

(
n⊗

i=1

ρi

∥∥∥∥∥σn

)
.

We need to find a choice of σn such that the above is appropriately bounded

1

n
D2εn

h

(
n⊗

i=1

ρi

∥∥∥∥∥σn

)
. C −

√
2Van

for any {ρi} ⊂ Im(W).
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‘High’ and ‘low’ sequences

To find a σn, we first need to split our sequences into ‘high’ and ‘low’ sequences

High :
1

n

n∑
i=1

D (ρi‖ρ̄n) > C − η

Low :
1

n

n∑
i=1

D (ρi‖ρ̄n) ≤ C − η

where ρ̄n := 1
n

∑n
j=1 ρj .

For the high sequences we will need a second-order (moderate deviations) bound,
but for low first-order (Stein’s lemma) will suffice.
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High sequences

The average of a high sequence is close4 to the divergence centre σ∗

1

n

n∑
i=1

D (ρi‖ρ̄n) ≈ C =⇒ ρ̄n ≈ σ∗ := arg min
σ

max
ρ∈Im(W)

D(ρ‖σ)

Moreover, the channel dispersion can be characterised as

V (W) = inf
{ρi}⊆Im(W)

{
1

n

n∑
i=1

V (ρi‖σ∗)

∣∣∣∣∣ 1

n

n∑
i=1

D (ρi‖ρ̄n) = C

}
.

If we let σn := (σ∗)⊗n, then by continuity arguments

1

n
D2εn

h

(
n⊗

i=1

ρi

∥∥∥∥∥(σ∗)⊗n
)

.
1

n

n∑
i=1

D (ρi‖σ∗)−

√√√√2

n

n∑
i=1

V (ρi‖σ∗)an . C −
√

2Van

4Tomamichel and Tan 2015
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Low sequences

For low sequences we have no control over the variance term.

Consider a covering5 N such that for every ρ there exists a τ ∈ N such that
D(ρ‖τ) ≤ η/2. We now define our σn as

σn =
1

|N |
∑
τ∈N

τ⊗n.

If we now let τn ∈ N be the specific element of the covering which is closest to ρ̄n, then
we can use Dε

h(ρ‖µσ + (1− µ)σ′) ≤ Dε
h(ρ‖σ)− logµ as well as (non-uniform) Stein’s

lemma

1

n
D2εn

h

(
n⊗

i=1

ρi

∥∥∥∥∥σn

)
≤

1

n
D2εn

h

(
n⊗

i=1

ρi

∥∥∥∥∥τ⊗n
n

)
+O(1/n)

≤
1

n

n∑
i=1

D(ρi‖τn) + o(1)

=
1

n

n∑
i=1

D(ρi‖ρ̄n) + D(ρ̄n‖τn) + o(1)

≤ C − η/2 + o(1)

5Tomamichel and Tan 2015, Hayden, Leung, Shor, and Winter 2004.
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Arbitrary sequences

We know that

High :
1

n
D2εn

h

(
n⊗

i=1

ρi

∥∥∥∥∥(σ∗)⊗n
)
≤ C −

√
2Van + o(an),

Low :
1

n
D2εn

h

(
n⊗

i=1

ρi

∥∥∥∥∥ 1

N
∑
τ∈N

τ⊗n

)
≤ C − η/2 + o(1).

If we now take

σn :=
1

2
(σ∗)⊗n +

1

2

1

N
∑
τ∈N

τ⊗n,

then

1

n
D2εn

h

(
n⊗

i=1

ρi

∥∥∥∥∥σn

)
≤ C −

√
2Van + o(an),

for arbitrary {ρi}.
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Conclusion and further work

We have give a moderate deviation analysis for the performance of c-q channels,
and hypothesis testing of product states, specifically for εn := exp(−na2

n)

R(W; n, εn) = C(W)−
√

2V (W)an + o(an),

1

n
Dεn

h (ρ‖σ) = D(ρ‖σ)−
√

2V (ρ‖σ)an + o(an).

Our proof covers the strong converse and V = 0 cases which had not been
considered in the classical literature.

This proof naturally extends to image-additive channels (separable encodings) and
arbitrary input alphabets.

Can we improve the o(an) error terms? It seems they might actually be
O(a2

n + log n).

What about other channels (entanglement-breaking) or other capacities (quantum,
entanglement-assisted)?

ArXiv: 1701.03114 (to appear in Comm. Math. Phys.)
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