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Channel Coding
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Channel Coding

[ Source ]—{ Encoder H Cha;;;el ]—-[ Decoder ]—>

e Codebook C = {xq,...,xm}

e Error probability under ML decoding

(C)=1-+ Z max Py x(y|x)
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Channel Coding

m
[ Source Encoder Chir:)r;el Decoder

e Error probability under ML decoding

1
eC)=1- i ; max Py x(y|x)

Theorem: Meta-converse! is tight? (for a fixed code)

e(C) = max {aﬁ (P)C< X Pyx || P% X Q)}

Ly, Polyanskiy, H. V. Poor, S. Verdd, “Channel coding rate in the finite blocklength regime,” |IEEE
Trans. Inf. Theory, 2010

2G. Vazquez-Vilar, A. Tauste Campo, A. Guillén i Fabregas, A. Martinez, “Bayesian M-ary Hypothesis
Testing: The Meta-Converse and Verdiu-Han Bounds are Tight,” IEEE Trans. Inf. Theory, 2016
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Channel Coding

m
[ Source Encoder Chir:)r;el Decoder

e Error probability under ML decoding

(C)=1- = Z max Py x(y[x)

Theorem: Meta-converse, PPV bound, non-signalling converse
e(C) = max {a% (P)C< x Pyx || P% x Q)}

> infmgx{a%(PX x Py x || Px x Q)}

Px

Y. Polyanskiy, H. V. Poor, S. Verdii, “Channel coding rate in the finite blocklength regime,”

Trans. Inf. Theory, 2010
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Outline

e Motivation

e Quantum hypothesis testing

e Quasi-perfect codes

e Sphere-packing bounds



Binary Hypothesis Testing
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Binary Hypothesis Testing

po Vs. p1

Optimal trade-off

ag(pollpr) 2 ull 1{1 —TrlpoT] | Tr[p 7] < 5}

type-0 error type-1 error

n
<

C. W. Helstrom, “Detection theory and quantum mechanics,” Inf. and Control, 1967.
P. A. Bakut and S. S. Shchurov, “Optimal detection of a quantum signal,” Probl. Peredachi Inf., 1968.

A. S. Holevo, “An analog of the theory of statistical decisions in noncommutative theory of
probability,” Trudy Moskov. Mat. Obs¢., 1972.



Binary Hypothesis Testing
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M-ary Hypothesis Testing

Ty TM
(equiprobable)

e Measurement
M={My,...,Ny}

e Error probability

1 M
G(M) =1- M ;Tr[ﬂﬂ;]



M-ary Hypothesis Testing

T1y--+3TM
(equiprobable)

Optimal measurement

1M M
(M) = {nljlin} 1-— v ZTF[T;”,’] ‘ ZI_I; <l
m i=1 i=1

LA.S. Holevo, “Statistical decision theory for quantum systems,” J. Multivariate Anal. 3, 1973.
2H. P. Yuen, R. S. Kennedy, and M. Lax, “Optimum testing of multiple hypotheses in quantum
detection theory,” IEEE Trans. Inf. Theory, 1975.



Binary Hypothesis Testing Formulation

M-ary hypothesis test Binary hypothesis test

Tlyeees TM Po VS. pl?
(equiprobable)

G. Vazquez-Vilar, “Multiple quantum hypothesis testing and classical-quantum channel converse
bounds,” 2016 IEEE Int. Symp. Inf. Theory



Binary Hypothesis Testing Formulation

M-ary hypothesis test Binary hypothesis test
TiyeesTM poé%diag(’ﬁ,...,ﬂv/)
(equiprobable) VS.

p1(p) £ 3 diag(p, ..., 1)

Theorem

(M) = maxa

1
oM

(Po | Pl(ﬂ))

G. Vazquez-Vilar, “Multiple quantum hypothesis testing and classical-quantum channel converse
bounds,” 2016 IEEE Int. Symp. Inf. Theory



Application to Classical-Quantum Channels

m x P m
[ Source Enccoder Ch?/%}nel Decoder ]—>




Application to Classical-Quantum Channels

m T 0 m
[ Source H Enccoder H Ch%nel H Decoder ]—»

For a fixed code

Wi, ..., Wy,?



Application to Classical-Quantum Channels

m T 0 m
[ Source Enccoder Ch%nel Decoder ]—>

Corollary: Matthews-Wehner! bound is tight?

€(C) = maxay (pc” || o @ o)

where A and B denote the input and out systems, and

1 A 1 A
b= m SR, =S @ W
xeC xeC

LW. Matthews and S. Wehner, “Finite blocklength converse bounds for quantum channels,”
IEEE Trans. Inf. Theory, 2014.

2G. Vazquez-Vilar, “Multiple quantum hypothesis testing and classical-quantum channel converse
bounds,” 2016 IEEE Int. Symp. Inf. Theory.
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(Classical) Channel Coding

Theorem
€(C) = mgx {a% (P)C< X Pyx || PS x Q)}

> infmgx{a%(Px X Py|x || Px x Q)}

Px




(Classical) Channel Coding

Theorem
€(C) = mgx {a% (P)C< X Pyx || PS x Q)}

2z infmgx{a%(Px X Py|X || Px x Q)}

Px




Perfect Codes

Definition: Perfect code

A binary code is said to be perfect if non-overlapping Hamming spheres
of radius t centered on the codewords exactly fill out the space.




Quasi-Perfect Codes

Definition: Quasi-perfect code

A quasi-perfect code is defined as a code in which Hamming spheres of
radius t centered on the codewords are non-overlapping and Hamming
spheres of radius t + 1 cover the space, possibly with overlaps.

=




Generalized Quasi-Perfect Codes

How to extend quasi-perfect codes beyond Hamming distance?

)




Generalized Quasi-Perfect Codes

How to extend quasi-perfect codes beyond Hamming distance?

)

e Alternative “spheres”

&(a,@)i{ ey]”y'X)ze}

()



Generalized Quasi-Perfect Codes

How to extend quasi-perfect codes beyond Hamming distance? J

e Alternative “spheres”

Sx(e,Q)ﬁ{ ey]”y'X)ze}

()

e |nterior and shell

s;(e,o)é{ ey‘y'”)x)w}

Pyix(ylx) _ 9}

5:0.0) 2 {y e | 21



Generalized Quasi-Perfect Codes

Definition: Generalized perfect code

A code C is generalized perfect if there exists 0 € [0,1], Q € Q such that
the codeword-centered "spheres” {SX(H, Q),x € C}

(i) are disjoint, and
(ii) cover the space.




Generalized Quasi-Perfect Codes

Definition: Generalized perfect code
A code C is generalized perfect if there exists 0 € [0,1], Q € Q such that
the codeword-centered “spheres” {S,(0, Q), x € C}
(i) are disjoint, and
(ii) cover the space.

Definition: Generalized quasi-perfect code
A code C is generalized quasi-perfect if there exists 6 € [0,1], Q@ € Q such
that
(i) the “spheres” {S2(0, Q),x € C} are disjoint, and
(ii) the “spheres” {Sc(6, Q),x € C} cover the space.

Q € Q implies some symmetry conditions on the tilting distribution Q.



Generalized Quasi-Perfect Codes

Theorem: Relaxed meta-converse is tight (for quasi-perfect codes)!

For Py|x symmetric and C generalized quasi-perfect, then

o(€) = inf max {ary (Px x Pyix | Px x @) }




Generalized Quasi-Perfect Codes

Theorem: Relaxed meta-converse is tight (for quasi-perfect codes)?

For Py|x symmetric and C generalized quasi-perfect, then

(C) = inf max {a%(PX x Pyix || Px x Q)}

Px

e Known for the BSC?3
e For Q uniform, it recovers Hamada's definition*

o The new definition includes, e.g., MDS codes for the BEC?

la. Vazquez-Vilar, A. Guillén i Fabregas, S. Verdd, “Quasi-Perfect Codes via the Meta-Converse,” in
preparation.

2y, Polyanskiy, H. V. Poor, S. Verdi, “Channel coding rate in the finite blocklength regime,” |IEEE
Trans. Inf. Theory, 2010.

3R. G. Gallager, “Information Theory and Reliable Communication,” John Wiley & Sons, Inc., 1968.

4M. Hamada, “A sufficient condition for a code to achieve the minimum decoding error probability -
generalization of perfect and quasi-perfect codes,” IEICE Trans. on Fund. of Electronics, Comm. and Comp.
Sciences, 2000.



Key Idea of the Proof

e Neyman-Pearson test of Px x Py|x vs. Px X Q is

1, ifyeS0,Q)
Tne(Olx,y) = qp,  ify € S2(6,Q)
0, otherwise

e The regions of the NP test coincide with the “spheres”

s;(e,a)é{ ey|y'x(yy)x)>9}

Pyix(ylx)
) 9}

e Provided certain symmetry conditions, €(C) coincides with

S‘;(a,o)é{ eyl

Oé%(PX X PY\XH’DX X Q)



Sphere-packing bounds

Theorem: Relaxed meta-converse

e(C) = max {a% (P)C( X Py x || P$ x Q)} (1)

> ilgxf mgx {aﬁ (Px x Py x || Px x Q)} ()

Eq. (1) retains information about “neighbours” and true decoding regions
In the relaxation (2) only “spheres” are left

SX(G,Q)é{ ey\”y)v)ze}

The relaxed meta-converse is thus a sphere-packing bound

If the “spheres” coincide with with the decoding regions, it is tight!



How do these spheres look like?

Shannon'59 AWGN
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C. E. Shannon, “Probability of error for optimal codes in a Gaussian channel,” The Bell System Tech.

J., 1959.



How do these spheres look like?

Meta-converse AWGN (SNR 8.45 dB)
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Y. Polyanskiy, H. V. Poor, S. Verdi, “Channel coding rate in the finite blocklength regime,” IEEE
Trans. Inf. Theory, 2010.



How do these spheres look like?

Meta-converse BI-AWGN (SNR 8.45 dB)
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Example: BI-AWGN Channel (n =300, R = 0.9)
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Example: BI-AWGN Channel (n =300, R = 0.9)
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LG. Wiechman, 1. Sason, “An improved sphere-packing bound for finite-length codes over symmetric
memoryless channels,” IEEE Trans. Inf. Theory, 2008.



Example: BI-AWGN Channel (n =300, R = 0.9)

= T T I T T
) S —-— Random-coding
10~ Y —— Tangential-sphere [
N
N —— Meta-converse
N RN
w AN \|--- Improved SP!
- AY *
2 10-3 v N N\ Shannon’59 i
= N
_Q hY
eV \
e) AY
o * .
o \ \,
— N \
§ 10 5 . N .
i * \.\
AY .
\ N\
\ N
\ N
1077 AN ~No
\ \\
| | |

Ep/No (dB)

LG. Wiechman, 1. Sason, “An improved sphere-packing bound for finite-length codes over symmetric
memoryless channels,” IEEE Trans. Inf. Theory, 2008.



Spheres in Classical-Quantum Channels?
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Spheres in Classical-Quantum Channels?

m T p
[ Source H Enccoder H Ch%nel H Decoder

e According to the Neyman-Pearson lemma the “sphere” is now

m
—>

Sx(t, 1) = {Wy — tu > 0}
Si(tp) = {Wy — tp >0}



Spheres in Classical-Quantum Channels?

‘ m ’ T p
[ Source Enccoder Che;;nel Decoder

e According to the Neyman-Pearson lemma the “sphere” is now

m
—>

Sx(t,p) & { Wy — tu > 0}
St p) = {W — tp > 0}

Definition: Quantum quasi-perfect code

A code C is generalized quasi-perfect if there exists u, t > 0 such that
(i) the projectors {S2(t, ), x € C} are orthogonal to each other,
(ii) the projectors {Sx(t,u),x € C} cover the space, i.e.,

ZSX(t,,u) >

xeC




Wrap Up

Original problem Equivalent problem
M-ary hypothesis testing Binary hypothesis testing
Theorem

e(C) = max {OZL (P)C( X Pyx || P % Q)}

M

> inf max {Oll (Px x Pyx || Px x Q)}




Wrap Up

Original problem Equivalent problem
M-ary hypothesis testing Binary hypothesis testing
Theorem

e(C) = max {OZL (P)C< X Pyx || P % Q)}

M

> inf max {Oll (Px x Pyx || Px x Q)}

With equality if C is quasi-perfect with respect to W,
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