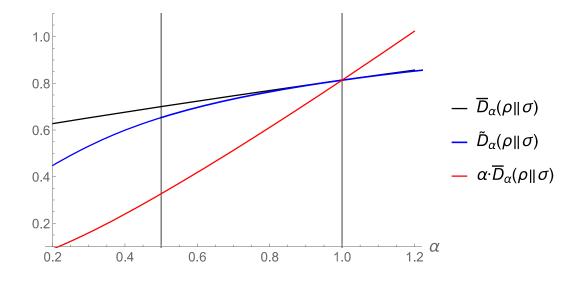
Pretty good measures in QIT

Raban Iten, Joseph M. Renes and David Sutter

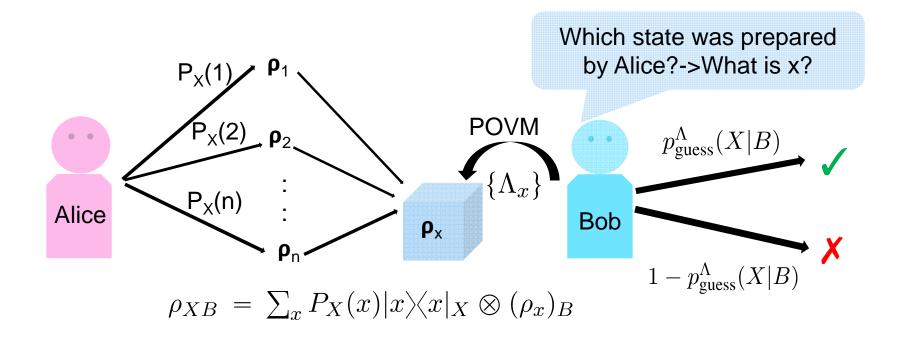
Institute for Theoretical Physics, ETH Zürich, Switzerland



Beyond I.I.D., 24 July 2017, Singapore

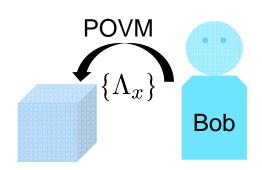
Motivation

Setup



$$p_{\mathrm{guess}}^{\Lambda}(X|B) := \sum_{x} P_X(x) \operatorname{tr} \Lambda_x \rho_x$$
 \longrightarrow $p_{\mathrm{guess}}(X|B) := \max_{\Lambda} p_{\mathrm{guess}}^{\Lambda}(X|B)$
Not easy to find...

Pretty good (pg) measurement



Choose
$$\Lambda_x^{
m pg} := P_X(x) \, \hat{
ho}^{-\frac{1}{2}} \rho_x \hat{
ho}^{-\frac{1}{2}}$$
 with $\hat{
ho} := \sum_x P_X(x) \, \rho_x$ [1.2]

How good is this choice of measurement?

$$p_{\text{guess}}^{\text{pg}}(X|B) \leqslant p_{\text{guess}}(X|B) \leqslant \sqrt{p_{\text{guess}}^{\text{pg}}(X|B)}$$
 [3]

with
$$p_{\mathrm{guess}}^{\mathrm{pg}}(X|B) := p_{\mathrm{guess}}^{\Lambda^{\mathrm{pg}}}(X|B)$$

Remark: Recently improved by Joseph Renes

- [1]: Belavkin, 1975
- [2]: Hausladen and Wootters, 1994
- [3]: Barnum and Knill, 2002

Structure of today's talk

Structure of today's talk

"Pure" Math

Reverse Araki-Lieb-Thirring (ALT) inequality

New relations between the Petz and the minimal divergence and between conditional Rényi entropies

Physics

Pretty good measures in QIT

- Introduction of the pretty good fidelity
- Bounds and optimality conditions for the pretty good measurement and singlet fraction

Reverse ALT inequality

ALT and reverse ALT inequality (for $r \in [0, 1]$)

Theorem (ALT inequality [4,5]). Let A and B be positive semi-definite matrices and $r \in [0, 1]$. Then

$$\operatorname{tr}(B^{\frac{r}{2}}A^{r}B^{\frac{r}{2}}) \leqslant \operatorname{tr}(B^{\frac{1}{2}}AB^{\frac{1}{2}})^{r}.$$

Theorem (Reverse ALT inequality). Let A and B be positive semi-definite matrices. Then, for $r \in (0,1]$ and $a,b \in (0,\infty]$ such that $\frac{1}{2r} = \frac{1}{2} + \frac{1}{a} + \frac{1}{b}$, we have

$$\operatorname{tr} \left(B^{\frac{1}{2}} A B^{\frac{1}{2}} \right)^r \leqslant \left(\operatorname{tr} \left(B^{\frac{r}{2}} A^r B^{\frac{r}{2}} \right) \right)^r \left\| A^{\frac{1-r}{2}} \right\|_a^{2r} \left\| B^{\frac{1-r}{2}} \right\|_b^{2r} .$$

Schatten norms

$$||M||_p := \left(\operatorname{tr}|M|^p\right)^{\frac{1}{p}}$$
with $|M| := \sqrt{M^*M}$

[4]: Lieb and Thirring, 1976

[5]: Araki, 1990

Proof of reverse ALT inequality

Theorem (Reverse ALT inequality). Let A and B be positive semi-definite matrices. Then, for $r \in (0,1]$ and $a,b \in (0,\infty]$ such that $\frac{1}{2r} = \frac{1}{2} + \frac{1}{a} + \frac{1}{b}$, we have

$$\operatorname{tr} \left(B^{\frac{1}{2}} A B^{\frac{1}{2}} \right)^r \leqslant \left(\operatorname{tr} \left(B^{\frac{r}{2}} A^r B^{\frac{r}{2}} \right) \right)^r \left\| A^{\frac{1-r}{2}} \right\|_a^{2r} \left\| B^{\frac{1-r}{2}} \right\|_b^{2r}.$$

$$Proof (for \ r = \frac{1}{2}).$$

$$\operatorname{tr} \left(B^{\frac{1}{2}} A B^{\frac{1}{2}} \right)^{\frac{1}{2}} = \left\| B^{\frac{1}{2}} A^{\frac{1}{2}} \right\|_{1} = \left\| B^{\frac{1}{4}} B^{\frac{1}{4}} A^{\frac{1}{4}} A^{\frac{1}{4}} \right\|_{1} \leqslant \left\| B^{\frac{1}{4}} A^{\frac{1}{4}} \right\|_{b} \left\| B^{\frac{1}{4}} A^{\frac{1}{4}} \right\|_{2} \left\| A^{\frac{1}{4}} \right\|_{a}$$

Proof of reverse ALT inequality

Theorem (Generalized Hölder inequality [6]). Let s, s_1, \ldots, s_l be positive real numbers (where we also allow ∞ using the convention that $\frac{1}{\infty} = 0$) and $\{A_k\}_{k=1}^l$ be a collection of $n \times n$ matrices. Then

$$\left\| \prod_{k=1}^{l} A_k \right\|_{s} \leq \prod_{k=1}^{l} \|A_k\|_{s_k} , \quad \text{for} \quad \sum_{k=1}^{l} \frac{1}{s_k} = \frac{1}{s} .$$

Choose s = 1, and $s_1 = b$, $s_2 = 2$, and $s_3 = a$ for some $a, b \in (0, \infty]$ with $\frac{1}{1} = \frac{1}{2} + \frac{1}{6} + \frac{1}{6}$

Proof (for
$$r = \frac{1}{2}$$
).

$$\operatorname{tr} \left(B^{\frac{1}{2}} A B^{\frac{1}{2}} \right)^{\frac{1}{2}} = \left\| B^{\frac{1}{2}} A^{\frac{1}{2}} \right\|_{1} = \left\| B^{\frac{1}{4}} B^{\frac{1}{4}} A^{\frac{1}{4}} A^{\frac{1}{4}} \right\|_{1} \leqslant \left\| B^{\frac{1}{4}} \right\|_{b} \left\| B^{\frac{1}{4}} A^{\frac{1}{4}} \right\|_{2} \left\| A^{\frac{1}{4}} \right\|_{a}$$

Proof of reverse ALT inequality

Theorem (Reverse ALT inequality). Let A and B be positive semi-definite matrices. Then, for $r \in (0,1]$ and $a,b \in (0,\infty]$ such that $\frac{1}{2r} = \frac{1}{2} + \frac{1}{a} + \frac{1}{b}$, we have

$$\operatorname{tr} \left(B^{\frac{1}{2}} A B^{\frac{1}{2}} \right)^r \leqslant \left(\operatorname{tr} \left(B^{\frac{r}{2}} A^r B^{\frac{r}{2}} \right) \right)^r \left\| A^{\frac{1-r}{2}} \right\|_a^{2r} \left\| B^{\frac{1-r}{2}} \right\|_b^{2r} .$$

Choose
$$s = 1$$
, and $s_1 = b$, $s_2 = 2$, and $s_3 = a$ for some $a, b \in (0, \infty]$ with $\frac{1}{1} = \frac{1}{2} + \frac{1}{a} + \frac{1}{b}$

Proof (for
$$r = \frac{1}{2}$$
).

$$\operatorname{tr} \left(B^{\frac{1}{2}} A B^{\frac{1}{2}} \right)^{\frac{1}{2}} = \left\| B^{\frac{1}{2}} A^{\frac{1}{2}} \right\|_{1} = \left\| B^{\frac{1}{4}} B^{\frac{1}{4}} A^{\frac{1}{4}} A^{\frac{1}{4}} \right\|_{1} \leqslant \left\| B^{\frac{1}{4}} \right\|_{b} \left\| B^{\frac{1}{4}} A^{\frac{1}{4}} \right\|_{2} \left\| A^{\frac{1}{4}} \right\|_{a}$$

$$\left\| B^{\frac{1}{4}} A^{\frac{1}{4}} \right\|_{2} = \left(\operatorname{tr} B^{\frac{1}{4}} A^{\frac{1}{2}} B^{\frac{1}{4}} \right)^{\frac{1}{2}}$$

Relations between the Petz and the minimal divergence

Families of quantum Rényi divergences

Let $\alpha \in (0,1) \cup (1,\infty)$, and ρ , σ be density matrices. We define:

Petz quantum Rényi divergence

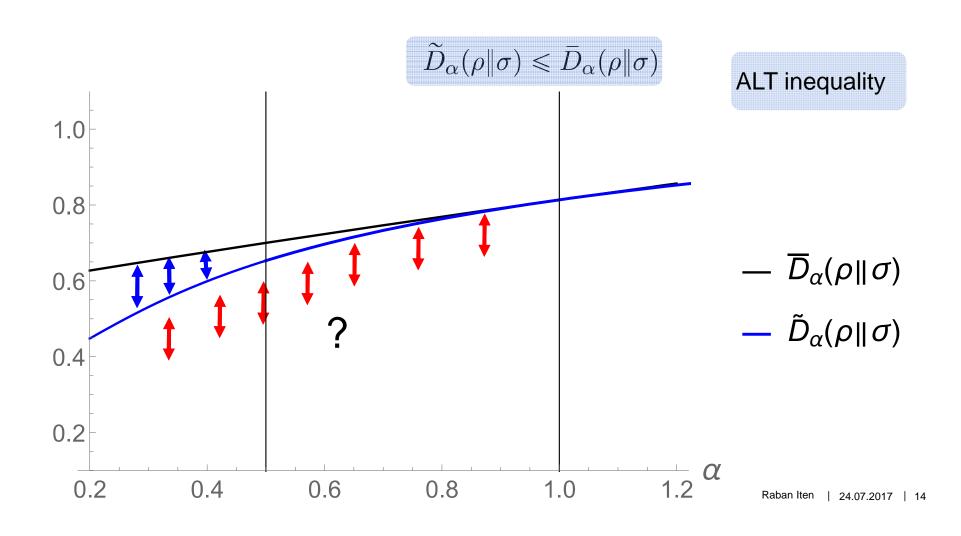
$$\bar{D}_{\alpha}(\rho \| \sigma) := \frac{1}{\alpha - 1} \log \operatorname{tr} \rho^{\alpha} \sigma^{1 - \alpha}$$
 [7]

Minimal quantum Rényi divergence

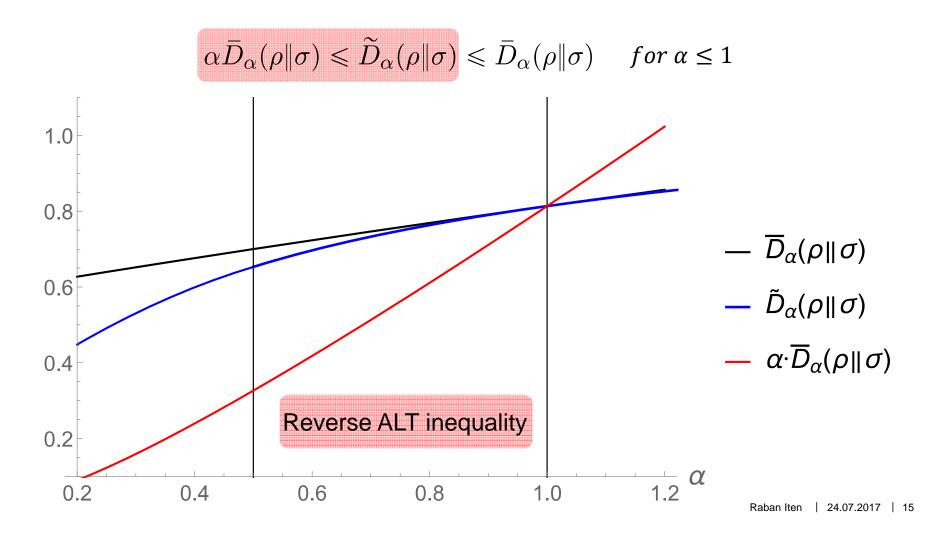
$$\widetilde{D}_{\alpha}(\rho\|\sigma) := \frac{1}{\alpha - 1} \log \operatorname{tr}\left(\sigma^{\frac{1 - \alpha}{2\alpha}} \rho \sigma^{\frac{1 - \alpha}{2\alpha}}\right)^{\alpha}$$
 [8,9]

Is indeed minimal (see e.g. [10] for an overview)

Reversed relation between the Petz and the minimal divergence



Reversed relation between the Petz and the minimal divergence



Reverse bound between the Petz and the minimal divergence

Corollary (Corollary of the reverse ALT inequality). Let ρ and σ be two density matrices and $\alpha \in [0, 1]$. Then

$$\alpha \bar{D}_{\alpha}(\rho \| \sigma) \leqslant \tilde{D}_{\alpha}(\rho \| \sigma) \leqslant \bar{D}_{\alpha}(\rho \| \sigma).$$

Theorem (Reverse ALT inequality). Let A and B be positive semi-definite matrices. Then, for $r \in (0,1]$ and $a,b \in (0,\infty]$ such that $\frac{1}{2r} = \frac{1}{2} + \frac{1}{a} + \frac{1}{b}$, we have

$$\operatorname{tr} \left(B^{\frac{1}{2}} A B^{\frac{1}{2}} \right)^r \leqslant \left(\operatorname{tr} \left(B^{\frac{r}{2}} A^r B^{\frac{r}{2}} \right) \right)^r \left\| A^{\frac{1-r}{2}} \right\|_a^{2r} \left\| B^{\frac{1-r}{2}} \right\|_b^{2r} .$$

Proof of the reverse bound between the Petz and the minimal divergence

Corollary (Corollary of the reverse ALT inequality). Let ρ and σ be two density matrices and $\alpha \in [0, 1]$. Then

$$\alpha \bar{D}_{\alpha}(\rho \| \sigma) \leqslant \widetilde{D}_{\alpha}(\rho \| \sigma) \leqslant \bar{D}_{\alpha}(\rho \| \sigma).$$

Proof of the first inequality (for
$$\alpha=1/2$$
): By definition
$$-\log \operatorname{tr} \rho^{\frac{1}{2}} \sigma^{\frac{1}{2}} \leqslant -2 \log \operatorname{tr} \left(\sigma^{\frac{1}{2}} \rho \sigma^{\frac{1}{2}}\right)^{\frac{1}{2}} \Leftrightarrow \log \left(\operatorname{tr} \rho^{\frac{1}{2}} \sigma^{\frac{1}{2}}\right)^{\frac{1}{2}} \geqslant \log \operatorname{tr} \left(\sigma^{\frac{1}{2}} \rho \sigma^{\frac{1}{2}}\right)^{\frac{1}{2}} \Leftrightarrow \left(\operatorname{tr} \rho^{\frac{1}{2}} \sigma^{\frac{1}{2}}\right)^{\frac{1}{2}} \geqslant \operatorname{tr} \left(\sigma^{\frac{1}{2}} \rho \sigma^{\frac{1}{2}}\right)^{\frac{1}{2}} \Leftrightarrow \operatorname{tr} \left(B^{\frac{1}{2}} A B^{\frac{1}{2}}\right)^{\frac{1}{2}} \geqslant \operatorname{tr} \left(B^{\frac{1}{2}} A B^{\frac{1}{2}}\right)^{\frac{1}{2}} \Rightarrow \operatorname{tr} \left(B^{\frac{1}{2}} A B^{$$

Choose
$$a = 4, b = 4$$

Choose
$$a = 4$$
, $b = 4$ $\left\| A^{\frac{1}{4}} \right\|_{A} = (\operatorname{tr} A)^{\frac{1}{4}} = 1$ if $\operatorname{tr} A = 1$

Relations between conditional Rényi entropies

Families of quantum conditional Rényi entropies

Let ρ_{AB} be a density matrix on the system $A \otimes B$, i.e. $\rho_{AB} \in \mathcal{D}(A \otimes B)$, and $\alpha \in (0,1) \cup (1,\infty)$. We define the following *quantum conditional Rényi entropies* of A given B as

$$\begin{split} &\bar{H}_{\alpha}^{\downarrow}(A|B)_{\rho} := -\bar{D}_{\alpha}(\rho_{AB}\|\mathrm{id}_{A}\otimes\rho_{B})\,,\\ &\bar{H}_{\alpha}^{\uparrow}(A|B)_{\rho} := \sup_{\sigma_{B}\in\mathcal{D}(B)} -\bar{D}_{\alpha}(\rho_{AB}\|\mathrm{id}_{A}\otimes\sigma_{B})\,,\\ &\widetilde{H}_{\alpha}^{\downarrow}(A|B)_{\rho} := -\widetilde{D}_{\alpha}(\rho_{AB}\|\mathrm{id}_{A}\otimes\rho_{B}) \quad \text{and}\\ &\widetilde{H}_{\alpha}^{\uparrow}(A|B)_{\rho} := \sup_{\sigma_{B}\in\mathcal{D}(B)} -\widetilde{D}_{\alpha}(\rho_{AB}\|\mathrm{id}_{A}\otimes\sigma_{B})\,\,. \end{split}$$

Duality relations for conditional entropies

Lemma (Duality relations [13,14,15,8,16,17]). Let ρ_{ABC} be a pure state on $A \otimes B \otimes C$. Then

$$\begin{split} & \bar{H}_{\alpha}^{\downarrow}(A|B)_{\rho} + \bar{H}_{\beta}^{\downarrow}(A|C)_{\rho} = 0 \quad \text{when} \quad \alpha + \beta = 2 \text{ for } \alpha, \beta \in [0,2] \quad \text{and} \\ & \tilde{H}_{\alpha}^{\uparrow}(A|B)_{\rho} + \tilde{H}_{\beta}^{\uparrow}(A|C)_{\rho} = 0 \quad \text{when} \quad \frac{1}{\alpha} + \frac{1}{\beta} = 2 \text{ for } \alpha, \beta \in [\frac{1}{2}, \infty] \quad \text{and} \\ & \bar{H}_{\alpha}^{\uparrow}(A|B)_{\rho} + \tilde{H}_{\beta}^{\downarrow}(A|C)_{\rho} = 0 \quad \text{when} \quad \alpha\beta = 1 \text{ for } \alpha, \beta \in [0, \infty] \,, \end{split}$$

where we use the convention that $\frac{1}{\infty} = 0$ and $\infty \cdot 0 = 1$.

[13]: Tomamichel, Colbeck and Renner, 2009

[14]: Tomamichel, Berta and Hayashi, 2014

[15]: Beigi, 2013

[8]: Müller-Lennert et al., 2013

[16]: König, Renner and Schaffner, 2009

[17]: Berta, Diplom Thesis, 2008

Relations between conditional entropies

Max-like entropies: $\alpha \in (0,1)$

Lemma. For $\alpha \in [0,1]$ and $\rho_{AB} \in \mathcal{D}(A \otimes B)$, we have that

$$\bar{H}_{\alpha}^{\downarrow}(A|B)_{\rho} \leqslant \widetilde{H}_{\alpha}^{\downarrow}(A|B)_{\rho} \leqslant \alpha \bar{H}_{\alpha}^{\downarrow}(A|B)_{\rho} + (1-\alpha)\log|A| \quad \text{and}$$

$$\bar{H}_{\alpha}^{\uparrow}(A|B)_{\rho} \leqslant \widetilde{H}_{\alpha}^{\uparrow}(A|B)_{\rho} \leqslant \alpha \bar{H}_{\alpha}^{\uparrow}(A|B)_{\rho} + (1-\alpha)\log|A|.$$

[via entropy duality]

Lemma. For $\alpha \in [1,2]$ and $\rho_{AB} \in \mathcal{D}(A \otimes B)$, we have that

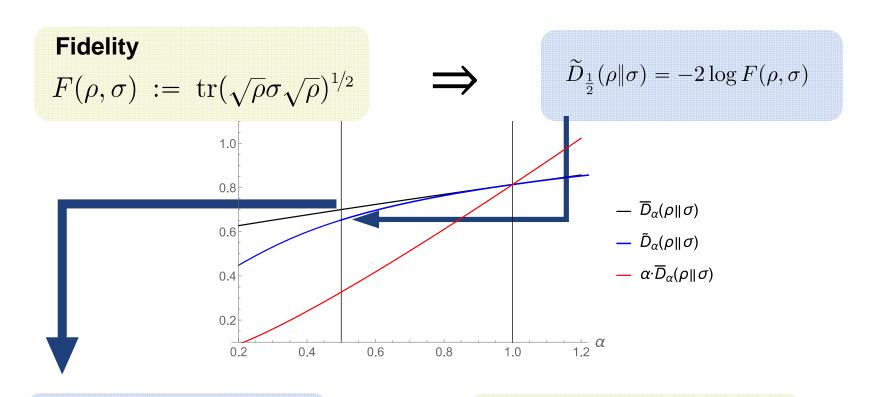
$$\widetilde{H}_{\alpha}^{\downarrow}(A|B)_{\rho} \leqslant \alpha \widetilde{H}_{\frac{1}{2-\alpha}}^{\uparrow}(A|B)_{\rho} + (\alpha - 1)\log|A| \quad \text{and}$$

$$\overline{H}_{\alpha}^{\downarrow}(A|B)_{\rho} \leqslant \frac{1}{2-\alpha} \left(\overline{H}_{\frac{1}{2-\alpha}}^{\uparrow}(A|B)_{\rho} + (\alpha - 1)\log|A| \right).$$

Min-like entropies: $\alpha \in (1, \infty)$

Pretty good measures in QIT

Pretty good fidelity



$$\bar{D}_{\frac{1}{2}}(\rho \| \sigma) = -2\log F_{\rm pg}(\rho, \sigma)$$

Pretty good fidelity

$$F_{\rm pg}(\rho,\sigma) := {\rm tr}\sqrt{\rho}\sqrt{\sigma}$$

Bounds for pretty good measures

The pretty good fidelity is indeed pretty good

$$F_{\rm pg}(\rho, \sigma) \leqslant F(\rho, \sigma) \leqslant \sqrt{F_{\rm pg}(\rho, \sigma)}$$

(via entropy duality)

Pretty good measurement [3]

$$p_{\mathrm{guess}}^{\mathrm{pg}}(X|B) \leqslant p_{\mathrm{guess}}(X|B) \leqslant \sqrt{p_{\mathrm{guess}}^{\mathrm{pg}}(X|B)}$$

Pretty good singlet fraction [18]

$$R_{\rm pg}(A|B)_{\rho} \leqslant R(A|B)_{\rho} \leqslant \sqrt{R_{\rm pg}(A|B)_{\rho}}$$

Measure for the largest achievable overlap with the maximally entangled state one can obtain from ρ_{AB} by applying a quantum channel on system B.

Derivation of the bound for the pretty good measurement

$$\widetilde{H}_{\infty}^{\uparrow}(X|B)_{\rho} = -\log p_{\mathrm{guess}}(X|B)$$
 [16]

$$\widetilde{H}_2^{\downarrow}(X|B)_{\rho} = -\log p_{\mathrm{guess}}^{\mathrm{pg}}(X|B)$$
 [19]

$$p_{\mathrm{guess}}^{\mathrm{pg}}(X|B) \leqslant p_{\mathrm{guess}}(X|B) \leqslant \sqrt{p_{\mathrm{guess}}^{\mathrm{pg}}(X|B)}$$

Lemma. Let $\alpha \in [1, 2]$ and ρ_{XB} be a cq state on $X \otimes B$, i.e., $\rho_{XB} = \sum_{x} p_x |x\rangle\langle x|_X \otimes B$ $(\rho_x)_B$ where $(\rho_x)_B$ are density operators and $p_x \in [0,1]$, such that $\sum_x p_x = 1$. Then

$$\alpha = 2$$

$$\begin{split} \widetilde{H}_{\alpha}^{\downarrow}(X|B)_{\rho} &\leqslant \alpha \widetilde{H}_{\frac{1}{2-\alpha}}^{\uparrow}(X|B)_{\rho} \quad \text{ and } \\ \bar{H}_{\alpha}^{\downarrow}(X|B)_{\rho} &\leqslant \frac{1}{2-\alpha} \bar{H}_{\frac{1}{2-\alpha}}^{\uparrow}(X|B)_{\rho}. \end{split}$$

Lemma. For $\alpha \in [1,2]$ and $\rho_{AB} \in \mathcal{D}(A \otimes B)$, we have that

$$\widetilde{H}_{lpha}^{\downarrow}(A|B)_{
ho}\leqslant lpha\widetilde{H}_{rac{1}{2-lpha}}^{\uparrow}(A|B)_{
ho}+(lpha-1)\log|A|$$
 and

$$\bar{H}_{\alpha}^{\downarrow}(A|B)_{\rho} \leqslant \frac{1}{2-\alpha} \left(\bar{H}_{\frac{1}{2-\alpha}}^{\uparrow}(A|B)_{\rho} + (\alpha-1)\log|A| \right).$$

Classical quantum state

[16]: König, Renner and Schaffner, 2009

[19]: Buhrman et al., 2008

Optimality conditions for pretty good measures

Equality condition for max-like entropies

Lemma (Equality condition for entropies). Let $\alpha \in [\frac{1}{2}, 1)$, ρ_{AB} be a density operator and $\hat{\sigma}_B^{\star} := \operatorname{tr}_A \rho_{AB}^{\alpha}$. Then, the following are equivalent

1.
$$\bar{H}_{\alpha}^{\uparrow}(A|B)_{\rho} = \tilde{H}_{\alpha}^{\uparrow}(A|B)_{\rho}$$

2.
$$[\rho_{AB}, \mathrm{id}_A \otimes \hat{\sigma}_B^{\star}] = 0$$
.

Proof [Sketch]:
$$\bar{H}_{\alpha}^{\uparrow}(A|B)_{\rho} = \sup_{\sigma \mathcal{D}(B)} -\bar{D}_{\alpha}(\rho_{AB} \| \mathrm{id}_{A} \otimes \sigma_{B})$$

Proof [Sketch]: $\bar{H}_{\alpha}^{\uparrow}(A|B)_{\rho} = \sup_{\sigma_{B} \in \mathcal{D}(B)} -\bar{D}_{\alpha}(\rho_{AB} \| \mathrm{id}_{A} \otimes \sigma_{B})$ Optimizer is known [20]: $\sigma_{B}^{\star} = \frac{(\mathrm{tr}_{A} \rho_{AB}^{\alpha})^{\frac{1}{\alpha}}}{\mathrm{tr} (\mathrm{tr}_{A} \rho_{AB}^{\alpha})^{\frac{1}{\alpha}}}$

$$\longrightarrow$$
 Necessary condition [21]: $[\rho_{AB}, \mathrm{id}_A \otimes \sigma_B^{\star}] = 0$

Enough to show: $\sigma_B \mapsto -\widetilde{D}_{\alpha}(\rho_{AB} \| \mathrm{id}_A \otimes \sigma_B)$ attains its global maximum at

$$\sigma_B = \sigma_B^{\star} \text{ if } [\rho_{AB}, \text{id}_A \otimes \sigma_B^{\star}] = 0.$$
 Cf. our arXiv version ...

Optimality conditions for the pretty good measurement

$$\widetilde{H}_{\infty}^{\uparrow}(X|B)_{\rho} = -\log p_{\mathrm{guess}}(X|B)$$
 [16]

$$\widetilde{H}_2^{\downarrow}(X|B)_{\rho} = -\log p_{\mathrm{guess}}^{\mathrm{pg}}(X|B)$$
 [19]

Let τ_{XBC} be a purification of ρ_{XB} . Then, the duality relations for Rényi entropies imply

$$\widetilde{H}_2^{\downarrow}(X|B)_{\tau} = \widetilde{H}_{\infty}^{\uparrow}(X|B)_{\tau} \iff \overline{H}_{1/2}^{\uparrow}(X|C)_{\tau} = \widetilde{H}_{1/2}^{\uparrow}(X|C)_{\tau}.$$

Lemma (Optimality condition for the pretty good measurement). The pretty good measurement is optimal for distinguishing states in the ensemble $\{p_x, \rho_x\}$ if and only if $[G_{X'B'}, \hat{\sigma}^{\star}_{X'B'}] = 0$.

Generalized Gram matrix [cf. our arXiv version for the definition]

$$\hat{\sigma}_{X'B'}^{\star} := \sum_{x} |x\rangle\langle x|_{X'} \otimes \langle x| \sqrt{G_{X'B'}} |x\rangle_{X'}$$

Conclusion

Mathematical results

- Reverse Araki-Lieb-Thirring (ALT) inequality
- Introducing a reverse relation between the Petz and the minimal divergence:

$$\alpha \bar{D}_{\alpha}(\rho \| \sigma) \leqslant \widetilde{D}_{\alpha}(\rho \| \sigma) \leqslant \bar{D}_{\alpha}(\rho \| \sigma) \quad \textit{ for } \alpha \leq 1$$

Inequalities and equality conditions between conditional entropies

Unified picture for pretty good measures in QIT

- Introducing a pretty good fidelity
- Showing that the pretty good fidelity is indeed pretty good
- Bounds between the fidelity and the pretty good fidelity **lead to** known bounds for pretty good measures via duality of quantum entropies
- Introducing necessary and sufficient optimality conditions for the pretty good measurement and singlet fraction

Thanks for your attention!

arXiv:1608.08229

(published in IEEE TIT)