Covert Communication with Channel-State Information at the Transmitter

Si-Hyeon Lee

Joint Work with Ligong Wang, Ashish Khisti, and Gregory W. Wornell

July 27, 2017

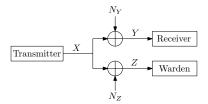
Covert Communication

► Transmitter and receiver wish to communicate reliably, while ensuring that their communication is not detected by the warden.

Covert Communication

- Hypothesis test by the warden
 - Probability of false alarm: α
 - Probability of missed detection: β
- Covertness guaranteed if $D(P_{Z,Sending} || P_{Z,Not sending})$ is small
 - Blind test: $\alpha + \beta = 1$
 - Optimal test: $\alpha + \beta \ge 1 \sqrt{D(P_{Z,\text{Sending}} \| P_{Z,\text{Not sending}})}$

Square Root Law

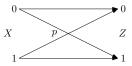


- Maximum amount of information scales like the square root of the blocklength
 - AWGN channel [Bash-Goekel-Towsley 13]
 - A broad class of DMC [Bloch 16], [Wang-Wornell-Zheng 16]

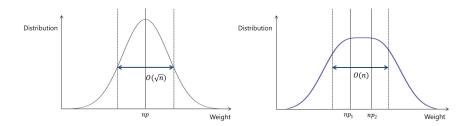
When We Beat the Square Root Law?

- Unknown channel statistics at the warden
 - BSCs with unknown cross over probability [Che-Bakshi-Chan-Jaggi 14]
 - AWGN with unknown noise power [Lee-Baxley-Weitnauer-Walkenhorst 15]
- ▶ This talk: State-dependent channel with CSI at the transmitter

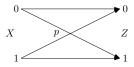
Binary Symmetric Channel



- ▶ p fixed and known: Zero capacity [Bloch 16], [Wang-Wornell-Zheng 16]
- p random and unknown: Positive capacity [Che-Bakshi-Chan-Jaggi 14]
- p fixed and known, realizations known to the transmitter
 - Our model
 - Positive capacity by pre-cancellation

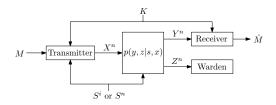


Binary Symmetric Channel



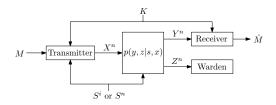
- ▶ p fixed and known: Zero capacity [Bloch 16], [Wang-Wornell-Zheng 16]
- ▶ *p* random and unknown: Positive capacity [Che-Bakshi-Chan-Jaggi 14]
- p fixed and known, realizations known to the transmitter
 - Our model
 - Positive capacity by pre-cancellation

Model



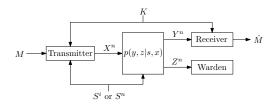
- ▶ State-dependent DMC $(X, S, Y, Z, P_S, P_{Y,Z|S,X})$
- Transmitter and receiver share a secret key $K \in [1:2^{nR_0}]$
- Input cost function $b(x^n) = \frac{1}{n} \sum_{i=1}^n b(x_i)$
- State sequence known to the transmitter causally or noncausally
- (R, R_K, n) code for causal CSI
 - Encoding function at time *i*: $(M, K, S^i) \rightarrow X_i$
 - Decoding function $(Y^n, K) \rightarrow \hat{M}$

Model



- ▶ State-dependent DMC $(X, S, Y, Z, P_S, P_{Y,Z|S,X})$
- Transmitter and receiver share a secret key $K \in [1:2^{nR_0}]$
- Input cost function $b(x^n) = \frac{1}{n} \sum_{i=1}^n b(x_i)$
- State sequence known to the transmitter causally or noncausally
- (R, R_K, n) code for noncausal CSI
 - Encoding function: $(M, K, S^n) \rightarrow X^n$
 - Decoding function $(Y^n, K) \rightarrow \hat{M}$

Model



Covert communication:

- $x_0 \in \mathcal{X}$: "no input" symbol, $Q_0(\cdot) = \sum_{s \in S} P_S(s) P_{Z|S,X}(\cdot|s, x_0)$
- ▶ Small $D(\hat{P}_{Z^n} \| Q_0^{\times n})$ ensures the warden's best hypothesis test performs not much better than a blind test.
- ▶ A covert rate of *R* is achievable if \exists a sequence of (R, R_K, n) codes that simultaneously satisfies
 - ▶ input cost constraint $\limsup_{n\to\infty} E_{M,K,S^n}[b(X^n)] \le B$
 - reliability constraint $\lim_{n\to\infty} P(\hat{M} \neq M) = 0$
 - covertness constraint $\lim_{n\to\infty} D(\widehat{P}_{Z^n} || Q_0^{\times n}) = 0$

Covert capacity C: Supremum of all achievable covert rates

Main Results: Causal CSI

Theorem 1 (Upper Bound)

For $R_K \ge 0$ and $B \ge 0$, the covert capacity is upper-bounded as

$$C \leq \max_{\substack{P_V, x(v,s):\\P_Z = Q_0, E[b(X)] \leq B}} I(V; Y).$$

Theorem 2 (Lower Bound)

$$C \geq \max_{\substack{P_V, \ x(v,s):\\ P_Z = Q_0, \ E[b(X)] \leq B, \ I(V;Z) - I(V;Y) < R_K}} I(V;Y).$$

Main Results: Causal CSI

Theorem 1 (Upper Bound)

For $R_K \ge 0$ and $B \ge 0$, the covert capacity is upper-bounded as

$$C \leq \max_{\substack{P_V, x(v,s):\\P_Z = Q_0, E[b(X)] \leq B}} I(V; Y).$$

Theorem 2 (Lower Bound)

$$C \geq \max_{\substack{P_{V}, x(v,s):\\P_{Z}=Q_{0}, E[b(X)] \leq B, l(V;Z)-l(V;Y) < R_{K}}} I(V;Y).$$

Main Results: Causal CSI

Theorem 1 (Upper Bound)

For $R_K \ge 0$ and $B \ge 0$, the covert capacity is upper-bounded as

$$C \leq \max_{\substack{P_V, x(v,s):\\P_Z = Q_0, E[b(X)] \leq B}} I(V; Y).$$

Theorem 2 (Lower Bound)

$$C \geq \max_{\substack{P_V, x(v,s):\\P_Z = Q_0, E[b(X)] \leq B, I(V;Z) - I(V;Y) < R_K}} I(V;Y).$$

Main Results: Noncausal CSI

Theorem 3 (Upper Bound)

For $R_K \ge 0$ and $B \ge 0$, the covert capacity is upper-bounded as

$$C \leq \max_{\substack{P_{U|S}, x(u,s):\\ P_Z = Q_0, \ \mathsf{E}[b(X)] \leq B}} I(U; Y) - I(U; S).$$

Theorem 4 (Lower Bound)

$$C \geq \max_{\substack{P_{U|S}, x(u,s):\\P_{Z}=Q_{0}, \ E[b(X)] \leq B, \ I(U;Z) - I(U;Y) < R_{K}}} I(U;Y) - I(U;S)$$

Main Results: Noncausal CSI

Theorem 3 (Upper Bound)

For $R_K \ge 0$ and $B \ge 0$, the covert capacity is upper-bounded as

$$C \leq \max_{\substack{P_{U|S}, x(u,s):\\P_Z=Q_0, E[b(X)] \leq B}} I(U; Y) - I(U; S).$$

Theorem 4 (Lower Bound)

For $R_K \ge 0$ and $B \ge 0$, the covert capacity is lower-bounded as

 $C \geq \max_{\substack{P_{U|S}, x(u,s):\\P_{Z}=Q_{0}, E[b(X)] \leq B, I(U;Z)-I(U;Y) < R_{K}}} I(U;Y) - I(U;S).$

Main Results: Noncausal CSI

Theorem 3 (Upper Bound)

For $R_K \ge 0$ and $B \ge 0$, the covert capacity is upper-bounded as

$$C \leq \max_{\substack{P_{U|S}, x(u,s):\\ P_Z = Q_0, \ E[b(X)] \leq B}} I(U; Y) - I(U; S).$$

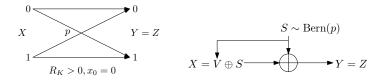
Theorem 4 (Lower Bound)

For $R_K \ge 0$ and $B \ge 0$, the covert capacity is lower-bounded as

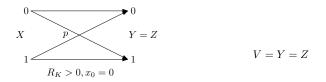
 $C \geq \max_{\substack{P_{U|S}, x(u,s):\\P_{Z}=Q_{0}, E[b(X)] \leq B, I(U;Z)-I(U;Y) < R_{K}}} I(U;Y) - I(U;S).$

- Without CSI at the transmitter: C = 0
- With CSI at the transmitter: $C = H_b(p)$ for both causal and noncausal cases

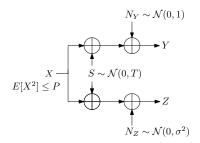
- Without CSI at the transmitter: C = 0
- With CSI at the transmitter: $C = H_b(p)$ for both causal and noncausal cases



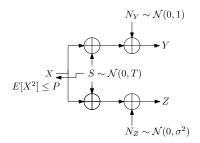
- Without CSI at the transmitter: C = 0
- With CSI at the transmitter: $C = H_b(p)$ for both causal and noncausal cases



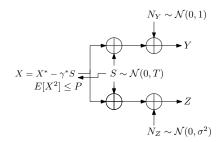
- Without CSI at the transmitter: C = 0
- With CSI at the transmitter: $C = H_b(p)$ for both causal and noncausal cases



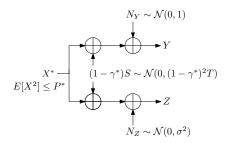
- Without CSI at the transmitter: C = 0
- With CSI at the transmitter: C > 0
 - Make room for message transmission by reducing the interference power, i.e., $X = X^* \gamma^* S$
 - Choose P^* and γ^* to simultaneously satisfy the covertness constraint and the input power constraint, i.e., $\gamma^* = \min\left\{1, \frac{P}{2T}\right\}$, $T^* = (1 \gamma^*)^2 T$, $P^* = T T^*$



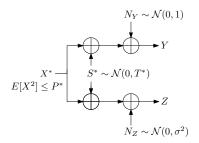
- Without CSI at the transmitter: C = 0
- With CSI at the transmitter: C > 0
 - Make room for message transmission by reducing the interference power, i.e., $X = X^* \gamma^* S$
 - Choose P^* and γ^* to simultaneously satisfy the covertness constraint and the input power constraint, i.e., $\gamma^* = \min\left\{1, \frac{P}{2T}\right\}$, $T^* = (1 \gamma^*)^2 T$, $P^* = T T^*$



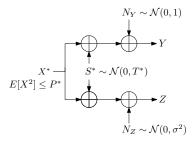
- Without CSI at the transmitter: C = 0
- With CSI at the transmitter: C > 0
 - Make room for message transmission by reducing the interference power, i.e., $X = X^* \gamma^* S$
 - Choose P^* and γ^* to simultaneously satisfy the covertness constraint and the input power constraint, i.e., $\gamma^* = \min\left\{1, \frac{P}{2T}\right\}$, $T^* = (1 \gamma^*)^2 T$, $P^* = T T^*$



- Without CSI at the transmitter: C = 0
- With CSI at the transmitter: C > 0
 - Make room for message transmission by reducing the interference power, i.e., $X = X^* \gamma^* S$
 - Choose P^* and γ^* to simultaneously satisfy the covertness constraint and the input power constraint, i.e., $\gamma^* = \min\left\{1, \frac{P}{2T}\right\}$, $T^* = (1 \gamma^*)^2 T$, $P^* = T T^*$



- Without CSI at the transmitter: C = 0
- With CSI at the transmitter: C > 0
 - Make room for message transmission by reducing the interference power, i.e., $X = X^* \gamma^* S$
 - Choose P^* and γ^* to simultaneously satisfy the covertness constraint and the input power constraint, i.e., $\gamma^* = \min\left\{1, \frac{P}{2T}\right\}$, $T^* = (1 \gamma^*)^2 T$, $P^* = T T^*$



- Causal CSI at the transmitter
 - Choose $V = X^*$ and treat interference as noise at the receiver

•
$$\gamma^* = \min\left\{1, \frac{P}{2T}\right\}$$
, $T^* = (1 - \gamma^*)^2 T$, $P^* = T - T^*$

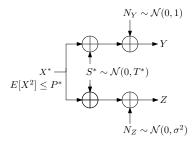
Theorem 5 (Causal CSI) *If*

$$R_{\mathcal{K}} > \frac{1}{2} \log \left(1 + \frac{P^*}{T^* + \sigma^2} \right) - \frac{1}{2} \log \left(1 + \frac{P^*}{T^* + 1} \right),$$

the covert capacity with causal CSI at the transmitter is lower-bounded as

$$\mathcal{C}_{ ext{c}} \geq rac{1}{2} \log \left(1 + rac{\mathcal{P}^*}{\mathcal{T}^* + 1}
ight).$$

 \blacktriangleright If the warden's channel is degraded, i.e., $\sigma^2>$ 1, a secret key is not needed to achieve the rate



- Noncausal CSI at the transmitter
 - Choose U as in the dirty paper coding with input power constraint P* and interference power T*

•
$$\gamma^* = \min\left\{1, \frac{P}{2T}\right\}, \ T^* = (1 - \gamma^*)^2 T, \ P^* = T - T^*$$

Theorem 6 (Noncausal CSI) *If*

$$\begin{split} R_{K} &> \frac{1}{2} \log \left(1 + \frac{(P^{*} + \frac{P^{*}}{P^{*} + 1} T^{*})^{2}}{(P^{*} + (\frac{P^{*}}{P^{*} + 1})^{2} T^{*})(P^{*} + T^{*} + \sigma^{2}) - (P^{*} + \frac{P^{*}}{P^{*} + 1} T^{*})^{2}} \right) \\ &- \frac{1}{2} \log \left(1 + \frac{(P^{*} + \frac{P^{*}}{P^{*} + 1} T^{*})^{2}}{(P^{*} + (\frac{P^{*}}{P^{*} + 1})^{2} T^{*})(P^{*} + T^{*} + 1) - (P^{*} + \frac{P^{*}}{P^{*} + 1} T^{*})^{2}} \right), \end{split}$$

the covert capacity with noncausal CSI at the transmitter is given by

$$\mathcal{C}_{
m nc} = rac{1}{2} \log \left(1 + \mathcal{P}^*
ight).$$

If the warden's channel is degraded, i.e., σ² > 1, a secret key is not needed to achieve the capacity

▶ For *R*^K sufficiently large,

$$egin{split} \mathcal{C}_{\mathrm{c}} \geq rac{1}{2} \log\left(1 + rac{\mathcal{P}^{*}}{\mathcal{T}^{*} + 1}
ight) \ \mathcal{C}_{\mathrm{nc}} = rac{1}{2} \log\left(1 + \mathcal{P}^{*}
ight). \end{split}$$

- If $T^* = 0$, i.e., $T \leq \frac{P}{2}$, $C_c = C_{nc}$.
- ▶ As $T \to \infty$, $P^* \to P$ and hence $C_{\rm nc}$ approaches to the capacity without a covertness constraint

Achievability with Noncausal CSI

- Key idea: Gelfend-Pinsker coding, except that likelihood encoding by [Song-Cuff-Poor 16], [Goldfeld-Kramer-Permuter-Cuff 17] is used instead of joint-typicality encoding.
- Codebook generation:
 - Fix $P_{U|S}$ and x(u, s) such that $P_Z = Q_0$ and $E[b(X)] \leq \frac{B}{1+\epsilon'}$.
 - ▶ For each $k \in [1 : 2^{nR_K}]$ and $m \in [1 : 2^{nR}]$, randomly generate a subcodebook $C(k, m) = \{u^n(k, m, l) : l \in [1 : 2^{nR'}]\}$ according to $\prod_{i=1}^n P_U(u_i)$.
- ▶ Encoding: Given state sequence sⁿ, secret key k, and message m, evaluate the likelihood

$$g(l|s^{n}, k, m) = \frac{P_{S|U}^{\times n}(s^{n}|u^{n}(k, m, l))}{\sum_{l' \in [1:2^{nR'}]} P_{S|U}^{\times n}(s^{n}|u^{n}(k, m, l'))}.$$

The encoder randomly generates *l* according to the above and transmits x^n where $x_i = x(u_i(k, m, l), s_i)$.

Achievability with Noncausal CSI

Decoding: Upon receiving yⁿ, with access to the secret key k, the decoder declares that m̂ is sent if it is the unique message such that

 $(u^n(k, \hat{m}, l), y^n) \in \mathcal{T}_{\epsilon}^{(n)}$

for some $l \in [1:2^{nR'}]$; otherwise it declares an error.

Covertness analysis:

Γ: Joint distribution when the codeword index in the subcodebook is uniformly chosen and then the state sequence is generated in an iid manner according to P_{S|U}.

•
$$\widehat{P}_{Z^n} \approx \Gamma_{Z^n}$$
, if $R' > I(U; S)$

• $\Gamma_{Z^n} \approx Q_0^{\times n}$, if $R_K + R + R' > I(U; Z)$

Reliability analysis:

- Done by packing lemma
- $\blacktriangleright R + R' < I(U; Y)$

Converse with Noncausal CSI

- Step (a): Bounding techniques for channels with noncausal CSI without covertness constraint, where U_i := (M, K, Yⁱ⁻¹, Sⁿ_{i+1}).
- Step (b): Characterization of capacity function

$$C(A,B) := \max_{\substack{P_{U|S}, P_{X|U,S}:\\ E[b(X)] \le B, \ D(P_Z || Q_0) \le A}} (I(U;Y) - I(U;S))$$

- ▶ The function *C*(*A*, *B*) is non-decreasing in each of *A* and *B*, and concave and continuous in (*A*, *B*).
- Step (c): Application of covertness and input cost constraints

$$R \stackrel{(a)}{\leq} \frac{1}{n} \sum_{i=1}^{n} (I(U_i; Y_i) - I(U_i; S_i)) + \epsilon_n$$

$$\stackrel{(b)}{\leq} \frac{1}{n} \sum_{i=1}^{n} C(D(\widehat{P}_{Z_i} || Q_0), \mathsf{E}[b(X_i)]) + \epsilon_n$$

$$\stackrel{(b)}{\leq} C\left(\frac{1}{n} \sum_{i=1}^{n} D(\widehat{P}_{Z_i} || Q_0), \frac{1}{n} \sum_{i=1}^{n} \mathsf{E}[b(X_i)]\right) + \epsilon_n$$

$$\stackrel{(c)}{\to} C(0, B)$$

Conclusion

- Considered state dependent channel with state information at the transmitter
- Characterized the covert capacity when a sufficiently long secret key is shared between the transmitter and the receiver
- Derived lower bounds on the rate of the secret key that is needed to achieve the covert capacity
- ► For certain channel models, showed that the covert capacity is positive with CSI at the transmitter, but is zero without CSI
- Full version will be uploaded on arXiv soon