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Covert Communication

Warden

> Transmitter and receiver wish to communicate reliably, while ensuring that
their communication is not detected by the warden.



Covert Communication

Warden

» Hypothesis test by the warden
> Probability of false alarm: «
> Probability of missed detection: 3
» Covertness guaranteed if D(Pz,sending|| Pz, Not sending) is small
> Blind test: a+ =1
> Optimal test: a + /6 >1- \/D(PZ,Sending”PZ,Not sending)
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» Maximum amount of information scales like the square root of the
blocklength

> AWGN channel [Bash-Goekel-Towsley 13]
> A broad class of DMC [Bloch 16], [Wang-Wornell-Zheng 16]



When We Beat the Square Root Law?

» Unknown channel statistics at the warden

> BSCs with unknown cross over probability [Che-Bakshi-Chan-Jaggi 14]
> AWGN with unknown noise power [Lee-Baxley-Weitnauer-Walkenhorst 15]

» This talk: State-dependent channel with CSI at the transmitter



Binary Symmetric Channel
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> p fixed and known: Zero capacity [Bloch 16], [Wang-Wornell-Zheng 16]

» p random and unknown: Positive capacity [Che-Bakshi-Chan-Jaggi 14]
» p fixed and known, realizations known to the transmitter

> Our model
> Positive capacity by pre-cancellation
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> State-dependent DMC (X, S, Y, Z, Ps, Py 7|5 x)

v

Transmitter and receiver share a secret key K € [1 : 2"R0]

Input cost function b(x") = £ S°7_ b(x;)

n

v

v

State sequence known to the transmitter causally or noncausally

v

(R, Rk, n) code for causal CSI
> Encoding function at time i: (M, K,S') — X;
» Decoding function (Y", K) — M
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> Covert communication:
> xo € X: “no input” symbol, Qo(:) = > 5 Ps(s)Pz|s x(Is, x0)
> Small D(Pzn||Q,'") ensures the warden’s best hypothesis test performs not
much better than a blind test.

> A covert rate of R is achievable if 3 a sequence of (R, Rk, n) codes that
simultaneously satisfies
> input cost constraint limsup,_, . Em ks [b(X")] < B
> reliability constraint limp_ oo P(M #M)=0
> covertness constraint limy— o D(.anHQOX") =0

» Covert capacity C: Supremum of all achievable covert rates



Main Results: Causal CSI

Theorem 1 (Upper Bound)
For Rk > 0 and B > 0, the covert capacity is upper-bounded as

c< max I(V;Y).
Py, x(v.s):
Pz=Qq, E[B(X)<B

Theorem 2 (Lower Bound)
For Rk > 0 and B > 0, the covert capacity is lower-bounded as

C> max I(V;Y).
Py, x(v,9):

Pz=Qg. E[B(X)]<B, I(ViZ)—I(V;¥)<Ry
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Main Results: Noncausal CSI

Theorem 3 (Upper Bound)
For Rk > 0 and B > 0, the covert capacity is upper-bounded as

c< max I(U;Y) = I(U;S).
PU|S' x(u,s):
Pz=Qop, E[b(X)I<B

Theorem 4 (Lower Bound)
For Rk > 0 and B > 0, the covert capacity is lower-bounded as

C> max I(U;Y)—I(U;S).
Pyiss x(u,s):
P7=Qy, E[b(X)]<B, I(U:Z)—I(U;Y)<Rk
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Example: Binary Symmetric Channels

0 0
S ~ Bern(p)

X p Y =27
! ! X——é—ﬂ/—z

Ry > 0,20 =0

> Without CSI at the transmitter: C =0
> With CSI at the transmitter: C = H,(p) for both causal and noncausal

cases
> X=V &S, V ~ Bern(p) independent with S
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Example: Binary Symmetric Channels

0 0

X p Y=7

. . V=Y=2
Ry > 0,20 =0

> Without CSI at the transmitter: C =0
> With CSI at the transmitter: C = H,(p) for both causal and noncausal

cases
> X=V &S, V ~ Bern(p) independent with S



Example: AWGN Channels

Ny ~N(0,1)
Y
X—  S~N(0,T)
E[X?| <P
A
Nz ~ N(0,0?)

» Without CSI at the transmitter: C =0

» With CSI at the transmitter: C > 0
> Make room for message transmission by reducing the interference power,
e, X =X*—~*S
> Choose P* and v* to simultaneously satisfy the covertness constraint and
the input power constraint, i.e., ¥* = min {17 % , T =(1- 'y*)ZT,
P*=T-T*
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Example: AWGN Channels

Ny ~ N(0,1)
Y
X*— S ~N(O,T%)
E[X?] < P
A
Ny ~N(0,02)

» Causal CSI at the transmitter
> Choose V = X* and treat interference as noise at the receiver



Example: AWGN Channels

>y =min{l, 2} T =(1—y)PT, PFP=T-T"

Theorem 5 (Causal CSI)
If

1 p* 1 P
Re>-log[1+———)—Zlog(1
K>2Og<+T*+a2) 20g(+T*+1)’

the covert capacity with causal CSl at the transmitter is lower-bounded as
1 P~
C>=-log(1l
= ( s s 1)

» If the warden’s channel is degraded, i.e., % > 1, a secret key is not needed
to achieve the rate



Example: AWGN Channels

Ny ~N(0,1)
Y
X*— S* ~ N(0,T%)
E[XZ] < P*
Z
NZ NN(O,O'Z)

» Noncausal CSI at the transmitter
> Choose U as in the dirty paper coding with input power constraint P* and
interference power T*



Example: AWGN Channels

>y =min{l, >}, T"=1—")V T, P=T-T"

) 2T

Theorem 6 (Noncausal CSI)
If

Re > 1 og (1 . * (P + £ T7) >
2 (p* +(P*+1)2T*)(P* 4T Jraz) _ (P* 4 P*+1 T*)
_Iog< - (P*+ P+ T*) >

2 (P + (pEg PT)(P* + T* +1) — (P* + peig T*)?

the covert capacity with noncausal CSI at the transmitter is given by

Cac = % log (1 + P).

> If the warden's channel is degraded, i.e., 0% > 1, a secret key is not needed
to achieve the capacity
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Example: AWGN Channels

» For Rk sufficiently large,
P*
G > 1+ ——
=2 ( T 1)

log (1 + P™).

=N =

Cnc = 5

»If T*=0,ie, T<%, C=Cu.

» As T — 0o, P* — P and hence C,. approaches to the capacity without a
covertness constraint



Achievability with Noncausal CSI

» Key idea: Gelfend-Pinsker coding, except that likelihood encoding by
[Song-Cuff-Poor 16], [Goldfeld-Kramer-Permuter-Cuff 17] is used instead
of joint-typicality encoding.

» Codebook generation:
> Fix Pyjs and x(u, s) such that Pz = Qg and E[b(X)] < ﬁB(,
> For each k € [1:2"R«] and m € [1: 2"F], randomly generate a
subcodebook C(k, m) = {u"(k,m,l) : 1 € [1: 2"R/]} according to

[T Pu(ui).
» Encoding: Given state sequence s”, secret key k, and message m, evaluate
the likelihood
P (s"|u"(k, m, 1))
S|U bl b
g(lls", k, m) = |

Z/’G[I:Z”Rl] PSX‘Z(S"|U"(/(’ m, //)) '

The encoder randomly generates / according to the above and transmits
x" where x; = x(uj(k, m, 1), s;).



Achievability with Noncausal CSI

» Decoding: Upon receiving y", with access to the secret key k, the decoder
declares that /m is sent if it is the unique message such that

(u"(k, i, 1), y") € T

for some / € [1 : 2"F']; otherwise it declares an error.

» Covertness analysis:

» [: Joint distribution when the codeword index in the subcodebook is
uniformly chosen and then the state sequence is generated in an iid manner
according to Ps)y.

> Pznm Tz, if R > I(U;S)

> [zn = QOX", if R + R+ R > I(U; 2)

> Reliability analysis:

> Done by packing lemma
» R+ R <I(U;Y)
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Converse with Noncausal CSI

> Step (a): Bounding techniques for channels with noncausal CSI without
covertness constraint, where U; := (M, K, Y~ Sha).
> Step (b): Characterization of capacity function
C(A,B) = max I(U; Y)=1(U;S))
PussPxju,s:
E[b(X)]<B, D(Pz||Q)<A

> The function C(A, B) is non-decreasing in each of A and B, and concave
and continuous in (A, B).

> Step (c): Application of covertness and input cost constraints
(@ 1
R< = (U5 Y7) = 1(Us; 1)) + e
i=1

2Ly 0P 190, B0 +
i=1

(2 C (:’ > D(Pz Qo) % > E[b(X;)]> +en
i=1 i=1

9 c(0,B)



Conclusion

» Considered state dependent channel with state information at the
transmitter

> Characterized the covert capacity when a sufficiently long secret key is
shared between the transmitter and the receiver

» Derived lower bounds on the rate of the secret key that is needed to
achieve the covert capacity

» For certain channel models, showed that the covert capacity is positive
with CSI at the transmitter, but is zero without CSI

> Full version will be uploaded on arXiv soon



