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Covert Communication

I Transmitter and receiver wish to communicate reliably, while ensuring that
their communication is not detected by the warden.
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Covert Communication

I Hypothesis test by the warden
I Probability of false alarm: α
I Probability of missed detection: β

I Covertness guaranteed if D(PZ ,Sending‖PZ ,Not sending) is small
I Blind test: α+ β = 1
I Optimal test: α+ β ≥ 1−

√
D(PZ ,Sending‖PZ ,Not sending)
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Square Root Law
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I Maximum amount of information scales like the square root of the
blocklength

I AWGN channel [Bash-Goekel-Towsley 13]
I A broad class of DMC [Bloch 16], [Wang-Wornell-Zheng 16]
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When We Beat the Square Root Law?

I Unknown channel statistics at the warden
I BSCs with unknown cross over probability [Che-Bakshi-Chan-Jaggi 14]
I AWGN with unknown noise power [Lee-Baxley-Weitnauer-Walkenhorst 15]

I This talk: State-dependent channel with CSI at the transmitter
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Binary Symmetric Channel

X Zp
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I p fixed and known: Zero capacity [Bloch 16], [Wang-Wornell-Zheng 16]

I p random and unknown: Positive capacity [Che-Bakshi-Chan-Jaggi 14]
I p fixed and known, realizations known to the transmitter

I Our model
I Positive capacity by pre-cancellation
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Model

p(y, z|s, x)
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I State-dependent DMC (X ,S,Y,Z,PS ,PY ,Z |S,X )

I Transmitter and receiver share a secret key K ∈ [1 : 2nR0 ]

I Input cost function b(xn) = 1
n

∑n
i=1 b(xi )

I State sequence known to the transmitter causally or noncausally

I (R,RK , n) code for causal CSI
I Encoding function at time i : (M,K , S i )→ Xi

I Decoding function (Y n,K)→ M̂
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Model

p(y, z|s, x)
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I Covert communication:
I x0 ∈ X : “no input” symbol, Q0(·) =

∑
s∈S PS (s)PZ |S,X (·|s, x0)

I Small D(P̂Zn‖Q×n
0 ) ensures the warden’s best hypothesis test performs not

much better than a blind test.

I A covert rate of R is achievable if ∃ a sequence of (R,RK , n) codes that
simultaneously satisfies

I input cost constraint lim supn→∞ EM,K ,Sn [b(X n)] ≤ B
I reliability constraint limn→∞ P(M̂ 6= M) = 0
I covertness constraint limn→∞ D(P̂Zn‖Q×n

0 ) = 0

I Covert capacity C : Supremum of all achievable covert rates

8 / 21



Main Results: Causal CSI

Theorem 1 (Upper Bound)

For RK ≥ 0 and B ≥ 0, the covert capacity is upper-bounded as

C ≤ max
PV , x(v,s):

PZ =Q0, E[b(X )]≤B

I (V ;Y ).

Theorem 2 (Lower Bound)

For RK ≥ 0 and B ≥ 0, the covert capacity is lower-bounded as

C ≥ max
PV , x(v,s):

PZ =Q0, E[b(X )]≤B, I (V ;Z)−I (V ;Y )<RK

I (V ;Y ).
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Main Results: Noncausal CSI

Theorem 3 (Upper Bound)

For RK ≥ 0 and B ≥ 0, the covert capacity is upper-bounded as

C ≤ max
PU|S , x(u,s):

PZ =Q0, E[b(X )]≤B

I (U;Y )− I (U; S).

Theorem 4 (Lower Bound)

For RK ≥ 0 and B ≥ 0, the covert capacity is lower-bounded as

C ≥ max
PU|S , x(u,s):

PZ =Q0, E[b(X )]≤B, I (U;Z)−I (U;Y )<RK

I (U;Y )− I (U;S).
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Example: Binary Symmetric Channels

X Y = Zp

0

1

0

1

RK > 0, x0 = 0
Y = ZX

S ∼ Bern(p)

I Without CSI at the transmitter: C = 0
I With CSI at the transmitter: C = Hb(p) for both causal and noncausal

cases
I X = V ⊕ S , V ∼ Bern(p) independent with S
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Example: Binary Symmetric Channels

X Y = Zp

0

1

0

1

RK > 0, x0 = 0

V = Y = Z

I Without CSI at the transmitter: C = 0
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cases
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Example: AWGN Channels

Y

Z

X

NY ∼ N (0, 1)

NZ ∼ N (0, σ2)

S ∼ N (0, T )

E[X2] ≤ P

I Without CSI at the transmitter: C = 0
I With CSI at the transmitter: C > 0

I Make room for message transmission by reducing the interference power,
i.e., X = X∗ − γ∗S

I Choose P∗ and γ∗ to simultaneously satisfy the covertness constraint and

the input power constraint, i.e., γ∗ = min
{

1, P
2T

}
, T∗ = (1− γ∗)2T ,

P∗ = T − T∗
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Example: AWGN Channels

Y

Z

X∗

NY ∼ N (0, 1)

NZ ∼ N (0, σ2)

S∗ ∼ N (0, T ∗)

E[X2] ≤ P ∗

I Causal CSI at the transmitter
I Choose V = X∗ and treat interference as noise at the receiver
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Example: AWGN Channels

I γ∗ = min
{

1, P
2T

}
, T ∗ = (1− γ∗)2T , P∗ = T − T ∗

Theorem 5 (Causal CSI)

If

RK >
1

2
log

(
1 +

P∗

T ∗ + σ2

)
− 1

2
log

(
1 +

P∗

T ∗ + 1

)
,

the covert capacity with causal CSI at the transmitter is lower-bounded as

Cc ≥
1

2
log

(
1 +

P∗

T ∗ + 1

)
.

I If the warden’s channel is degraded, i.e., σ2 > 1, a secret key is not needed
to achieve the rate
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Example: AWGN Channels

Y

Z

X∗

NY ∼ N (0, 1)

NZ ∼ N (0, σ2)

S∗ ∼ N (0, T ∗)

E[X2] ≤ P ∗

I Noncausal CSI at the transmitter
I Choose U as in the dirty paper coding with input power constraint P∗ and

interference power T∗
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Example: AWGN Channels

I γ∗ = min
{

1, P
2T

}
, T ∗ = (1− γ∗)2T , P∗ = T − T ∗

Theorem 6 (Noncausal CSI)

If

RK >
1

2
log

(
1 +

(P∗ + P∗

P∗+1
T ∗)2

(P∗ + ( P∗
P∗+1

)2T ∗)(P∗ + T ∗ + σ2)− (P∗ + P∗
P∗+1

T ∗)2

)

− 1

2
log

(
1 +

(P∗ + P∗

P∗+1
T ∗)2

(P∗ + ( P∗
P∗+1

)2T ∗)(P∗ + T ∗ + 1)− (P∗ + P∗
P∗+1

T ∗)2

)
,

the covert capacity with noncausal CSI at the transmitter is given by

Cnc =
1

2
log (1 + P∗) .

I If the warden’s channel is degraded, i.e., σ2 > 1, a secret key is not needed
to achieve the capacity
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Example: AWGN Channels

I For RK sufficiently large,

Cc ≥
1

2
log

(
1 +

P∗

T ∗ + 1

)
Cnc =

1

2
log (1 + P∗) .

I If T ∗ = 0, i.e., T ≤ P
2

, Cc = Cnc.

I As T →∞, P∗ → P and hence Cnc approaches to the capacity without a
covertness constraint
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Achievability with Noncausal CSI

I Key idea: Gelfend-Pinsker coding, except that likelihood encoding by
[Song-Cuff-Poor 16], [Goldfeld-Kramer-Permuter-Cuff 17] is used instead
of joint-typicality encoding.

I Codebook generation:
I Fix PU|S and x(u, s) such that PZ = Q0 and E[b(X )] ≤ B

1+ε′ .

I For each k ∈ [1 : 2nRK ] and m ∈ [1 : 2nR ], randomly generate a

subcodebook C(k,m) = {un(k,m, l) : l ∈ [1 : 2nR
′
]} according to∏n

i=1 PU(ui ).

I Encoding: Given state sequence sn, secret key k, and message m, evaluate
the likelihood

g(l |sn, k,m) =
P×n
S|U(sn|un(k,m, l))∑

l′∈[1:2nR
′

] P
×n
S|U(sn|un(k,m, l ′))

.

The encoder randomly generates l according to the above and transmits
xn where xi = x(ui (k,m, l), si ).
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Achievability with Noncausal CSI

I Decoding: Upon receiving yn, with access to the secret key k, the decoder
declares that m̂ is sent if it is the unique message such that

(un(k, m̂, l), yn) ∈ T (n)
ε

for some l ∈ [1 : 2nR′ ]; otherwise it declares an error.

I Covertness analysis:
I Γ: Joint distribution when the codeword index in the subcodebook is

uniformly chosen and then the state sequence is generated in an iid manner
according to PS|U .

I P̂Zn ≈ ΓZn , if R′ > I (U;S)
I ΓZn ≈ Q×n

0 , if RK + R + R′ > I (U;Z)

I Reliability analysis:
I Done by packing lemma
I R + R′ < I (U;Y )
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Converse with Noncausal CSI

I Step (a): Bounding techniques for channels with noncausal CSI without
covertness constraint, where Ui := (M,K ,Y i−1, Sn

i+1).

I Step (b): Characterization of capacity function

C(A,B) := max
PU|S ,PX|U,S :

E[b(X )]≤B, D(PZ‖Q0)≤A

(I (U;Y )− I (U; S))

I The function C(A,B) is non-decreasing in each of A and B, and concave
and continuous in (A,B).

I Step (c): Application of covertness and input cost constraints

R
(a)

≤
1

n

n∑
i=1

(I (Ui ;Yi )− I (Ui ;Si )) + εn

(b)

≤
1

n

n∑
i=1

C(D(P̂Zi
‖Q0),E[b(Xi )]) + εn

(b)

≤ C

(
1

n

n∑
i=1

D(P̂Zi
‖Q0),

1

n

n∑
i=1

E[b(Xi )]

)
+ εn

(c)→ C (0,B)
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Conclusion

I Considered state dependent channel with state information at the
transmitter

I Characterized the covert capacity when a sufficiently long secret key is
shared between the transmitter and the receiver

I Derived lower bounds on the rate of the secret key that is needed to
achieve the covert capacity

I For certain channel models, showed that the covert capacity is positive
with CSI at the transmitter, but is zero without CSI

I Full version will be uploaded on arXiv soon
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