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POPULATION CODING

» “States” of a neuron: probability distributions of reactions to
different stimuli.

Pbite = 0-9|1)<1|+0-1|0><0| Ptouch = O-2|1)<1|+0-8|0><0|
1/0: a spike /no spike.

» A group of n >> 1 neurons —
tensor-power form states pgbn (8 = bite /touch).

» Population coding: the state pggn of a large group of neurons is a
coding for the stimulus 6.



A QUANTUM EXTENSION OF POPULATION CODING

» To build a robot using quantum techniques:
““neurons’ releasing different quantum states for different stimuli 6.

» Population coding — A population of quantum states pggm carrying 6.

» Compression: reduce the cost of population transmission.



| COMPRESS A QUANTUM POPULATION CODING

o
F s

;

Encoder

E

L

Decoder

D

’k

> Input: a quantum population p&" with 6
unknown.

o »Encoder/Decoder characterized by

quantum channels.

» Minimize the memory cost M (focusing
on the leading order of n).

» Output: a state that has vanishing
trace distance to pS" (faithfulness).



MINIMUM DESCRIPTION LENGTH

» [Rissanen 84"] The shortest length to describe a d-
parametric probability distribution Pg(x) given n

samples X1, X5, ..., Xy,
1, X2 n

—IEQ log PQ (.X') +

d/2logn

f

Entropy (data)

t

Distribution

» A compression task aimed at reconstructing the
(unknown) distribution (not the data, and thus beyond
i.i.d.) [Rissanen & followups; Hayashi, Tan 177].

» Nontrivial to generalize to quantum.

Universal Coding, Information,
Prediction, and Estimation

JORMA RISSANEN

n between universal codes and the problems of
estimation is established. A known lower bound
niversal codes is sharpened and generalized, and
constructed. The bound is defined to give the
lative to the considered class of processes. The
description length criterion for estimation of

tir number, is given a fundamental information.

showing that its estimators achieve the informa-
also shown that one cannot do prediction in

fy 13, 1983; revised January 16, 1984. This work
he IEEE International Symposium on Informa-
inada, September 26-30, 1983.

vhile the author was Visiting Professor at the
clence, University of California, Los Angeles,
BM Research Laboratory, San Jose, CA 95193,

‘Gaussian autoregressive moving average (ARMA) processes below a bound,
which is determined by the information in the data.

1. INTRODUCTION

HERE are three main problems in signal processing:

prediction, data compression, and estimation. In the
first, we are given a string of observed data points x,,
t=1,---,n, one after another, and the objective is to
predict for each ¢ the next outcome x, ., from what we
have seen so far. In the data compression problem we are
given a similar sequence of observations, each truncated to
some finite precision, and the objective is to redescribe the
data with a suitably designed code as efficiently as possi-
ble, i.e., with a short code length.

0018-9448 /84 /0700-0629$01.00 ©1984 IEEE



RELATED WORKS

> |dentically prepared pure qubit states [Plesch, Buzek; PRA 10': logn qubits.
Demonstrated (3 copies = 2 copies) by Rozema et al.

» Mixed qubit states [YY, GC, MH; PRL 16']:
logn qubits + 1/2 logn bits (necessary only when the state's mixedness is unknown).

» Clock states [YY, GC, MH arxiv:1703.05876]: 1/2logn qubits.

» General finite dimensional systems [YY,GC, Ebler; PRL 16']:
a protocol requiring O (log nn)-size memory. Not optimal in general.

» A general compression protocol, requiring the minimum total memory and less
quantum memory?
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CLASSICAL AND QUANTUM PARAMETERS

A non-degenerate state family {pgbn: 0 = (u, &) € 0} is characterized by two kinds
of parameters:

_ T
po=Usp, U
» Classical (free) parameters u: determining the spectrum

> Quantum (free) parameters ¢: determining the eigenbasis



EXAMPLES

Full qudit state family: fo =d — 1 and f, = d? —d.

Phase-covariant state family: fo =0 and f, =d — 1

po = UgpoUy Uy = Xy ek [k)(k|.
Classical distribution family: f. =d — 1 and f, = 0.

Displaced thermal states at known /unknown temperature: f; = 0/1 and f, = 2

Pa,p — DapﬁD;
pp =) (1= BF™|m)m| Dy = e<d'~7
m



MEMORY COST OF THE COMPRESSION

> [Recall] Pure qubits:
COSg |0) + Singeiq’ll) has two quantum parameters (8, @) and requires logn qubits.

» [Main result.] For each free parameter t, it takes:

1. (1/2 + 8) logn bits for t classical
Z. 1/21logn bits + 6 logn qubits for t quantum

to encode faithfully the n-copy state.

» 0 > 0 is a parameter independent of n (also affects the error), which can be
arbitrarily close to zero.



OPTIMALITY

Construct a mesh on O containing nf/2-9 mutually Q)
distinguishable states for any 6 > 0. f = f¢ + f,.

Consider any faithful compression protocol (&€, D):
o W (@ 98 @ G

Can faithfully communicate (f/2 — §) logn bits of messages.

v

@

-1/2+a
The communication cost log | M| cannot be smaller than the O(n )a>0

amount of messages. :pg" dist inguishablé r orrpge;n



N\YZANYZANYZANYZANYZANYIZANY AN\

ZANYZANYZANYZANYZ/ANYZANY/A\Y/
\YZANYZANYZANYZANYZANYZANYZA\
ZANYZANYZANYZANYZ/ANYZANY/A\Y/
\YZANYZANYZANYZANYZANYZANYZA\

FJANVIANVIANVIANVIANVIANVIANY S

COMPRESSION PROTOCOL | ow to achieve the



PROTOCOL FOR DISPLACED THERMAL STATES

Displaced thermal states py g = Dap[gDclL a € C, where D, is the displace
operator and pg is a fixed thermal state (state of a system in equilibrium).

Concentration of the displacement
®n Beam Splltterf RMn—-1)
Pap > Pynap @ Pg

Photon number distribution of p 7, 5: concentrated in an-0(n) window.
Photon number truncation p . 5 = (1 + &) logn qubits for any 6 > 0.

Two free parameters (@ € C), each around 1/2logn qubits.



PROTOCOL FOR QUDIT STATES

» Localization.

» Local asymptotic equivalence of n-tensor power qudit states and Gaussian
(displaced thermal & classical Gaussian) states.

» Compression of Gaussian states (Solved already!).



LOCALIZATION

1-6/2

» Take out a negligible portion of n copies and use them for tomography.

1,6
> Tomography pins 8 to a neighborhood 0; of size O(n"2'3) with exponentially

vanishing error.

» Encode the tomography outcome into a classical memory, so that the overall
quantum memory cost can be reduced.

» The same strategy can be used in the displaced thermal state case.

1-68/2

» Left withn —n copies (the lost copies can be retrieved later by amplification).



QUANTUM LOCAL ASYMPTOTIC NORMALITY (Q-LAN)

Q-LAN [Kahn, Guta; CMP 09’]

In the neighborhood O, pgbn is asymptotically equivalent to a classical-quantum
Gaussian state:

Qn Q-LAN — .,class quant
pg/\/ﬁ=y9_yu ®Vg
Classical mode y5'*S : a Gaussian distribution with f, variates;

uant

Quantum mode ]/Eq : a multimode (number of modes depending on fq) displaced

thermal state.

Problem reduced to compression of Gaussian distributions and displaced thermal
states.



ERROR BOUND

The compression error is upper bounded as

€, =0n"%%+0 (n_"(‘s)),
where the latter is the error of Q-LAN. Especially, k() > 0 for § € (0,2/9).

Faithfulness lim €,, = 0 is guaranteed as long as 6 > 0.
n—>00

The error vanishes slower when less quantum memory is used.
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FULLY CLASSICAL MEMORY DOESN'T WORK

» s it possible to reversibly convert pgzm into classical bits with an error vanishing in n 2

» Fact: a state family can be perfectly compressed into classical memory if and only if it
is classical, i.e. [p1, p2] = 0 for any pyq, p, from the family.

» Compression is only approximately perfect. Cannot directly apply the fact.



FULLY CLASSICAL MEMORY DOESN'T WORK

Consider pg?)n and pg(::l-t/\/ﬁ ; t > 0 is a vector of quantum parameters.

Approximation by Gaussian states:
@n Q—LAN
Pg, < 7o
®n oMV t
Po+t/ym & Ve = DeYoDy

110, Yelll > O (independent of n). || - || : operator norm.
A conpr ession pr ot ocol f o;r;gi" ) pgit/\/ﬁ — a protocol f ory, V.

State families containing both pég())n and p?;:l_t/\/ﬁ cannot be faithfully encoded in a classical

memory.

For state families with quantum parameters, compression with only classical memory
cannot have vanishing error.



SUMMARY AND FUTURE WORKS

Compression of p?n:

minimal memory cost: approximately 1/2logn for each degree of freedom;
the required memory is mainly classical;

a fully classical memory is not OK

Extension to non-product states with symmetry; e. g. states of bosonic systems.

A second-order theory?
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See arXiv 1701.03372
for more details

And enjoy the workshop and Singapore ~

THANKS FOR YOUR
ATTENTION!




