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Series

∑
an series

∑
an absolutely convergent ⇐⇒

∑
|an| converges∑

an conditionally convergent (c.c.) ⇐⇒
∑

an converges and∑
|an| = +∞

Notes: (1)
∑

an convergent =⇒ an → 0

(2) If
∑

an is conditionally convergent then∑
n∈P

an = +∞ and
∑
n∈N

an = −∞

where P = {n ∈ ω : an > 0} and N = {n ∈ ω : an < 0}
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Riemann’s rearrangement theorem

Riemann’s Rearrangement Theorem

Suppose
∑

an is conditionally convergent and r ∈ R∪{+∞,−∞}.
Then there is a rearrangement π ∈ Sym(ω) such that

∑
aπ(n) = r .

Also there is π ∈ Sym(ω) such that
∑

aπ(n) diverges by oscillation.

(lim infk
∑k

0 aπ(n) < lim supk
∑k

0 aπ(n))
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The questions

How many permutations do we need such that for every
conditionally convergent series

∑
an there is a permutation π in

our family such that
∑

aπ(n) no longer converges to the same
limit?

What does it mean for real to compute a conditionally convergent
series

∑
an of rationals such that for all computable permutations

π,
∑

aπ(n) =
∑

an?
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Rearrangement numbers

rr := min{|Π| : Π ⊆ Sym(ω) and ∀ c.c.
∑

an ∃π ∈ Π
(
∑

aπ(n) 6=
∑

an)} the rearrangement number

rro := min{|Π| : Π ⊆ Sym(ω) and ∀ c.c.
∑

an ∃π ∈ Π
(
∑

aπ(n) diverges by oscillation)}

rri := min{|Π| : Π ⊆ Sym(ω) and ∀ c.c.
∑

an ∃π ∈ Π
(
∑

aπ(n) = ±∞)}

rrf := min{|Π| : Π ⊆ Sym(ω) and ∀ c.c.
∑

an ∃π ∈ Π
(
∑

aπ(n) converges 6=
∑

an)}
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Highness properties

∑
an c.c. series of rationals.

∑
an is computably imperturbable if for all computable

permutations π, ∑
an =

∑
aπ(n)∑

an is weakly computably imperturbable if for all computable
permutations π,∑

an =
∑

aπ(n) or
∑

aπ(n) diverges by oscillation
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rr versus rro

rr := min{|Π| : Π ⊆ Sym(ω) and ∀ c.c.
∑

an ∃π ∈ Π
(
∑

aπ(n) 6=
∑

an)} the rearrangement number

rro := min{|Π| : Π ⊆ Sym(ω) and ∀ c.c.
∑

an ∃π ∈ Π
(
∑

aπ(n) diverges by oscillation)}

Theorem 1
rro = rr

Fact: ∀π ∈ Sym(ω) ∃σπ ∈ Sym(ω) such that

∃∞n (σπ[{0, ..., n − 1}] = {0, ..., n − 1})
∃∞n (σπ[{0, ..., n − 1}] = π[{0, ..., n − 1}])

Π witness for rr =⇒ Π ∪ {σπ : π ∈ Π} witness for rro
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rr versus non(meager)

non(meager) is the least size of a non-meager set of reals

Theorem 2

rr ≤ non(meager)

Proof:
∑

an c.c. given. K ∈ ω.

{π ∈ Sym(ω) : ∃n0 (
∑

n<n0
aπ(n) > K )} open dense.

Similarly with < −K instead of > K .

{π ∈ Sym(ω) :
∑

aπ(n) diverges by oscillation} dense Gδ.

Done!
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rr versus non(meager)
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Theorem 2
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Theorem 2’: If X is computably imperturbable, then X is weakly
meager engulfing (= high or DNC)
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rr versus b

b := min{|F | : F ⊆ ωω and ∀g ∈ ωω ∃f ∈ F ∃∞n (g(n) < f (n))}
the unbounding number

Theorem 3

b ≤ rr

Proof: A ⊆ ω, π ∈ Sym(ω).

π preserves A ⇐⇒ ∀∞n < m ∈ A (π(n) < π(m))

π jumbles A ⇐⇒ π does not preserve A

j := min{|Π| : Π ⊆ Sym(ω) and ∀A ∈ [ω]ω ∃π ∈ Π jumbling A}
the jumbling number

Claim 1: j ≤ rr

Claim 2: b = j
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rr versus b, 2

Theorem 3

b ≤ rr

j := min{|Π| : Π ⊆ Sym(ω) and ∀A ∈ [ω]ω ∃π ∈ Π jumbling A}
the jumbling number

Claim 1: j ≤ rr

Proof: Π family of permutations, |Π| < j.

∃A ∈ [ω]ω s.t. all π ∈ Π preserve A. A = {in : n ∈ ω}.∑
an c.c. given. Define

bk =

{
an if k = in
0 otherwise

Then
∑

bk =
∑

an c.c. Also
∑

bk =
∑

bπ(k) for all π ∈ Π. Done!
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rri , rrf versus d

rri := min{|Π| : Π ⊆ Sym(ω) and ∀ c.c.
∑

an ∃π ∈ Π
(
∑

aπ(n) = ±∞)}

rrf := min{|Π| : Π ⊆ Sym(ω) and ∀ c.c.
∑

an ∃π ∈ Π
(
∑

aπ(n) converges 6=
∑

an)}

d := min{|F | : F ⊆ ωω and ∀g ∈ ωω ∃f ∈ F ∀∞n (g(n) < f (n))}
the dominating number

Theorem 4

d ≤ rri , rrf

Theorem 4’: If X is hyperimmune then it is weakly computably
imperturbable

Proof similar to Theorem 3.
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rr versus cov(null)

cov(null) is the least size of a family of null sets covering the reals

Theorem 5

cov(null) ≤ rr

Rademacher’s Lemma

Let (cn : n ∈ ω) be a sequence of reals. Set

A = {f ∈ 2ω :
∑
n

(−1)f (n)cn converges}

Then

µ(A) =

{
1 if

∑
n c

2
n converges

0 otherwise
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Theorem 5
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Theorem 5’: If X computes a Schnorr random then it is
computably imperturbable

Note: Since a high degree computes a Schnorr random, this
strengthens Theorem 3’. However, in set theory, Theorems 3 and 5
are independent.
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rr versus cov(null), 2

Theorem 5

cov(null) ≤ rr

Proof: π ∈ Sym(ω).
∑ 1

π(n)2 convergent.

Aπ = {f ∈ 2ω :
∑

n
(−1)f (n)

π(n) diverges} null by Rademacher.

Bπ = {f ∈ 2ω :
∑

n
(−1)f (π(n))

π(n) diverges} null

(measure-preserving bijection).

Π family of permutations, |Π| < cov(null), id ∈ Π.

So
⋃
π∈Π Bπ 6= 2ω. Let f ∈ 2ω \

⋃
π∈Π Bπ.

Hence
∑ (−1)f (n)

n c.c. and
∑

n
(−1)f (π(n))

π(n) converges for all π ∈ Π.

Thus rro ≥ cov(null). By Theorem 1, rr ≥ cov(null). Done!
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Consequences

Corollary 6

CON (d < rr)

Proof: In the random model, cov(null) > d. So follows from
Theorem 5.

Corollary 7

CON (cov(null) < rr)

Proof: In the Laver / Hechler model, cov(null) < b. So follows
from Theorem 3.

Question 1

CON (rr < non(meager))?
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Upper bounds for rri , rrf ?

No known upper bounds for rri , rrf

rri := min{|Π| : Π ⊆ Sym(ω) and ∀ c.c.
∑

an ∃π ∈ Π
(
∑

aπ(n) = ±∞)}

Theorem 8

CON (rri < c)

Proof Idea: Start with a model of c > ω1.
Make a finite support iteration of σ-centered forcing of length ω1.
At each stage we add a permutation π s.t. for all ground model
c.c.

∑
an,
∑

aπ(n) diverges to either +∞ or −∞.
(This needs some preliminary forcing.)
Thus the ω1 permutations adjoined along the iteration witness
rri = ω1.
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Upper bounds for rri , rrf , 2?

rrf := min{|Π| : Π ⊆ Sym(ω) and ∀ c.c.
∑

an ∃π ∈ Π
(
∑

aπ(n) converges 6=
∑

an)}

Theorem 9

CON (rrf < c)

Proof Idea: Start with a model of c > ω1.
Make a finite support iteration of σ-linked forcing of length ω1.
Use the Lévy-Steinitz Theorem (finite-dimensional version of
Riemann’s Theorem).

Conjecture 1

rri ≤ rrf

Conjecture 2

CON (rri < rrf )
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Use the Lévy-Steinitz Theorem (finite-dimensional version of
Riemann’s Theorem).

Conjecture 1

rri ≤ rrf

Conjecture 2

CON (rri < rrf )

Jörg Brendle Rearrangements



Upper bounds for rri , rrf , 2?

rrf := min{|Π| : Π ⊆ Sym(ω) and ∀ c.c.
∑

an ∃π ∈ Π
(
∑

aπ(n) converges 6=
∑

an)}

Theorem 9

CON (rrf < c)

Proof Idea: Start with a model of c > ω1.
Make a finite support iteration of σ-linked forcing of length ω1.
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The subseries number

If
∑

an is c.c. then it has a divergent subseries
∑

n∈X an,
X ∈ [ω]ω.

ß := min{|F| : F ⊆ [ω]ω and ∀ c.c.
∑

an ∃X ∈ F
(
∑

n∈X an diverges)} the subseries number

Known: (1) cov(null) ≤ ß ≤ non(meager)

(2) s ≤ ß where

s := min{|F| : F ⊆ [ω]ω and ∀Y ∈ [ω]ω ∃X ∈ F
(|X ∩ Y | = |Y \ X | = ω)} the splitting number

Theorem 10

CON(ß < b); so also CON(ß < rr)

Question 2

CON(rr < ß)?
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The subseries number

If
∑

an is c.c. then it has a divergent subseries
∑

n∈X an,
X ∈ [ω]ω.

ß := min{|F| : F ⊆ [ω]ω and ∀ c.c.
∑

an ∃X ∈ F
(
∑

n∈X an diverges)} the subseries number

Known: (1) cov(null) ≤ ß ≤ non(meager)

(2) s ≤ ß where

s := min{|F| : F ⊆ [ω]ω and ∀Y ∈ [ω]ω ∃X ∈ F
(|X ∩ Y | = |Y \ X | = ω)} the splitting number

Theorem 10

CON(ß < b); so also CON(ß < rr)

Proof idea: this holds in the Laver model.

Question 2

CON(rr < ß)?
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