On the first-order part of Ramsey's theorem for pairs

Keita Yokoyama (JAIST)

Workshop on Computable Structures and Reverse Mathematics Workshop on Computability Theory and the Foundations of Mathematics

September 11, 2017

Contents

(1) Introduction and preliminaries

- Ramsey's theorem in second-order arithmetic
- Conservation proofs
(2) First-order strength of Ramsey's theorem
- The first-order strength of Ramsey's theorem
- Indicator argument and forcing

Contents

(1) Introduction and preliminaries

- Ramsey's theorem in second-order arithmetic
- Conservation proofs

2) First-order strength of Ramsey's theorem

- The first-order strength of Ramsey's theorem
- Indicator argument and forcing

Ramsey's theorem in second-order arithmetic Conservation proofs

Ramsey's theorem

We will argue in $R C A_{0}$.

Definition (Ramsey's theorem.)

- RT_{k}^{n} : for any $P:[\mathbb{N}]^{n} \rightarrow k$, there exists an infinite set $H \subseteq \mathbb{N}$ such that $\left|P\left([H]^{n}\right)\right|=1$.
- $\mathrm{RT}^{n}:=\forall k \mathrm{RT}_{k}^{n}$.
- $\mathrm{RT}:=\forall n \mathrm{RT}^{n}$.

Proposition (RCA_{0})

(1) If $n^{\prime} \leq n, k^{\prime} \leq k$, then $\mathrm{RT}_{k}^{n} \Rightarrow \mathrm{RT}_{k^{\prime}}^{n^{\prime}}$.
(2) $\mathrm{RT}_{k}^{n} \Rightarrow \mathrm{RT}_{k+1}^{n}$.

Ramsey's theorem in second-order arithmetic

Ramsey's theorem

Proposition (RCA $)$

For any $n \in \omega, \mathrm{RT}_{2}^{n+1} \Rightarrow \mathrm{RT}^{n}$.

Theorem (Jockusch/Simpson)

- ACA_{0} proves RT_{k}^{n} for any $n, k \in \omega$.
- Over $\mathrm{RCA}_{0}, \mathrm{RT}_{2}^{3}$ implies ACA_{0}.

Thus,
$\mathrm{RCA}_{0}=\mathrm{RT}_{2}^{1} \leq \mathrm{RT}^{1} \leq \mathrm{RT}_{2}^{2} \leq \mathrm{RT}^{2} \leq \mathrm{RT}_{2}^{3}=\mathrm{RT}^{3}=\cdots=\mathrm{ACA}_{0}$

Computability theoretic strength of RT_{2}^{2}

- $\mathrm{RCA}_{0} \nVdash \mathrm{RT}_{2}^{2}$. (Specker 1971)
\Uparrow there exists a computable coloring for pairs which has no computable homogeneous set.
Later, $\mathrm{RCA}_{0}+\mathrm{RT}_{2}^{2} \vdash \mathrm{DNR}$ (HJKLS 2008).
- $\mathrm{RCA}_{0}+\mathrm{RT}_{2}^{2} \nvdash \mathrm{RT}_{2}^{3}$. (Seetapun 1995)
\Uparrow Cone avoidance theorem.
Later, low_{2}-basis theorem (CJS 2001).
- $\mathrm{RCA}_{0}+\mathrm{RT}_{2}^{2} \nvdash \mathrm{WKL}$. (Liu 2011)
- (and many more works, see, 'Slicing the truth' by Hirschfeldt.)

We have the following separation on ω models,

$$
\begin{array}{ccc}
\mathrm{RT}_{2}^{1}\left(\leq \mathrm{RT}^{1}\right) & <\mathrm{RT}_{2}^{2}\left(\leq \mathrm{RT}^{2}\right) & <\mathrm{RT}_{2}^{3} \\
\| & <A & \| \\
\mathrm{RCA}_{0} & <\mathrm{WKL}_{0}<\mathrm{ACA}_{0}
\end{array}
$$

How about first-order consequences?

Ramsey's theorem in second-order arithmetic Conservation proofs

Contents

(1) Introduction and preliminaries

- Ramsey's theorem in second-order arithmetic
- Conservation proofs
(2) First-order strength of Ramsey's theorem
- The first-order strength of Ramsey's theorem
- Indicator argument and forcing

First-order part and ω-extensions

Let $\mathrm{RCA}_{0} \subseteq T_{0} \subseteq T_{1}$ be \mathcal{L}_{2}-theories.

Theorem (ω-extension property)

Assume that T_{0} and T_{1} satisfy the following condition:

- for any countable model $(M, S) \models T_{0}$ and $A \in S$, there exists $\bar{S} \subseteq \mathcal{P}(M)$ such that $A \in \bar{S}$ and $(M, \bar{S}) \models T_{1}$.
Then, T_{1} is a Π_{1}^{1}-conservative extension of T_{0}.

Theorem (Conservation results by ω-extension property)

- RCA_{0} and WKL_{0} are Π_{1}^{1}-conservative extensions of $\mathrm{I} \Sigma_{1}^{0}$. (Harrington, et al.)
- $\mathrm{RCA}_{0}+\mathrm{B} \Sigma_{2}^{0}$ and $\mathrm{WKL}_{0}+\mathrm{B} \Sigma_{2}^{0}$ are Π_{1}^{1}-conservative extensions of $\mathrm{B} \Sigma_{2}^{0}$. (Hajek)
- ACA_{0} is a Π_{1}^{1}-conservative extension of PA ($\mathrm{I} \Sigma_{<\infty}^{0}$).

First-order part and cuts of nonstandard models

Theorem (cuts of nonstandard models)

Assume that T_{0} and T_{1} satisfy the following condition:

- for any countable nonstandard model $(M, S) \models T_{0}$ and for any $\varphi(\bar{a}, \bar{A}) \in \Pi_{n}^{0}$ with $\bar{a} \in M$ and $\bar{A} \in S$, there exists a cut $I \subseteq_{e} M$ such that $\bar{a} \in I$ and $(I, \operatorname{Cod}(M / I)) \models T_{1}+\varphi(\bar{a}, \bar{A} \cap I)$. (Here, $\operatorname{Cod}(M / I)=S \upharpoonright I:=\{X \cap I: X \in S\}$.)
Then, T_{1} is a $\tilde{\Pi}_{n+1}^{0}$-conservative extension of T_{0}.
(Here $\tilde{\Pi}_{n}^{0}$-formula is of the form $\forall X \theta$ where θ is Π_{n}^{0}.)
- any cut preserves $\varphi \in \Pi_{1}^{0}$
- preserving Π_{2}^{0}-statement
\Leftrightarrow preserving the totality of a function
- preserving Π_{3}^{0}-statement
\Leftrightarrow preserving the divergence of the form $\lim _{n \rightarrow \infty} f(n)=\infty$

First-order part and cuts of nonstandard models

Theorem (cuts of nonstandard models)

Assume that T_{0} and T_{1} satisfy the following condition:

- for any countable nonstandard model $(M, S) \models T_{0}$ and for any $\varphi(\bar{a}, \bar{A}) \in \Pi_{n}^{0}$ with $\bar{a} \in M$ and $\bar{A} \in S$, there exists a cut $I \subseteq_{e} M$ such that $\bar{a} \in I$ and $(I, \operatorname{Cod}(M / I)) \models T_{1}+\varphi(\bar{a}, \bar{A} \cap I)$. (Here, $\operatorname{Cod}(M / I)=S \upharpoonright I:=\{X \cap I: X \in S\}$.)
Then, T_{1} is a Π_{n+1}^{0}-conservative extension of T_{0}.

Theorem (Conservation results by cuts of nonstandard models)

- $\mathrm{B} \Sigma_{2}^{0}$ is a Π_{3}^{0}-conservative extension of $\mathrm{I} \Sigma_{1}^{0}$.
(Parsons/Paris/Friedman)
- $\mathrm{I} \Sigma_{1}^{0}$ is a Π_{2}^{0}-conservative extension of Primitive Recursive Arithmetic (PRA). (Parsons)

Actually, one can prove the full Π_{1}^{1}-conservation by cuts of nonstandard models.

Proposition

For $n \in \omega, \mathrm{WKL}_{0}$ is a $\tilde{\Pi}_{2 n+1}^{0}$-conservative extension of $\mathrm{I} \Sigma_{1}^{0}$.
To show this, for given $M \models I \Sigma_{1}^{0}$ and $\varphi \in \Pi_{2 n}^{0}$, one needs to find a cut $I \subseteq_{e} M$ such that $(I, \operatorname{Cod}(M / I)) \models W_{K L}$ and I preserves φ.

- Consider a combinatorial condition to find a cut for $W_{K L}$ preserving φ.
\Rightarrow indicator argument

Indicators

Let T be a theory of second-order arithmetic.
A Σ_{0}-definable function $Y:[M]^{2} \rightarrow M$ is said to be an indicator for
$T \supseteq \mathrm{WKL}_{0}^{*}$ if

- $Y(x, y) \leq y$,
- if $x^{\prime} \leq x<y \leq y^{\prime}$, then $Y(x, y) \leq Y\left(x^{\prime}, y^{\prime}\right)$,
- $Y(x, y)>\omega$ if and only if there exists a cut $I \subseteq_{e} M$ such that $x \in I<y$ and $(I, \operatorname{Cod}(M / I)) \models T$.
(Here, $Y(x, y)>\omega$ means that $Y(x, y)>n$ for any standard natural number n.)

Example

- $Y(x, y)=\max \left\{n: \exp ^{n}(x) \leq y\right\}$ is an indicator for $W K L_{0}^{*}$.
- $Y(x, y)=\max \left\{n\right.$:any $f[[x, y]]^{n} \rightarrow 2$ has a homogeneous set
$Z \subseteq[x, y]$ such that $|Z|>\min Z\}$
is an indicator for ACA_{0}.

Basic properties of indicators

Theorem

If Y is an indicator for a theory T, then for any $n \in \omega$,

$$
T \vdash \forall x \exists y Y(x, y) \geq n .
$$

Theorem

If Y is an indicator for a theory T, then, T is a Π_{2}^{0}-conservative extension of EFA $+\{\forall x \exists y Y(x, y) \geq n \mid n \in \omega\}$.

Let $F_{n}^{Y}(x)=\min \{y \mid Y(x, y) \geq n\}$.

Theorem

If Y is an indicator for a theory T and $T \vdash \forall x \exists y \theta(x, y)$ for some Σ_{1}-formula θ, then, there exists $n \in \omega$ such that

$$
T \vdash \forall x \exists y<F_{n}^{Y}(x) \theta(x, y) .
$$

To find an indicator for $\mathrm{WKL}_{0}+\varphi$, we will define a relation $X \Vdash_{m}^{\mathrm{WKL}_{0}} \varphi$ inductively. We will argue within RCA_{0}.
We write $\operatorname{para}(\varphi)$ for the max of number parameters in φ.

Definition (generalized m-largeness notion for $W_{K} L_{0}$)

Let $\varphi \in \Pi_{2 n}^{0}$. Let $X \subseteq_{\text {fin }} \mathbb{N}$, and $m \in \mathbb{N}$.

- $X \Vdash_{0}^{\mathrm{WKL}_{0}} \varphi$ if φ is Π_{0}^{0} and $\varphi \wedge|X|>2 \wedge \operatorname{para}(\varphi)<\min X$.
- $X \Vdash_{m+1}^{\mathrm{WKL}_{0}} \varphi$ if $m+1 \geq n$ and
- if $m \geq n$, then for any partition $Z_{0} \sqcup \cdots \sqcup Z_{\ell-1}=X$ such that $\ell \leq Z_{0}<\cdots<Z_{\ell-1}$, there exists $i<\ell$ such that $Z_{i} \Vdash_{m}^{\mathrm{WK} L_{0}} \varphi$, and,
- if $\varphi \equiv \forall x \exists y \theta(x, y)$, then, for any $a<\min X$, there exists $Z \subseteq X$ and $b<\min Z$ such that $Z \Vdash{ }_{m}^{W K L_{0}} \varphi$ if $m \geq n$ and $Z \Vdash_{m}^{W K L_{0}} \theta(a, b)$.

Note that for each $\varphi \in \Pi_{2 n}^{0}$ "X $\Vdash_{m}^{\mathrm{WKL}_{0}} \varphi$ " can be expressed by a Π_{0}^{0}-formula uniformly.

Put $Y_{\varphi}^{\mathrm{WKL}}(a, b):=\max \left\{m \mid[a, b] \Vdash_{m}^{\mathrm{WKL}} \mathrm{L}_{0} \varphi\right\}$.

Theorem

$Y_{\varphi}^{\mathrm{WKL}}{ }^{\mathrm{W}}$ is an indicator for $\mathrm{WKL}_{0}+\varphi$.
By an easy combinatorics, we have

Lemma

For any $m \in \omega$ and $\varphi \in \Pi_{2 n}^{0}$ such that $m \geq n$,

$$
\mathrm{RCA}_{0} \vdash \forall x \exists y Y_{\varphi}^{\mathrm{WKL}_{0}}(x, y) \geq m
$$

Proposition

For $n \in \omega, \mathrm{WKL}_{0}$ is a $\tilde{\Pi}_{2 n+1}^{0}$-conservative extension of $\mathrm{I} \Sigma_{1}^{0}$.
This argument can be reformulated by "forcing for generic cuts". (We will see this later.)

Contents

Introduction and preliminaries

- Ramsey's theorem in second-order arithmetic - Conservation proofs
(2) First-order strength of Ramsey's theorem
- The first-order strength of Ramsey's theorem
- Indicator argument and forcing

The first-order strength of Ramsey's theorem

Theorem

Over RCA ${ }_{0}$,
(1) RT_{2}^{1} is provable,
(2) RT^{1} is equivalent to $\mathrm{B} \Sigma_{2}^{0}$,
(3) if $n \geq 3, \mathrm{RT}_{2}^{n}$ is equivalent to ACA_{0}.

Corollary

(1) $\mathrm{RCA}_{0}+\mathrm{RT}_{2}^{1}$ is a Π_{1}^{1}-conservative extension of $\mathrm{I} \Sigma_{1}^{0}$.
(2) $\mathrm{RCA}_{0}+\mathrm{RT}^{1}$ is a Π_{1}^{1}-conservative extension of $\mathrm{B} \Sigma_{2}^{0}$.
(3) For $n \geq 3, \mathrm{RCA}_{0}+\mathrm{RT}_{2}^{n}$ and $\mathrm{RCA}_{0}+\mathrm{RT}^{n}$ are Π_{1}^{1}-conservative extensions of PA.

How about RT_{2}^{2} or RT^{2} ?

The first-order strength of Ramsey's theorem for pairs

Theorem (Hirst)

Over $\mathrm{RCA}_{0}, \mathrm{RT}_{2}^{2}$ implies $\mathrm{B} \Sigma_{2}^{0}$ and RT^{2} implies $\mathrm{B} \Sigma_{3}^{0}$.
Cholak/Jockusch/Slaman reformulated low $_{2}$-solution on nonstandard models, and obtained ω-extension property for RT_{2}^{2} and RT^{2}.

Theorem (Cholak/Jockusch/Slaman)

(1) $\mathrm{WKL}_{0}+\mathrm{I} \Sigma_{2}^{0}+\mathrm{RT}_{2}^{2}$ is a Π_{1}^{1}-conservative extension of $\mathrm{I} \Sigma_{2}^{0}$.
(2) $\mathrm{WKL}_{0}+\mathrm{I} \Sigma_{3}^{0}+\mathrm{RT}^{2}$ is a Π_{1}^{1}-conservative extension of $\mathrm{I} \Sigma_{3}^{0}$.
$\mathrm{B} \Sigma_{2}^{0} \leq\left(\mathrm{RCA}_{0}+\mathrm{RT}_{2}^{2}\right)_{\Pi_{1}^{1}} \leq \mathrm{I} \Sigma_{2}^{0}$ and $\mathrm{B} \Sigma_{3}^{0} \leq\left(\mathrm{RCA}_{0}+\mathrm{RT}^{2}\right)_{\Pi_{1}^{1}} \leq \mathrm{I} \Sigma_{3}^{0}$.

The first-order strength of Ramsey's theorem for pairs

Here are the recent developments for RT_{2}^{2} and RT^{2}.
Theorem (Chong/Slaman/Yang 2014)
$\mathrm{RCA}_{0}+\mathrm{RT}_{2}^{2}$ does not imply $\mathrm{I} \Sigma_{2}^{0}$.

Theorem (Patey/Y)

$\mathrm{WK} \mathrm{L}_{0}+\mathrm{RT}_{2}^{2}$ is a $\tilde{\Pi}_{3}^{0}$-conservative extension of $\mathrm{I} \Sigma_{1}^{0}$.

Theorem (Slaman $/ \mathrm{Y}$)

$W K L_{0}+\mathrm{RT}^{2}$ is a Π_{1}^{1}-conservative extension of $\mathrm{B} \Sigma_{3}^{0}$.

The first-order part of RT^{2}

Theorem (Slaman/Y)

$\mathrm{RCA}_{0}+\mathrm{RT}^{2}$ is a Π_{1}^{1}-conservative extension of $\mathrm{B} \Sigma_{3}^{0}$.
This is an easy consequence of the following lemma.

Lemma

Let (M, S) be a model of $B \Sigma_{3}^{0}$ and let $P:[M]^{2} \rightarrow k(k \in M)$ be a member of S. Then, there exists a set $G \subseteq M$ such that $P \upharpoonright[G]^{2}$ is constant, G is unbounded in M, and $(M, S \cup\{G\}) \models B \Sigma_{3}^{0}$.

This is proved by showing that any coloring $P:[\mathbb{N}]^{2} \rightarrow k$ has a low_{2} homogeneous set (preserving $\mathrm{B} \Sigma_{3}^{0}$) and the construction refers to $\mathbf{0}^{\prime \prime}$ small number of times.

- Note that the proof provides feasible (canonical polynomial) proof-interpretation for Π_{1}^{1}-consequences.

Calibrating the first-order part of RT_{2}^{2}

Question

Is $\mathrm{RCA}_{0}+\mathrm{RT}_{2}^{2}$ a Π_{1}^{1}-conservative extension of $\mathrm{B} \Sigma_{2}^{0}$?
The answer is yes up to the level of Π_{3}^{0}.

Theorem (Patey/Y)

$\mathrm{RCA}_{0}+\mathrm{RT}_{2}^{2}$ is a $\tilde{\Pi}_{3}^{0}$-conservative extension of $\mathrm{I} \Sigma_{1}^{0}$.
This is proved by using cuts obtained by Paris's indicator argument.

Definition (RCA ${ }_{0}$, Paris)

- A finite set $X \subseteq \mathbb{N}$ is said to be 0 -dense if $|X|>\min X$.
- A finite set X is said to be $m+1$-dense if for any $P:[X]^{2} \rightarrow 2$, there exists $Y \subseteq X$ which is m-dense and P-homogeneous.

Note that " X is m-dense" can be expressed by a Σ_{0}^{0}-formula.

Cuts for RT_{2}^{2}

Theorem (Bovykin/Weiermann)

If $(M, S) \models R^{2} C A_{0}$ is countable nonstandard and $[a, b] \subseteq M$ is m-dense for any $m \in \omega$, then there exists a cut $a \in I \subseteq_{e} M$ such that $(I, \operatorname{Cod}(M / I)) \models \mathrm{WKL}_{0}+\mathrm{RT}_{2}^{2}$.

Theorem (Patey/Y)

For any $m \in \omega, \mathrm{RCA}_{0}$ proves the following:
$m \mathrm{PH}_{2}^{2}$: any infinite set contains m-dense set.
In fact, if X is $\omega^{300^{m}}$-large then X is m-dense within RCA_{0}, which is shown only by finite cominatorics (Kołodziejczyk/Y).

Corollary

$W K L_{0}+\mathrm{RT}_{2}^{2}$ is a Π_{2}^{0}-conservative extension of RCA_{0}.

Contents

Introduction and preliminaries

- Ramsey's theorem in second-order arithmetic
- Conservation proofs
(2) First-order strength of Ramsey's theorem
- The first-order strength of Ramsey's theorem
- Indicator argument and forcing

Indicator plus forcing for generic cuts

To analyze Π_{n}^{0}-consequences for $n \geq 3$, we will sharpen the indicator argument.
(joint work with Kołodziejczyk, Wong, et al.)

- Let $M=\left(\mathbb{N}^{M}, S ; U^{M}\right)$ be a countable model of $R C A_{0}+" U \subseteq \mathbb{N}$ is a proper cut" $+(\forall m \in U)\left(m \mathrm{PH}_{2}^{2}\right)$.
(Any nonstandard model has an expansion for such U by putting $U^{M}=\omega$.)
- Within M, consider a poset (\mathbb{P}, \unlhd) :
$\mathbb{P}=\left\{Y \subseteq_{M \text {-fin }} M: Y\right.$ is a-dense for some a $\left.\notin U\right\}$,
$Y \unlhd X \Leftrightarrow Y \subseteq X$ (inclusion order, smaller set is strong).
- For a given generic filter G on \mathbb{P}, put

$$
I_{G}:=\sup \{\min Y: Y \in G\} \subseteq_{e} M,
$$

then $M[G]:=\left(I_{G}, \operatorname{Cod}\left(M / I_{G}\right)\right)$ is a model of $\mathrm{WKL}_{0}+\mathrm{RT}_{2}^{2}$.

Indicator plus forcing for generic cuts

Syntactical part is defined as follows: let $X \in \mathbb{P}$,

- if $\bar{a} \in \mathbb{N}$ and $\bar{A} \in[\mathbb{N}]^{<\mathbb{N}}$,

$$
X \Vdash \psi(\bar{a}, \bar{A}) \Leftrightarrow \psi(\bar{a}, \bar{A} \cap[0, \max X]) \wedge \bar{a}<\min X
$$

- \wedge, \vee, \neg defined as usual,
- $X \Vdash \exists x \psi(x) \Leftrightarrow \forall Y \unlhd X \exists Z \unlhd Y \exists a<\min Z Z \Vdash \psi(a)$,
- $X \Vdash \exists X \psi(X) \Leftrightarrow \forall Y \unlhd X \exists Z \unlhd Y \exists A \subseteq[0, \max Z] Z \Vdash \psi(A)$.

For a given \mathcal{L}_{2}-formula ψ, " $X \Vdash \psi$ " is $\Sigma_{0}^{0, U}$.

Theorem

$W \mathrm{WL}_{0}+\mathrm{RT}_{2}^{2}$ is a Π_{n+1}^{0}-conservative extension of $\mathrm{RCA}_{0}+$ " U is a cut" $+\left\{\psi \rightarrow \exists X(X \Vdash \psi): \psi \in \Pi_{n}^{0}\right\}$.

Eliminating " U is a cut"

Combine "density for $\mathrm{RT}_{2}^{2 \text { " }}$ and generalized indicator for WKL_{0}.

Definition (generalized m-density notion for RT_{2}^{2})

Let $\varphi \in \Pi_{2 n}^{0}$. Let $X \subseteq_{\text {fin }} \mathbb{N}$, and $m \in \mathbb{N}$.

- $X \Vdash_{0} \varphi$ if φ is Π_{0}^{0} and $\varphi \wedge|X|>2 \wedge \operatorname{para}(\varphi)<\min X$.
- $X \Vdash_{m+1} \varphi$ if $m+1 \geq n$ and
- if $m \geq n$, then for any partition $Z_{0} \sqcup \cdots \sqcup Z_{\ell-1}=X$ such that $\ell \leq Z_{0}<\cdots<Z_{\ell-1}$, there exists $i<\ell$ such that $Z_{i} \Vdash_{m}^{\mathrm{WKL}_{0}} \varphi$,
- if $m \geq n$, then for any $P:[X]^{2} \rightarrow 2$, there exists a P homogeneous set $Z \subseteq X$ such that $Z \Vdash_{m} \varphi$, and,
- if $\varphi \equiv \forall x \exists y \theta(x, y)$, then, for any $a<\min X$, there exists $Z \subseteq X$ and $b<\min Z$ such that $Z \Vdash_{m} \varphi$ if $m \geq n$ and $Z \Vdash_{m} \theta(a, b)$.

Eliminating " U is a cut"

Proposition

If $\psi \in \Pi_{2 n}^{0}, m \in \omega$ and $m \geq n$, then

$$
\mathrm{WKL}_{0}+\mathrm{RT}_{2}^{2} \vdash \psi \rightarrow \exists X\left(X \Vdash_{m} \psi\right) .
$$

Given a cut U, put $\mathbb{P}=\left\{X: X \Vdash_{a} \psi\right.$ for some $\left.a \notin U\right\}$, then we have

- $X \Vdash_{m} \psi$ for any $m \in U \Rightarrow X \Vdash \psi$.

Thus, if $M \models \mathrm{RCA}_{0}+\left\{\psi \rightarrow \exists X\left(X \Vdash_{m} \psi\right): m \in \omega\right\}$ and M is nonstandard, then one can obtain a cut to be a model of $\mathrm{WKL}_{0}+\mathrm{RT}_{2}^{2}$ with forcing ψ.
(Put $U^{M}=\omega$.)

Theorem

$W \mathrm{WL}_{0}+\mathrm{RT}_{2}^{2}$ is a $\Pi_{2 n+1}^{0}$-conservative extension of $\mathrm{RCA}_{0}+\left\{\psi \rightarrow \exists X\left(X \Vdash_{m} \psi\right): m \in \omega, \psi \in \Pi_{2 n}^{0}, m \geq n\right\}$.

What is the first-order part of RT_{2}^{2} ?

Question

Is $\mathrm{RCA}_{0}+\mathrm{RT}_{2}^{2}$ a Π_{1}^{1}-conservative extension of $\mathrm{B} \Sigma_{2}^{0}$?
The answer is yes if

- $\mathrm{RCA}_{0}+\mathrm{B} \Sigma_{2}^{0}$ proves $\psi \rightarrow \exists X\left(X_{m} \Vdash \psi\right)$ for any $\psi \in \Sigma_{0}^{1}$ and $m \in \omega$.
This is true for the case $\psi \in \Pi_{2}^{0}$, thus we have Π_{3}^{0}-conservation:
- to force the totality of f defined by $\psi \in \Pi_{2}^{0}$ with $\operatorname{para}(\psi)<a$: if for any $x, y \in X, x<y \rightarrow f(x)<y$ and X is m-dense, then $X \Vdash_{m} f$ is total,
- one can find an m-dense set $X \subseteq\{a, f(a), f(f(a)), \ldots\}$ in $I \Sigma_{1}^{0}$.

Theorem (Patey/Y)

$\mathrm{RCA}_{0}+\mathrm{RT}_{2}^{2}$ is a $\tilde{\Pi}_{3}^{0}$-conservative extension of $\mathrm{I} \Sigma_{1}^{0}$.

Feasible Π_{3}^{0}-conservation?

The previous argument may provide canonical proof-transformation.

Conjecture (Kołodziejczyk/Wong/Y)

There is a canonical polynomial proof transformation between $\mathrm{WKL}_{0}+\mathrm{RT}_{2}^{2}$ and $\mathrm{I} \Sigma_{1}^{0}$ for $\tilde{\Pi}_{3}^{0}$-formulas.

For example, if a Π_{2}^{0}-formula $\forall x \exists y \theta(x, y)$ is provable from $\mathrm{WKL}_{0}+\mathrm{RT}_{2}^{2}$, then one may feasibly extract a primitive recursive function $f: \omega \rightarrow \omega$ from the proof so that $\omega \models \forall x \exists y<f(x) \theta(x, y)$.

Thank you!

- Andrey Bovykin and Andreas Weiermann. The strength of infinitary Ramseyan principles can be accessed by their densities. to appear.
- Ludovic Patey and Y, The proof-theoretic strength of Ramsey's theorem for pairs and two colors, draft, available at http://arxiv.org/abs/1601.00050
- Theodore A. Slaman and Y, The strength of Ramsey's theorem for pairs and arbitrary many colors, draft.

This work is partially supported by JSPS Grant-in-Aid 16K17640 and JSPS Core-to-Core Program (A. Advanced Research Networks).

