On the first-order part of Ramsey's theorem for pairs

Keita Yokoyama (JAIST)

Workshop on Computable Structures and Reverse Mathematics Workshop on Computability Theory and the Foundations of Mathematics

September 11, 2017

Contents

Introduction and preliminaries

- Ramsey's theorem in second-order arithmetic
- Conservation proofs

Pirst-order strength of Ramsey's theorem

- The first-order strength of Ramsey's theorem
- Indicator argument and forcing

Contents

Ramsey's theorem in second-order arithmetic Conservation proofs

Introduction and preliminaries

- Ramsey's theorem in second-order arithmetic
- Conservation proofs

2 First-order strength of Ramsey's theorem

- The first-order strength of Ramsey's theorem
- Indicator argument and forcing

Ramsey's theorem in second-order arithmetic Conservation proofs

Ramsey's theorem

We will argue in RCA₀.

Definition (Ramsey's theorem.)

- $\operatorname{RT}_{k}^{n}$: for any $P : [\mathbb{N}]^{n} \to k$, there exists an infinite set $H \subseteq \mathbb{N}$ such that $|P([H]^{n})| = 1$.
- $\mathbf{RT}^n := \forall k \ \mathbf{RT}^n_k$.
- **RT** := $\forall n \text{ RT}^n$.

Proposition (RCA₀)

1 If
$$n' \le n, k' \le k$$
, then $\operatorname{RT}_{k}^{n} \Rightarrow \operatorname{RT}_{k'}^{n'}$.
R $_{k}^{n} \Rightarrow \operatorname{RT}_{k+1}^{n}$.

Ramsey's theorem in second-order arithmetic Conservation proofs

Ramsey's theorem

Proposition (RCA₀)

For any
$$n \in \omega$$
, $\mathrm{RT}_2^{n+1} \Rightarrow \mathrm{RT}^n$.

Theorem (Jockusch/Simpson)

- ACA₀ proves RT_k^n for any $n, k \in \omega$.
- Over RCA_0 , RT_2^3 implies ACA_0 .

Thus,

$$\mathsf{RCA}_0 = \mathrm{RT}_2^1 \le \mathrm{RT}^1 \le \mathrm{RT}_2^2 \le \mathrm{RT}^2 \le \mathrm{RT}_2^3 = \mathrm{RT}^3 = \cdots = \mathsf{ACA}_0$$

Computability theoretic strength of RT_2^2

RCA₀ ⊭ RT₂². (Specker 1971)

 ↑ there exists a computable coloring for pairs
 which has no computable homogeneous set.

 Later, RCA₀ + RT₂² ⊢ DNR (HJKLS 2008).

- RCA₀ + RT₂² ⊭ RT₂³. (Seetapun 1995)
 ↑ Cone avoidance theorem. Later, low₂-basis theorem (CJS 2001).
- $RCA_0 + RT_2^2 \nvDash WKL_0$. (Liu 2011)
- (and many more works, see, 'Slicing the truth' by Hirschfeldt.)

We have the following separation on ω models,

$$\begin{array}{rcl} \mathrm{RT}_2^1(\leq \mathrm{RT}^1) & < & \mathrm{RT}_2^2(\leq \mathrm{RT}^2) & < & \mathrm{RT}_2^3 \\ & \parallel & & & \parallel \\ \mathrm{RCA}_0 & < & \mathrm{WKL}_0 & < & \mathrm{ACA}_0 \end{array}$$

How about first-order consequences?

Contents

Ramsey's theorem in second-order arithmetic Conservation proofs

Introduction and preliminaries

- Ramsey's theorem in second-order arithmetic
- Conservation proofs
- 2 First-order strength of Ramsey's theorem
 - The first-order strength of Ramsey's theorem
 - Indicator argument and forcing

First-order part and ω -extensions

Let $RCA_0 \subseteq T_0 \subseteq T_1$ be \mathcal{L}_2 -theories.

Theorem (ω -extension property)

Assume that T_0 and T_1 satisfy the following condition:

• for any countable model $(M, S) \models T_0$ and $A \in S$, there exists $\overline{S} \subseteq \mathcal{P}(M)$ such that $A \in \overline{S}$ and $(M, \overline{S}) \models T_1$.

Then, T_1 is a Π_1^1 -conservative extension of T_0 .

Theorem (Conservation results by ω -extension property)

- RCA₀ and WKL₀ are Π¹₁-conservative extensions of IΣ⁰₁. (Harrington, et al.)
- RCA₀ + BΣ⁰₂ and WKL₀ + BΣ⁰₂ are Π¹₁-conservative extensions of BΣ⁰₂. (Hajek)
- ACA₀ is a Π_1^1 -conservative extension of PA (I $\Sigma_{<\infty}^0$).

First-order part and cuts of nonstandard models

Theorem (cuts of nonstandard models)

Assume that T_0 and T_1 satisfy the following condition:

• for any countable nonstandard model $(M, S) \models T_0$ and for any $\varphi(\bar{a}, \bar{A}) \in \Pi_n^0$ with $\bar{a} \in M$ and $\bar{A} \in S$, there exists a cut $I \subseteq_e M$ such that $\bar{a} \in I$ and $(I, \operatorname{Cod}(M/I)) \models T_1 + \varphi(\bar{a}, \bar{A} \cap I)$. (Here, $\operatorname{Cod}(M/I) = S \upharpoonright I := \{X \cap I : X \in S\}$.)

Then, T_1 is a $\tilde{\Pi}^0_{n+1}$ -conservative extension of T_0 . (Here $\tilde{\Pi}^0_n$ -formula is of the form $\forall X\theta$ where θ is Π^0_n .)

- any cut preserves $\varphi \in \Pi_1^0$
- preserving Π_2^0 -statement
 - \Leftrightarrow preserving the totality of a function
- preserving Π⁰₃-statement

 \Leftrightarrow preserving the divergence of the form $\lim_{n\to\infty} f(n) = \infty$

First-order part and cuts of nonstandard models

Theorem (cuts of nonstandard models)

Assume that T_0 and T_1 satisfy the following condition:

• for any countable nonstandard model $(M, S) \models T_0$ and for any $\varphi(\bar{a}, \bar{A}) \in \prod_n^0$ with $\bar{a} \in M$ and $\bar{A} \in S$, there exists a cut $I \subseteq_e M$ such that $\bar{a} \in I$ and $(I, \operatorname{Cod}(M/I)) \models T_1 + \varphi(\bar{a}, \bar{A} \cap I)$. (Here, $\operatorname{Cod}(M/I) = S \upharpoonright I := \{X \cap I : X \in S\}$.)

Then, T_1 is a \prod_{n+1}^{0} -conservative extension of T_0 .

Theorem (Conservation results by cuts of nonstandard models)

- $B\Sigma_2^0$ is a Π_3^0 -conservative extension of $I\Sigma_1^0$. (Parsons/Paris/Friedman)
- IΣ⁰₁ is a Π⁰₂-conservative extension of Primitive Recursive Arithmetic (PRA). (Parsons)

Actually, one can prove the full Π^1_1 -conservation by cuts of nonstandard models.

Proposition

For $n \in \omega$, WKL₀ is a $\tilde{\Pi}^0_{2n+1}$ -conservative extension of I Σ^0_1 .

To show this, for given $M \models I\Sigma_1^0$ and $\varphi \in \Pi_{2n}^0$, one needs to find a cut $I \subseteq_e M$ such that $(I, \operatorname{Cod}(M/I)) \models \operatorname{WKL}_0$ and I preserves φ .

- Consider a combinatorial condition to find a cut for WKL₀ preserving φ.
- ⇒ indicator argument

Indicators

Let T be a theory of second-order arithmetic.

A Σ_0 -definable function $Y : [M]^2 \to M$ is said to be an *indicator* for $T \supseteq WKL_0^*$ if

- $Y(x, y) \leq y$,
- if $x' \le x < y \le y'$, then $Y(x, y) \le Y(x', y')$,
- $Y(x, y) > \omega$ if and only if there exists a cut $I \subseteq_e M$ such that $x \in I < y$ and $(I, \operatorname{Cod}(M/I)) \models T$. (Here $Y(x, y) > \omega$ means that Y(x, y) > n for any standard nature

(Here, $Y(x, y) > \omega$ means that Y(x, y) > n for any standard natural number *n*.)

Example

- Y(x, y) = max{n : expⁿ(x) ≤ y} is an indicator for WKL₀^{*}.
- $Y(x, y) = \max\{n : \text{any } f[[x, y]]^n \to 2 \text{ has a homogeneous set}$ $Z \subseteq [x, y] \text{ such that } |Z| > \min Z\}$

is an indicator for ACA₀.

Ramsey's theorem in second-order arithmetic Conservation proofs

Basic properties of indicators

Theorem

If Y is an indicator for a theory T, then for any $n \in \omega$,

 $T \vdash \forall x \exists y Y(x, y) \geq n.$

Theorem

If Y is an indicator for a theory T, then, T is a Π_2^0 -conservative extension of EFA + { $\forall x \exists y Y(x, y) \ge n \mid n \in \omega$ }.

Let
$$F_n^{\mathbf{Y}}(x) = \min\{y \mid \mathbf{Y}(x, y) \ge n\}.$$

Theorem

If Y is an indicator for a theory T and $T \vdash \forall x \exists y \theta(x, y)$ for some Σ_1 -formula θ , then, there exists $n \in \omega$ such that $T \vdash \forall x \exists y < F_n^Y(x) \theta(x, y)$.

To find an indicator for $WKL_0 + \varphi$, we will define a relation $X \Vdash_m^{WKL_0} \varphi$ inductively. We will argue within RCA₀. We write $para(\varphi)$ for the max of number parameters in φ .

Definition (generalized *m*-largeness notion for WKL₀)

Let $\varphi \in \Pi_{2n}^0$. Let $X \subseteq_{\text{fin}} \mathbb{N}$, and $m \in \mathbb{N}$.

• $X \Vdash_{0}^{\mathsf{WKL}_{0}} \varphi$ if φ is Π_{0}^{0} and $\varphi \land |X| > 2 \land \operatorname{para}(\varphi) < \min X$.

•
$$X \Vdash_{m+1}^{\mathsf{WKL}_0} \varphi$$
 if $m+1 \ge n$ and

- if $m \ge n$, then for any partition $Z_0 \sqcup \cdots \sqcup Z_{\ell-1} = X$ such that $\ell \le Z_0 < \cdots < Z_{\ell-1}$, there exists $i < \ell$ such that $Z_i \Vdash_m^{\mathsf{WKL}_0} \varphi$, and,
- if $\varphi \equiv \forall x \exists y \theta(x, y)$, then, for any $a < \min X$, there exists $Z \subseteq X$ and $b < \min Z$ such that $Z \Vdash_m^{\mathsf{WKL}_0} \varphi$ if $m \ge n$ and $Z \Vdash_m^{\mathsf{WKL}_0} \theta(a, b)$.

Note that for each $\varphi \in \prod_{2n}^{0} "X \Vdash_{m}^{\mathsf{WKL}_{0}} \varphi$ " can be expressed by a \prod_{0}^{0} -formula uniformly.

Ramsey's theorem in second-order arithmetic Conservation proofs

$$\mathsf{Put} \ Y^{\mathsf{WKL}_0}_{\varphi}(a,b) := \max\{m \mid [a,b] \Vdash^{\mathsf{WKL}_0}_m \varphi\}.$$

Theorem

```
Y_{\varphi}^{\mathsf{WKL}_{0}} is an indicator for \mathsf{WKL}_{0} + \varphi.
```

By an easy combinatorics, we have

Lemma

For any $m \in \omega$ and $\varphi \in \prod_{2n}^{0}$ such that $m \ge n$,

$$\mathsf{RCA}_0 \vdash \forall x \exists y Y_{\varphi}^{\mathsf{WKL}_0}(x, y) \geq m.$$

Proposition

For $n \in \omega$, WKL₀ is a $\tilde{\Pi}^0_{2n+1}$ -conservative extension of $I\Sigma^0_1$.

This argument can be reformulated by "forcing for generic cuts". (We will see this later.)

Contents

Introduction and preliminaries

- Ramsey's theorem in second-order arithmetic
- Conservation proofs

Pirst-order strength of Ramsey's theorem

- The first-order strength of Ramsey's theorem
- Indicator argument and forcing

The first-order strength of Ramsey's theorem

Theorem

Over RCA₀,

- RT_2^1 is provable,
- 2 RT¹ is equivalent to $B\Sigma_2^0$,
- if $n \ge 3$, RT_2^n is equivalent to ACA_0 .

Corollary

- $RCA_0 + RT_2^1$ is a Π_1^1 -conservative extension of $I\Sigma_1^0$.
- **2** $\operatorname{RCA}_0 + \operatorname{RT}^1$ is a Π_1^1 -conservative extension of $\operatorname{B}\Sigma_2^0$.
- **③** For $n \ge 3$, RCA₀ + RT^{*n*}₂ and RCA₀ + RT^{*n*} are Π_1^1 -conservative extensions of PA.

How about RT₂² or RT²?

The first-order strength of Ramsey's theorem for pairs

Theorem (Hirst)

Over RCA₀, RT₂² implies $B\Sigma_2^0$ and RT² implies $B\Sigma_3^0$.

Cholak/Jockusch/Slaman reformulated low₂-solution on nonstandard models, and obtained ω -extension property for RT_2^2 and RT^2 .

Theorem (Cholak/Jockusch/Slaman)

• WKL₀ + I Σ_2^0 + RT₂² is a Π_1^1 -conservative extension of I Σ_2^0 .

2 WKL₀ + I Σ_3^0 + RT² is a Π_1^1 -conservative extension of I Σ_3^0 .

 $B\Sigma_2^0 \leq (\mathsf{RCA}_0 + \mathrm{RT}_2^2)_{\Pi_1^1} \leq \mathrm{I}\Sigma_2^0 \text{ and } B\Sigma_3^0 \leq (\mathsf{RCA}_0 + \mathrm{RT}^2)_{\Pi_1^1} \leq \mathrm{I}\Sigma_3^0.$

The first-order strength of Ramsey's theorem for pairs

Here are the recent developments for RT_2^2 and RT^2 .

Theorem (Chong/Slaman/Yang 2014)

 $RCA_0 + RT_2^2$ does not imply $I\Sigma_2^0$.

Theorem (Patey/Y)

 $WKL_0 + RT_2^2$ is a $\tilde{\Pi}_3^0$ -conservative extension of $I\Sigma_1^0$.

Theorem (Slaman/Y)

WKL₀ + RT² is a Π_1^1 -conservative extension of B Σ_3^0 .

The first-order part of RT²

Theorem (Slaman/Y)

 $\text{RCA}_0 + \text{RT}^2$ is a Π_1^1 -conservative extension of $\text{B}\Sigma_3^0$.

This is an easy consequence of the following lemma.

Lemma

Let (M, S) be a model of $B\Sigma_3^0$ and let $P : [M]^2 \to k$ ($k \in M$) be a member of S. Then, there exists a set $G \subseteq M$ such that $P \upharpoonright [G]^2$ is constant, G is unbounded in M, and $(M, S \cup \{G\}) \models B\Sigma_3^0$.

This is proved by showing that any coloring $P : [\mathbb{N}]^2 \to k$ has a low₂ homogeneous set (preserving $B\Sigma_3^0$) and the construction refers to **0**'' small number of times.

 Note that the proof provides feasible (canonical polynomial) proof-interpretation for Π¹₁-consequences.

The first-order strength of Ramsey's theorem Indicator argument and forcing

Calibrating the first-order part of RT₂²

Question

Is RCA₀ + RT₂² a Π_1^1 -conservative extension of B Σ_2^0 ?

The answer is yes up to the level of Π_3^0 .

Theorem (Patey/Y)

 $\text{RCA}_0 + \text{RT}_2^2$ is a $\tilde{\Pi}_3^0$ -conservative extension of $\text{I}\Sigma_1^0$.

This is proved by using cuts obtained by Paris's indicator argument.

Definition (RCA₀, Paris)

- A finite set $X \subseteq \mathbb{N}$ is said to be 0-*dense* if $|X| > \min X$.
- A finite set X is said to be m + 1-dense if for any P : [X]² → 2, there exists Y ⊆ X which is m-dense and P-homogeneous.

Note that "X is *m*-dense" can be expressed by a Σ_0^0 -formula.

Cuts for RT₂²

Theorem (Bovykin/Weiermann)

If $(M, S) \models \text{RCA}_0$ is countable nonstandard and $[a, b] \subseteq M$ is *m*-dense for any $m \in \omega$, then there exists a cut $a \in I \subseteq_e M$ such that $(I, \text{Cod}(M/I)) \models \text{WKL}_0 + \text{RT}_2^2$.

Theorem (Patey/Y)

For any $m \in \omega$, RCA₀ proves the following:

mPH₂²: any infinite set contains m-dense set.

In fact, if X is ω^{300^m} -large then X is *m*-dense within RCA₀, which is shown only by finite cominatorics (Kołodziejczyk/Y).

Corollary

 $WKL_0 + RT_2^2$ is a Π_2^0 -conservative extension of RCA_0 .

Contents

Introduction and preliminaries

- Ramsey's theorem in second-order arithmetic
- Conservation proofs

First-order strength of Ramsey's theorem The first-order strength of Ramsey's theorem

Indicator argument and forcing

Indicator plus forcing for generic cuts

To analyze Π_n^0 -consequences for $n \ge 3$, we will sharpen the indicator argument.

(joint work with Kołodziejczyk, Wong, et al.)

 Let M = (ℕ^M, S; U^M) be a countable model of RCA₀+"U ⊆ ℕ is a proper cut"+(∀m ∈ U)(mPH₂²).

(Any nonstandard model has an expansion for such *U* by putting $U^M = \omega$.)

• Within M, consider a poset $(\mathbb{P}, \trianglelefteq)$:

 $\mathbb{P} = \{ Y \subseteq_{M-\text{fin}} M : Y \text{ is } a \text{-dense for some } a \notin U \},\$

 $Y \trianglelefteq X \Leftrightarrow Y \subseteq X$ (inclusion order, smaller set is strong).

• For a given generic filter G on \mathbb{P} , put

 $I_G := \sup\{\min Y : Y \in G\} \subseteq_e M,$

then $M[G] := (I_G, \operatorname{Cod}(M/I_G))$ is a model of $WKL_0 + RT_2^2$.

Indicator plus forcing for generic cuts

Syntactical part is defined as follows: let $X \in \mathbb{P}$,

• if
$$\bar{a} \in \mathbb{N}$$
 and $\bar{A} \in [\mathbb{N}]^{<\mathbb{N}}$,
 $X \Vdash \psi(\bar{a}, \bar{A}) \Leftrightarrow \psi(\bar{a}, \bar{A} \cap [0, \max X]) \land \bar{a} < \min X$,

- \land, \lor, \neg defined as usual,
- $X \Vdash \exists x \psi(x) \Leftrightarrow \forall Y \trianglelefteq X \exists Z \trianglelefteq Y \exists a < \min Z Z \Vdash \psi(a),$
- $X \Vdash \exists X \psi(X) \Leftrightarrow \forall Y \leq X \exists Z \leq Y \exists A \subseteq [0, \max Z] Z \Vdash \psi(A).$

For a given \mathcal{L}_2 -formula ψ , " $X \Vdash \psi$ " is $\Sigma_0^{0,U}$.

Theorem

 $\begin{aligned} \mathsf{WKL}_0 + \mathsf{RT}_2^2 \text{ is a } \Pi_{n+1}^0 \text{-conservative extension of } \mathsf{RCA}_0 + ``U \text{ is a } \\ \mathit{cut}" + \{\psi \to \exists X (X \Vdash \psi) : \psi \in \Pi_n^0 \}. \end{aligned}$

Eliminating "U is a cut"

Combine "density for RT_2^2 " and generalized indicator for WKL₀.

Definition (generalized m-density notion for RT_2^2)

Let $\varphi \in \Pi_{2n}^0$. Let $X \subseteq_{\text{fin}} \mathbb{N}$, and $m \in \mathbb{N}$.

- $X \Vdash_0 \varphi$ if φ is Π_0^0 and $\varphi \land |X| > 2 \land para(\varphi) < \min X$.
- $X \Vdash_{m+1} \varphi$ if $m+1 \ge n$ and
 - if $m \ge n$, then for any partition $Z_0 \sqcup \cdots \sqcup Z_{\ell-1} = X$ such that $\ell \le Z_0 < \cdots < Z_{\ell-1}$, there exists $i < \ell$ such that $Z_i \Vdash_m^{\mathsf{WKL}_0} \varphi$,
 - if m ≥ n, then for any P : [X]² → 2, there exists a P homogeneous set Z ⊆ X such that Z ⊩_m φ, and,
 - if $\varphi \equiv \forall x \exists y \theta(x, y)$, then, for any $a < \min X$, there exists $Z \subseteq X$ and $b < \min Z$ such that $Z \Vdash_m \varphi$ if $m \ge n$ and $Z \Vdash_m \theta(a, b)$.

Eliminating "U is a cut"

Proposition

If
$$\psi \in \Pi_{2n}^0$$
, $m \in \omega$ and $m \ge n$, then

$$\mathsf{WKL}_0 + \mathrm{RT}_2^2 \vdash \psi \to \exists X(X \Vdash_m \psi).$$

Given a cut U, put $\mathbb{P} = \{X : X \Vdash_a \psi \text{ for some } a \notin U\}$, then we have

• $X \Vdash_m \psi$ for any $m \in U \Rightarrow X \Vdash \psi$. Thus, if $M \models \text{RCA}_0 + \{\psi \rightarrow \exists X(X \Vdash_m \psi) : m \in \omega\}$ and M is nonstandard, then one can obtain a cut to be a model of $WKL_0 + RT_2^2$ with forcing ψ . (Put $U^M = \omega$.)

Theorem

WKL₀ + RT₂² is a Π_{2n+1}^{0} -conservative extension of RCA₀ + { $\psi \rightarrow \exists X(X \Vdash_m \psi) : m \in \omega, \psi \in \Pi_{2n}^{0}, m \ge n$ }.

The first-order strength of Ramsey's theorem Indicator argument and forcing

What is the first-order part of RT_2^2 ?

Question

Is $RCA_0 + RT_2^2$ a Π_1^1 -conservative extension of $B\Sigma_2^0$?

The answer is yes if

• $\operatorname{RCA}_0 + \operatorname{B}\Sigma_2^0$ proves $\psi \to \exists X(X_m \Vdash \psi)$ for any $\psi \in \Sigma_0^1$ and $m \in \omega$.

This is true for the case $\psi \in \Pi_2^0$, thus we have Π_3^0 -conservation:

- to force the totality of *f* defined by ψ ∈ Π₂⁰ with para(ψ) < *a*: if for any *x*, *y* ∈ *X*, *x* < *y* → *f*(*x*) < *y* and *X* is *m*-dense, then *X* ⊩_{*m*} *f* is total,
- one can find an *m*-dense set $X \subseteq \{a, f(a), f(f(a)), ...\}$ in $I\Sigma_1^0$.

Theorem (Patey/Y)

$RCA_0 + RT_2^2$ is a $\tilde{\Pi}_3^0$ -conservative extension of $I\Sigma_1^0$.

Feasible Π_3^0 -conservation?

The previous argument may provide canonical proof-transformation.

Conjecture (Kołodziejczyk/Wong/Y)

There is a canonical polynomial proof transformation between WKL₀ + RT_2^2 and $I\Sigma_1^0$ for $\tilde{\Pi}_3^0$ -formulas.

For example, if a Π_2^0 -formula $\forall x \exists y \theta(x, y)$ is provable from WKL₀ + RT₂², then one may feasibly extract a primitive recursive function $f : \omega \to \omega$ from the proof so that $\omega \models \forall x \exists y < f(x)\theta(x, y)$.

Thank you!

- Andrey Bovykin and Andreas Weiermann. The strength of infinitary Ramseyan principles can be accessed by their densities. to appear.
- Ludovic Patey and Y, The proof-theoretic strength of Ramsey's theorem for pairs and two colors, draft, available at http://arxiv.org/abs/1601.00050
- Theodore A. Slaman and Y, The strength of Ramsey's theorem for pairs and arbitrary many colors, draft.

This work is partially supported by JSPS Grant-in-Aid 16K17640 and JSPS Core-to-Core Program (A. Advanced Research Networks).