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Ramsey’s theorem

We will argue in RCA0.

Definition (Ramsey’s theorem.)

RTn
k : for any P : [N]n → k , there exists an infinite set H ⊆ N

such that |P([H]n)| = 1.

RTn := ∀k RTn
k .

RT := ∀n RTn.

Proposition (RCA0)

1 If n′ ≤ n, k ′ ≤ k , then RTn
k ⇒ RTn′

k ′ .
2 RTn

k ⇒ RTn
k+1.
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Ramsey’s theorem

Proposition (RCA0)

For any n ∈ ω, RTn+1
2 ⇒ RTn.

Theorem (Jockusch/Simpson)

ACA0 proves RTn
k for any n, k ∈ ω.

Over RCA0, RT3
2 implies ACA0.

Thus,
RCA0 = RT1

2 ≤ RT1 ≤ RT2
2 ≤ RT2 ≤ RT3

2 = RT3 = · · · = ACA0
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Computability theoretic strength of RT2
2

RCA0 ⊬ RT2
2. (Specker 1971)

⇑ there exists a computable coloring for pairs
which has no computable homogeneous set.

Later, RCA0 + RT2
2 ⊢ DNR (HJKLS 2008).

RCA0 + RT2
2 ⊬ RT3

2. (Seetapun 1995)
⇑ Cone avoidance theorem.
Later, low2-basis theorem (CJS 2001).
RCA0 + RT2

2 ⊬ WKL0. (Liu 2011)
(and many more works, see, ‘Slicing the truth’ by Hirschfeldt.)

We have the following separation on ω models,

RT1
2(≤ RT1) < RT2

2(≤ RT2) < RT3
2

= ≮ ≯ =

RCA0 < WKL0 < ACA0

How about first-order consequences?
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First-order part and ω-extensions

Let RCA0 ⊆ T0 ⊆ T1 be L2-theories.

Theorem (ω-extension property)

Assume that T0 and T1 satisfy the following condition:

for any countable model (M,S) |= T0 and A ∈ S, there exists
S̄ ⊆ P(M) such that A ∈ S̄ and (M, S̄) |= T1.

Then, T1 is a Π1
1-conservative extension of T0.

Theorem (Conservation results by ω-extension property)

RCA0 and WKL0 are Π1
1-conservative extensions of IΣ0

1.
(Harrington, et al.)

RCA0 + BΣ0
2 and WKL0 + BΣ0

2 are Π1
1-conservative

extensions of BΣ0
2. (Hajek)

ACA0 is a Π1
1-conservative extension of PA (IΣ0

<∞).
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First-order part and cuts of nonstandard models

Theorem (cuts of nonstandard models)

Assume that T0 and T1 satisfy the following condition:

for any countable nonstandard model (M,S) |= T0 and for any
φ(ā, Ā) ∈ Π0

n with ā ∈ M and Ā ∈ S, there exists a cut I ⊆e M
such that ā ∈ I and (I,Cod(M/I)) |= T1 + φ(ā, Ā ∩ I).
(Here, Cod(M/I) = S ↾ I := {X ∩ I : X ∈ S}.)

Then, T1 is a Π̃0
n+1-conservative extension of T0.

(Here Π̃0
n-formula is of the form ∀Xθ where θ is Π0

n.)

any cut preserves φ ∈ Π0
1

preserving Π0
2-statement

⇔ preserving the totality of a function
preserving Π0

3-statement
⇔ preserving the divergence of the form limn→∞ f(n) = ∞
...
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First-order part and cuts of nonstandard models

Theorem (cuts of nonstandard models)

Assume that T0 and T1 satisfy the following condition:

for any countable nonstandard model (M,S) |= T0 and for any
φ(ā, Ā) ∈ Π0

n with ā ∈ M and Ā ∈ S, there exists a cut I ⊆e M
such that ā ∈ I and (I,Cod(M/I)) |= T1 + φ(ā, Ā ∩ I).
(Here, Cod(M/I) = S ↾ I := {X ∩ I : X ∈ S}.)

Then, T1 is a Π0
n+1-conservative extension of T0.

Theorem (Conservation results by cuts of nonstandard models)

BΣ0
2 is a Π0

3-conservative extension of IΣ0
1.

(Parsons/Paris/Friedman)

IΣ0
1 is a Π0

2-conservative extension of Primitive Recursive
Arithmetic (PRA). (Parsons)
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Actually, one can prove the full Π1
1-conservation by cuts of

nonstandard models.

Proposition

For n ∈ ω, WKL0 is a Π̃0
2n+1-conservative extension of IΣ0

1.

To show this, for given M |= IΣ0
1 and φ ∈ Π0

2n, one needs to find a
cut I ⊆e M such that (I,Cod(M/I)) |= WKL0 and I preserves φ.

Consider a combinatorial condition to find a cut for WKL0

preserving φ.

⇒ indicator argument
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Indicators

Let T be a theory of second-order arithmetic.
A Σ0-definable function Y : [M]2 → M is said to be an indicator for
T ⊇ WKL∗0 if

Y(x, y) ≤ y,
if x′ ≤ x < y ≤ y′, then Y(x, y) ≤ Y(x′, y′),
Y(x, y) > ω if and only if there exists a cut I ⊆e M such that
x ∈ I < y and (I,Cod(M/I)) |= T.
(Here, Y(x, y) > ω means that Y(x, y) > n for any standard natural
number n.)

Example

Y(x, y) = max{n : expn(x) ≤ y} is an indicator for WKL∗0.

Y(x, y) = max{n :any f [[x, y]]n → 2 has a homogeneous set
Z ⊆ [x, y] such that |Z | > min Z}

is an indicator for ACA0.
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Basic properties of indicators

Theorem
If Y is an indicator for a theory T, then for any n ∈ ω,

T ⊢ ∀x∃yY(x, y) ≥ n.

Theorem

If Y is an indicator for a theory T, then, T is a Π0
2-conservative

extension of EFA + {∀x∃yY(x, y) ≥ n | n ∈ ω}.

Let FY
n (x) = min{y | Y(x, y) ≥ n}.

Theorem

If Y is an indicator for a theory T and T ⊢ ∀x∃yθ(x, y) for some
Σ1-formula θ, then, there exists n ∈ ω such that

T ⊢ ∀x∃y < FY
n (x)θ(x, y).
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To find an indicator for WKL0 + φ, we will define a relation
X ⊩WKL0

m φ inductively. We will argue within RCA0.
We write para(φ) for the max of number parameters in φ.

Definition (generalized m-largeness notion for WKL0)

Let φ ∈ Π0
2n. Let X ⊆fin N, and m ∈ N.

X ⊩WKL0
0 φ if φ is Π0

0 and φ ∧ |X | > 2 ∧ para(φ) < min X.

X ⊩WKL0
m+1 φ if m + 1 ≥ n and
if m ≥ n, then for any partition Z0 ⊔ · · · ⊔ Zℓ−1 = X such
that ℓ ≤ Z0 < · · · < Zℓ−1, there exists i < ℓ such that
Zi ⊩

WKL0
m φ, and,

if φ ≡ ∀x∃yθ(x, y), then, for any a < min X, there exists
Z ⊆ X and b < min Z such that Z ⊩WKL0

m φ if m ≥ n and
Z ⊩WKL0

m θ(a, b).

Note that for each φ ∈ Π0
2n “X ⊩WKL0

m φ” can be expressed by a
Π0

0-formula uniformly.
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Put YWKL0
φ (a, b) := max{m | [a, b] ⊩WKL0

m φ}.

Theorem

YWKL0
φ is an indicator for WKL0 + φ.

By an easy combinatorics, we have

Lemma

For any m ∈ ω and φ ∈ Π0
2n such that m ≥ n,

RCA0 ⊢ ∀x∃yYWKL0
φ (x, y) ≥ m.

Proposition

For n ∈ ω, WKL0 is a Π̃0
2n+1-conservative extension of IΣ0

1.

This argument can be reformulated by “forcing for generic cuts”.
(We will see this later.)
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The first-order strength of Ramsey’s theorem

Theorem
Over RCA0,

1 RT1
2 is provable,

2 RT1 is equivalent to BΣ0
2,

3 if n ≥ 3, RTn
2 is equivalent to ACA0.

Corollary

1 RCA0 + RT1
2 is a Π1

1-conservative extension of IΣ0
1.

2 RCA0 + RT1 is a Π1
1-conservative extension of BΣ0

2.
3 For n ≥ 3, RCA0 + RTn

2 and RCA0 + RTn are Π1
1-conservative

extensions of PA.

How about RT2
2 or RT2?
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The first-order strength of Ramsey’s theorem for pairs

Theorem (Hirst)

Over RCA0, RT2
2 implies BΣ0

2 and RT2 implies BΣ0
3.

Cholak/Jockusch/Slaman reformulated low2-solution on
nonstandard models, and obtained ω-extension property for RT2

2
and RT2.

Theorem (Cholak/Jockusch/Slaman)

1 WKL0 + IΣ0
2 + RT2

2 is a Π1
1-conservative extension of IΣ0

2.
2 WKL0 + IΣ0

3 + RT2 is a Π1
1-conservative extension of IΣ0

3.

BΣ0
2 ≤ (RCA0 + RT2

2)Π1
1
≤ IΣ0

2 and BΣ0
3 ≤ (RCA0 + RT2)Π1

1
≤ IΣ0

3.
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The first-order strength of Ramsey’s theorem for pairs

Here are the recent developments for RT2
2 and RT2.

Theorem (Chong/Slaman/Yang 2014)

RCA0 + RT2
2 does not imply IΣ0

2.

Theorem (Patey/Y)

WKL0 + RT2
2 is a Π̃0

3-conservative extension of IΣ0
1.

Theorem (Slaman/Y)

WKL0 + RT2 is a Π1
1-conservative extension of BΣ0

3.
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The first-order part of RT2

Theorem (Slaman/Y)

RCA0 + RT2 is a Π1
1-conservative extension of BΣ0

3.

This is an easy consequence of the following lemma.

Lemma

Let (M,S) be a model of BΣ0
3 and let P : [M]2 → k (k ∈ M) be a

member of S. Then, there exists a set G ⊆ M such that P ↾ [G]2 is
constant, G is unbounded in M, and (M,S ∪ {G}) |= BΣ0

3.

This is proved by showing that any coloring P : [N]2 → k has a
low2 homogeneous set (preserving BΣ0

3) and the construction
refers to 0′′ small number of times.

Note that the proof provides feasible (canonical polynomial)
proof-interpretation for Π1

1-consequences.
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Calibrating the first-order part of RT2
2

Question

Is RCA0 + RT2
2 a Π1

1-conservative extension of BΣ0
2?

The answer is yes up to the level of Π0
3.

Theorem (Patey/Y)

RCA0 + RT2
2 is a Π̃0

3-conservative extension of IΣ0
1.

This is proved by using cuts obtained by Paris’s indicator argument.

Definition (RCA0, Paris)

A finite set X ⊆ N is said to be 0-dense if |X | > min X.

A finite set X is said to be m + 1-dense if for any P : [X ]2 → 2,
there exists Y ⊆ X which is m-dense and P-homogeneous.

Note that “X is m-dense” can be expressed by a Σ0
0-formula.
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Cuts for RT2
2

Theorem (Bovykin/Weiermann)

If (M,S) |= RCA0 is countable nonstandard and [a, b] ⊆ M is
m-dense for any m ∈ ω, then there exists a cut a ∈ I ⊆e M such
that (I,Cod(M/I)) |= WKL0 + RT2

2.

Theorem (Patey/Y)

For any m ∈ ω, RCA0 proves the following:

mPH2
2: any infinite set contains m-dense set.

In fact, if X is ω300m
-large then X is m-dense within RCA0, which is

shown only by finite cominatorics (Kołodziejczyk/Y).

Corollary

WKL0 + RT2
2 is a Π0

2-conservative extension of RCA0.
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Indicator plus forcing for generic cuts

To analyze Π0
n-consequences for n ≥ 3, we will sharpen the

indicator argument.
(joint work with Kołodziejczyk, Wong, et al.)

Let M = (NM ,S;UM) be a countable model of RCA0+“U ⊆ N
is a proper cut”+(∀m ∈ U)(mPH2

2).

(Any nonstandard model has an expansion for such U by
putting UM = ω.)
Within M, consider a poset (P,⊴):
P = {Y ⊆M-fin M : Y is a-dense for some a < U},
Y ⊴ X ⇔ Y ⊆ X (inclusion order, smaller set is strong).

For a given generic filter G on P, put
IG := sup{min Y : Y ∈ G} ⊆e M,

then M[G] := (IG ,Cod(M/IG)) is a model of WKL0 + RT2
2.
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Indicator plus forcing for generic cuts

Syntactical part is defined as follows: let X ∈ P,
if ā ∈ N and Ā ∈ [N]<N,
X ⊩ ψ(ā, Ā)⇔ ψ(ā, Ā ∩ [0,max X ]) ∧ ā < min X,

∧,∨,¬ defined as usual,

X ⊩ ∃xψ(x)⇔ ∀Y ⊴ X ∃Z ⊴ Y ∃a < min Z Z ⊩ ψ(a),

X ⊩ ∃Xψ(X)⇔ ∀Y ⊴ X ∃Z ⊴ Y ∃A ⊆ [0,max Z ]Z ⊩ ψ(A).

For a given L2-formula ψ, “X ⊩ ψ” is Σ0,U
0 .

Theorem

WKL0 + RT2
2 is a Π0

n+1-conservative extension of RCA0+“U is a
cut”+{ψ→ ∃X(X ⊩ ψ) : ψ ∈ Π0

n}.
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Eliminating “U is a cut”

Combine “density for RT2
2” and generalized indicator for WKL0.

Definition (generalized m-density notion for RT2
2)

Let φ ∈ Π0
2n. Let X ⊆fin N, and m ∈ N.

X ⊩0 φ if φ is Π0
0 and φ ∧ |X | > 2 ∧ para(φ) < min X.

X ⊩m+1 φ if m + 1 ≥ n and
if m ≥ n, then for any partition Z0 ⊔ · · · ⊔ Zℓ−1 = X such
that ℓ ≤ Z0 < · · · < Zℓ−1, there exists i < ℓ such that
Zi ⊩

WKL0
m φ,

if m ≥ n, then for any P : [X ]2 → 2, there exists a P
homogeneous set Z ⊆ X such that Z ⊩m φ, and,
if φ ≡ ∀x∃yθ(x, y), then, for any a < min X, there exists
Z ⊆ X and b < min Z such that Z ⊩m φ if m ≥ n and
Z ⊩m θ(a, b).
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Eliminating “U is a cut”

Proposition

If ψ ∈ Π0
2n, m ∈ ω and m ≥ n, then

WKL0 + RT2
2 ⊢ ψ→ ∃X(X ⊩m ψ).

Given a cut U, put P = {X : X ⊩a ψ for some a < U}, then we have
X ⊩m ψ for any m ∈ U ⇒ X ⊩ ψ.

Thus, if M |= RCA0 + {ψ→ ∃X(X ⊩m ψ) : m ∈ ω} and M is
nonstandard, then one can obtain a cut to be a model of
WKL0 + RT2

2 with forcing ψ.
(Put UM = ω.)

Theorem

WKL0 + RT2
2 is a Π0

2n+1-conservative extension of
RCA0 + {ψ→ ∃X(X ⊩m ψ) : m ∈ ω, ψ ∈ Π0

2n,m ≥ n}.
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What is the first-order part of RT2
2?

Question

Is RCA0 + RT2
2 a Π1

1-conservative extension of BΣ0
2?

The answer is yes if
RCA0 + BΣ0

2 proves ψ→ ∃X(Xm ⊩ ψ) for any ψ ∈ Σ1
0 and

m ∈ ω.
This is true for the case ψ ∈ Π0

2, thus we have Π0
3-conservation:

to force the totality of f defined by ψ ∈ Π0
2 with para(ψ) < a:

if for any x, y ∈ X, x < y → f(x) < y and X is m-dense, then
X ⊩m f is total,
one can find an m-dense set X ⊆ {a, f(a), f(f(a)), . . . } in IΣ0

1.

Theorem (Patey/Y)

RCA0 + RT2
2 is a Π̃0

3-conservative extension of IΣ0
1.
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Feasible Π0
3-conservation?

The previous argument may provide canonical
proof-transformation.

Conjecture (Kołodziejczyk/Wong/Y)

There is a canonical polynomial proof transformation between
WKL0 + RT2

2 and IΣ0
1 for Π̃0

3-formulas.

For example, if a Π0
2-formula ∀x∃yθ(x, y) is provable from

WKL0 + RT2
2, then one may feasibly extract a primitive recursive

function f : ω→ ω from the proof so that ω |= ∀x∃y < f(x)θ(x, y).
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Thank you!

Andrey Bovykin and Andreas Weiermann. The strength of infinitary
Ramseyan principles can be accessed by their densities. to appear.

Ludovic Patey and Y, The proof-theoretic strength of Ramsey’s
theorem for pairs and two colors, draft, available at
http://arxiv.org/abs/1601.00050

Theodore A. Slaman and Y, The strength of Ramsey’s theorem for
pairs and arbitrary many colors, draft.

This work is partially supported by JSPS Grant-in-Aid 16K17640 and JSPS Core-to-Core
Program (A. Advanced Research Networks).
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