Can we fish with Mathias forcing?

Ludovic PATEY

September 8, 2017

Introduction

Many theorems can be seen as problems.

Intermediate value theorem

For every continuous function f over an interval [a, b] such that $f(a) \cdot f(b) < 0$, there is a real $x \in [a, b]$ such that f(x) = 0.

König's lemma

Every infinite, finitely branching tree admits an infinite path.

REVERSE MATHEMATICS

Foundational program that seeks to determine the optimal axioms of ordinary mathematics.

REVERSE MATHEMATICS

Foundational program that seeks to determine the optimal axioms of ordinary mathematics.

$\mathsf{RCA}_0 \vdash A \leftrightarrow T$

in a very weak theory RCA₀ capturing computable mathematics

RCA₀

Robinson arithmetics

$$m + 1 \neq 0$$

$$m + 1 = n + 1 \rightarrow m = n$$

$$\neg(m < 0) = m$$

$$m < n + 1 \leftrightarrow (m < n \lor m = n)$$

$$m + 0 = m$$

 $m + (n + 1) = (m + n) + 1$
 $m \times 0 = 0$
 $m \times (n + 1) = (m \times n) + m$

Σ_1^0 induction Σ_1^0 scheme

$$\begin{array}{l} \varphi(\mathbf{0}) \land \forall n(\varphi(n) \Rightarrow \varphi(n+1)) \\ \Rightarrow \forall n\varphi(n) \end{array}$$

where $\varphi(n)$ is Σ_1^0

Δ_1^0 comprehension scheme

$$\forall n(\varphi(n) \Leftrightarrow \psi(n)) \\ \Rightarrow \exists X \forall n(x \in X \Leftrightarrow \varphi(n))$$

where $\varphi(n)$ is Σ_1^0 with free *X*, and ψ is Π_1^0 .

REVERSE MATHEMATICS

Mathematics are computationally very structured

Almost every theorem is empirically equivalent to one among five big subsystems. П¹CA ATR ACA WKL RCA₀

REVERSE MATHEMATICS

Mathematics are computationally very structured

Almost every theorem is empirically equivalent to one among five big subsystems.

Except for Ramsey's theory...

RAMSEY'S THEOREM

- $[X]^n$ is the set of unordered *n*-tuples of elements of X
- A *k*-coloring of $[X]^n$ is a map $f : [X]^n \to k$
- A set $H \subseteq X$ is homogeneous for f if $|f([X]^n)| = 1$.

 $\begin{array}{ll} \mathsf{RT}^{n}_{k} & \text{Every } k \text{-coloring of } [\mathbb{N}]^{n} \text{ admits} \\ \text{ an infinite homogeneous set.} \end{array}$

PIGEONHOLE PRINCIPLE

RT^1_k Every *k*-partition of \mathbb{N} admits an infinite part.

RAMSEY'S THEOREM FOR PAIRS

RT_k^2 Every *k*-coloring of the infinite clique admits an infinite monochromatic subclique.

$\mathsf{RCA}_0 \nvDash^2_{(\mathsf{Seetapun})} \to \mathsf{ACA}$

By preserving a weakness property using a proto version of the CJS argument.

A weakness property is a collection of sets closed downwards under the Turing reduction.

Examples

- ► {*X* : *X* is low}
- $\{X : A \leq_T X\}$ for some set A
- $\{X : X \text{ is hyperimmune-free}\}$

Fix a weakness property \mathcal{W} .

A problem P preserves W if for every $Z \in W$, every Z-computable P-instance X has a solution Y such that $Y \oplus Z \in W$

Lemma

If P preserves $\mathcal W$ but Q does not, then $\mathsf{RCA}_0 \nvdash \mathsf{P} \to \mathsf{Q}$

$RCA_0 \nvDash \operatorname{RT}_2^2 \to ACA$

By preserving $W = \{X : X \text{ is incomplete }\}$ using a proto version of the CJS argument.

The success of Mathias forcing and the CJS argument

THE SUCCESS

Separations are often achieved by preserving weakness properties using canonical notions of forcing

Separations by weakness properties

- ► WKL ∀_c ACA
- ► $\operatorname{RT}_2^2 \not\vdash_c \operatorname{ACA}$
- ► EM $\forall_c \operatorname{RT}_2^2$
- ► EM \forall_c TS²
- ► $TS^2 \not\vdash_c RT_2^2$
- $\blacktriangleright \operatorname{RT}_2^2 \not\vdash_c \operatorname{TT}_2^2$
- ► $\operatorname{RT}_2^2 \not\vdash_c \operatorname{WWKL}$

(cone avoidance)
 (cone avoidance)
 (2 hyperimmunities)
 (ω hyperimmunities)
 (2 hyperimmunities)
 (fairness property)
 (c.b-enum avoidance)

A notion of forcing P is canonical for a problem P if the properties preserved by the problem and by the notion of forcing coincide.

Restriction to classes of properties

FAMILIES OF PROPERTIES

Effectiveness

Lowness

. . .

- Hyperimmunefreeness
- ► Hyperarithmetic

Genericity

- ► Cone avoidance
- ► Preservation of non-Σ⁰_n definitions
- Preservation of hyperimmunity

▶ ...

EXAMPLE

 \mathcal{P} is an open genericity property if \mathcal{P} is the set of oracles which do not compute a member of a fixed closed set $\mathcal{C} \subseteq \omega^{\omega}$

Contains already all the genericity properties used in reverse mathematics.

Theorem (Hirschfeldt and P.)

WKL and the notion of forcing with Π_1^0 classes preserve the same open genericity properties

Mathias forcing with a CJS argument

are sufficient to analyse Ramsey-type statements.

 $[X]^{\omega}$ denotes the set of infinite subsets of X

A problem P is of Ramsey-type if for every instance *I*, the set of solutions is dense and closed downward in $([\mathbb{N}]^{\omega}, \subseteq)$:

$$orall X \in [\mathbb{N}]^{\omega}, \ [X]^{\omega} \cap \mathcal{S}(I) \neq \emptyset$$
 $orall X \in \mathcal{S}(I), \ [X]^{\omega} \subseteq \mathcal{S}(I)$

We can solve Ramsey-type problems simultaneously.

Given two Ramsey-type problems P and Q, define the problem

$$\mathsf{P} \cap \mathsf{Q} = \begin{cases} \mathcal{I}(\mathsf{P} \cap \mathsf{Q}) = \mathcal{I}(\mathsf{P}) \times \mathcal{I}(\mathsf{Q}) \\ \\ \mathcal{S}(I, J) = \mathcal{S}(I) \cap \mathcal{S}(J) \end{cases}$$

Thm (Dzhafarov and Jockusch)

If a set *S* is not computable, then for every set *A*, there is an infinite set $G \subseteq A$ or $G \subseteq \overline{A}$ such that $S \not\leq_T G$.

Thm (Dzhafarov and Jockusch)

If a set *S* is not computable, then for every set *A*, there is an infinite set $G \subseteq A$ or $G \subseteq \overline{A}$ such that $S \not\leq_T G$.

Input : a set $S \not\leq_T \emptyset$ and a 2-partition $A_0 \sqcup A_1 = \mathbb{N}$

- F_i is finite, X is infinite, max $F_i < \min X$
- ► $S \not\leq_T X$
- ► $F_i \subseteq A_i$

(Mathias condition) (Weakness property) (Combinatorics)

Extension

- $(\boldsymbol{E}_0, \boldsymbol{E}_1, \boldsymbol{Y}) \leq (\boldsymbol{F}_0, \boldsymbol{F}_1, \boldsymbol{X})$
 - ► $F_i \subseteq E_i$
 - ► $Y \subseteq X$
 - ► $E_i \setminus F_i \subseteq X$

Satisfaction

- $\langle \textit{G}_0,\textit{G}_1\rangle \in [\textit{F}_0,\textit{F}_1,\textit{X}]$
- ► $F_i \subseteq G_i$
- ► $G_i \setminus F_i \subseteq X$

$[\textbf{\textit{E}}_0, \textbf{\textit{E}}_1, \textbf{\textit{Y}}] \subseteq [\textbf{\textit{F}}_0, \textbf{\textit{F}}_1, \textbf{\textit{X}}]$

 $\varphi(G_0, G_1)$ holds for every $\langle G_0, G_1 \rangle \in [F_0, F_1, X]$

Input : a set $S \not\leq_T \emptyset$ and a 2-partition $A_0 \sqcup A_1 = \mathbb{N}$

Input : a set $S \not\leq_T \emptyset$ and a 2-partition $A_0 \sqcup A_1 = \mathbb{N}$

$$\Phi_{e_0}^{{m G_0}}
eq {m S} ee \Phi_{e_1}^{{m G_1}}
eq {m S}$$

Input : a set $S \not\leq_T \emptyset$ and a 2-partition $A_0 \sqcup A_1 = \mathbb{N}$

$$\Phi_{e_0}^{\mathsf{G}_0}
eq S \lor \Phi_{e_1}^{\mathsf{G}_1}
eq S$$

The set
$$\begin{cases} c: c \Vdash (\exists x) \quad \Phi_{e_0}^{G_0}(x) \downarrow \neq S(x) \lor \Phi_{e_0}^{G_0}(x) \uparrow \\ & \lor \quad \Phi_{e_1}^{G_1}(x) \downarrow \neq S(x) \lor \Phi_{e_1}^{G_1}(x) \uparrow \end{cases}$$
 is dense

FIRST ATTEMPT

Given a condition $c = (F_0, F_1, X)$, suppose the formula

$$arphi(x,n) = (\exists d \leq c)d \Vdash \Phi^{G_0}_{e_0}(x) \downarrow = n$$

is $\Sigma_1^{0,X}$ (it is not). Then the set

$$\mathcal{C} = \{(\mathbf{x}, \mathbf{n}) : \varphi(\mathbf{x}, \mathbf{n})\}$$

is X-c.e.

FIRST ATTEMPT

$$\mathcal{C} = \{(\mathbf{x}, \mathbf{n}) : \varphi(\mathbf{x}, \mathbf{n})\}$$

Σ_1 case	Π_1 case	Impossible case
$(\exists x)(x,1-\mathcal{S}(x))\in\mathcal{C}$	$(\exists x)(x,\mathcal{S}(x)) ot\in \mathcal{C}$	$(orall x)(x,1-S(x)) ot\in \mathcal{C}$ $(orall x)(x,S(x))\in \mathcal{C}$
Then $\exists d \leq c$ such that	Then	Then since C is X-c.e
$d \Vdash \Phi^{G_0}_{e_0}(x) \downarrow = 1 - S(x)$	$\mathit{c} \Vdash \Phi^{G_0}_{e_0}(x) eq \mathit{S}(x)$	$\mathcal{S} \leq_{\mathcal{T}} X$ 4

THE FIRST ATTEMPT FAILS

Given a condition $c = (F_0, F_1, X)$, the formula

$$arphi(x,n) = (\exists d \leq c)d \Vdash \Phi^{G_0}_{e_0}(x) \downarrow = n$$

is too complex because it can be translated in

$$(\exists E_0 \subseteq X \cap A_0) \Phi_{e_0}^{F_0 \cup E_0}(x) \downarrow = n$$

which is $\Sigma_1^{0,A\oplus X}$ and not $\Sigma_1^{0,X}$.

IDEA: MAKE AN OVERAPPROXIMATION

"Can we find an extension for every instance of RT₂?"

Given a condition $c = (F_0, F_1, X)$, let $\psi(x, n)$ be the formula

 $(\forall B_0 \sqcup B_1 = \mathbb{N})(\exists i < 2)(\exists E_i \subseteq X \cap B_i) \Phi_{e_i}^{F_i \cup E_i}(x) \downarrow = n$

$$\psi(\boldsymbol{x},\boldsymbol{n})$$
 is $\Sigma_1^{0,X}$

Case 1: $\psi(x, n)$ holds

Letting $B_i = A_i$, there is an extension $d \le c$ forcing

$$\Phi_{e_0}^{\mathbf{G}_0}(x) \downarrow = n \lor \Phi_{e_1}^{\mathbf{G}_1}(x) \downarrow = n$$

Case 2: $\psi(x, n)$ does not hold $(\exists B_0 \sqcup B_1 = \mathbb{N})(\forall i < 2)(\forall E_i \subseteq X \cap B_i)\Phi_{e_i}^{F_i \cup E_i}(x) \neq n$ The condition $(F_0, F_1, X \cap B_i) \leq c$ forces

$$\Phi^{G_0}_{e_0}(x)
eq n \lor \Phi^{G_1}_{e_1}(x)
eq n$$

SECOND ATTEMPT

$$\mathcal{D} = \{(\mathbf{x}, \mathbf{n}) : \psi(\mathbf{x}, \mathbf{n})\}$$

Σ_1 case	Π ₁ case	Impossible case
$(\exists x)(x,1-\mathcal{S}(x))\in\mathcal{D}$	$(\exists x)(x, S(x)) ot\in \mathcal{D}$	$(orall x)(x,1-\mathcal{S}(x)) ot\in\mathcal{D}$ $(orall x)(x,\mathcal{S}(x))\in\mathcal{D}$
Then $\exists d \leq c \; \exists i < 2$	Then $\exists d \leq c \; \exists i < 2$	Then since \mathcal{D} is X-c.e
$d \Vdash \Phi^{G_i}_{e_i}(x) \downarrow = 1 - S(x)$	$d \Vdash \Phi^{G_i}_{e_i}(x) eq \mathcal{S}(x)$	$oldsymbol{S} \leq_{\mathcal{T}} oldsymbol{X}$ \$

CJS ARGUMENT

- Context: We build a solution G to a P-instance X
 - Goal: Decide a property $\varphi(G)$.
- Question: For every P-instance Y, can I find a solution G satisfying $\varphi(G)$?
 - If yes: In particular for Y = X, I can satisfy $\varphi(G)$.
 - If no: If no: By making G be a solution to X and Y simultaneously, I will satisfy $\neg \varphi(G)$.

Separations of Ramsey-type statements using the CJS argument often yield tight bounds

RAMSEY'S THEOREM

RAMSEY'S THEOREM

Fix a problem P.

A set *S* is P-encodable if there is an instance of P such that every solution computes *S*.

What sets can encode an instance of RT_k^n ?

Thm (Wang)

A set is $RT^n_{k,\ell}$ -encodable iff it is computable for large ℓ

(whenever ℓ is at least the *n*th Schröder Number)

Thm (Wang)

A set is $\operatorname{RT}_{k,\ell}^n$ -encodable iff it is computable for large ℓ (whenever ℓ is at least the *n*th Schröder Number)

Thm (Dorais, Dzhafarov, Hirst, Mileti, Shafer)

A set is $RT^n_{k,\ell}$ -encodable iff it is hyperarithmetic for small ℓ (whenever $\ell < 2^{n-1}$)

Thm (Wang)

A set is $\operatorname{RT}_{k,\ell}^n$ -encodable iff it is computable for large ℓ (whenever ℓ is at least the *n*th Schröder Number)

Thm (Dorais, Dzhafarov, Hirst, Mileti, Shafer)

A set is $RT^n_{k,\ell}$ -encodable iff it is hyperarithmetic for small ℓ (whenever $\ell < 2^{n-1}$)

Thm (Cholak, P.)

A set is $RT_{k,\ell}^n$ -encodable iff it is arithmetic for medium ℓ

$\mathsf{RT}^n_{k,\ell}$ -ENCODABLE SETS

The CJS argument applies to many frameworks

COMPUTABLE REDUCTION

 $\mathsf{P} \leq_{\mathsf{C}} \mathsf{Q}$

Every P-instance *I* computes a Q-instance *J* such that for every solution *X* to *J*, $X \oplus I$ computes a solution to *I*.

A function *f* is hyperimmune if it is not dominated by a computable function.

A problem P preserves ℓ among *k* hyperimmunities if for every *k*-tuple f_1, \ldots, f_k of hyperimmune functions and every computable P-instance *I*, there is a solution *Y* such that at least ℓ among *k* of the f_i are *Y*-hyperimmune.

Thm (P.)

 RT_k^2 preserves 2 among k + 1 hyperimmunities, but not RT_{k+1}^2 .

Cor (P.)

 $\operatorname{RT}_{k+1}^2 \not\leq_c \operatorname{RT}_k^2.$

How many applications needed to prove that $\mathsf{RCA}_0 \vdash \mathsf{RT}_2^2 \to \mathsf{RT}_5^2?$

Take an RT_5^2 -instance which does not preserve 2 among 5 hyperimmune sets A_0, \ldots, A_4 .

# of apps of RT_2^2	# of <i>i</i> 's such that A_i is hyperimmune
0	5
1	$\pi(5,2)=3$
2	$\pi(3,2) = 2$
3	$\pi(2,2) = 1$

How many applications needed to prove that $\mathsf{RCA}_0 \vdash \mathsf{RT}_2^2 \to \mathsf{RT}_5^2 ?$

We need at least 3 applications of RT_2^2 to obtain RT_5^2 .

By a standard color blindness argument, 3 applications are sufficient.

The limits of Mathias forcing and the CJS argument

 $f : [\mathbb{N}]^{n+1} \to k$ is stable if for every $\sigma \in [\mathbb{N}]^n$, $\lim_y f(\sigma, y)$ exists.

 $\operatorname{SRT}_{k}^{n}$: $\operatorname{RT}_{k}^{n}$ restricted to stable colorings.

An infinite set *C* is \vec{R} -cohesive for some sets R_0, R_1, \ldots if for every *i*, either $C \subseteq^* R_i$ or $C \subseteq^* \overline{R}_i$.

COH : Every collection of sets has a cohesive set.

"Every ∆⁰₂ set has
 an infinite subset
 or cosubset"

$\mathsf{RCA}_0 \vdash \mathsf{RT}_2^2 \leftrightarrow \mathsf{COH} \wedge \mathsf{SRT}_2^2.$

Given $f : [\mathbb{N}]^{n+1} \to 2$, define $\langle R_x : x \in \mathbb{N} \rangle$ by

$$R_x = \{y : f(x, y) = 1\}$$

By COH, there is an \vec{R} -cohesive set C.

 $f: [C]^2 \rightarrow 2$ is an instance of SRT_2^2

$\mathsf{RCA}_0 \nvDash \mathsf{COH} \to \mathsf{SRT}^2_2$

(Hirschfeldt, Jocksuch, Kjos-Hanssen, Lempp, and Slaman)

By preserving $W = \{X : X \text{ does not compute an f-homogeneous set } \}$ using a computable Mathias forcing.

$\mathsf{RCA}_0 \nvDash \mathsf{SRT}_2^2 \to \mathsf{COH}$

(Chang, Slaman and Yang)

Using the CJS argument in a non-standard model containing only low sets.

► $(\forall X \in \mathcal{M})(\forall Y \leq_T X)[Y \in \mathcal{M}]$ ► $(\forall X, Y \in \mathcal{M})[X \oplus Y \in \mathcal{M}]$

Examples

- $\blacktriangleright \{X : X \text{ is computable } \}$
- $\{X : X \leq_T A \land X \leq_T B\}$ for some sets A and B

Let \mathcal{M} be a Turing ideal and P, Q be problems.

Satisfaction

 $\mathcal{M} \models \mathsf{P}$

 $\label{eq:product} \begin{array}{l} \mbox{if every P-instance in } \mathcal{M} \\ \mbox{has a solution in } \mathcal{M}. \end{array} \end{array}$

Computable entailment

 $\mathsf{P}\models_{c}\mathsf{Q}$

if every Turing ideal satisfying P satisfies Q.

Does $SRT_2^2 \models_c COH?$

The CJS argument applied to RT_2^1 yields solutions to COH.

Does COH $\leq_c SRT_2^2$?

Have we found the right framework?

Can Mathias forcing and the CJS argument answer all the Ramsey-type questions? The CJS argument applied to RT_2^1 yields solutions to COH.

Fix a computable sequence of sets R_0, R_1, \ldots

Is there a set *X*, such that every infinite set $H \subseteq X$ or $H \subseteq \overline{X}$ computes an \overline{R} -cohesive set?

A set X is high if $X' \ge_T \emptyset''$.

Is there a set X, such that every infinite set $H \subseteq X$ or $H \subseteq \overline{X}$ is high?

If yes, then COH \leq_{oc} RT₂¹.

If no, well, this is still interesting per se.

A set S is P-jump-encodable if there is an instance of P such that the jump of every solution computes S.

Are the RT_2^1 -jump-encodable sets precisely the \emptyset' -computable ones?

CONCLUSION

We have a minimalistic framework which answers accurately many questions about Ramsey's theorem.

This can be taken as evidence that we have found the right framework.

Does the COH vs SRT² question reveal the limits of the framework?

REFERENCES

- Peter A. Cholak, Carl G. Jockusch, and Theodore A. Slaman. On the strength of Ramsey's theorem for pairs. Journal of Symbolic Logic, 66(01):1–55, 2001.
 - Carl G. Jockusch.

Ramsey's theorem and recursion theory. Journal of Symbolic Logic, 37(2):268–280, 1972.

Ludovic Patey.

The reverse mathematics of Ramsey-type theorems. PhD thesis, Université Paris Diderot, 2016.

Wei Wang.

Some logically weak Ramseyan theorems. Advances in Mathematics, 261:1–25, 2014.