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Many theorems can be seen as problems.

Intermediate value theorem
For every continuous function f over an
interval [a,b] such that f (a) · f (b) < 0, there
is a real x ∈ [a,b] such that f (x) = 0.

König’s lemma
Every infinite, finitely branching tree admits
an infinite path.

a
b
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REVERSE MATHEMATICS

Foundational program that seeks to determine
the optimal axioms of ordinary mathematics.

RCA0 ` A↔ T
in a very weak theory RCA0

capturing computable mathematics
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RCA0

Robinson arithmetics

m + 1 6= 0 m + 0 = m
m + 1 = n + 1→ m = n m + (n + 1) = (m + n) + 1
¬(m < 0) = m m × 0 = 0
m < n + 1↔ (m < n ∨m = n) m × (n + 1) = (m × n) + m

Σ0
1 induction Σ0

1 scheme

ϕ(0) ∧ ∀n(ϕ(n)⇒ ϕ(n + 1))
⇒ ∀nϕ(n)

where ϕ(n) is Σ0
1

∆0
1 comprehension scheme

∀n(ϕ(n)⇔ ψ(n))
⇒ ∃X∀n(x ∈ X ⇔ ϕ(n))

where ϕ(n) is Σ0
1 with free X , and ψ

is Π0
1.
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REVERSE MATHEMATICS

Mathematics are
computationally
very structured

Almost every theorem is
empirically equivalent to one
among five big subsystems.

Except for Ramsey’s theory...

RCA0

WKL

ACA

ATR

Π1
1CA

RT2
2
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RAMSEY’S THEOREM

[X ]n is the set of unordered n-tuples of elements of X

A k -coloring of [X ]n is a map f : [X ]n → k

A set H ⊆ X is homogeneous for f if |f ([X ]n)| = 1.

RTn
k

Every k -coloring of [N]n admits
an infinite homogeneous set.
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PIGEONHOLE PRINCIPLE

RT1
k

Every k -partition of N admits
an infinite part.
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RAMSEY’S THEOREM FOR PAIRS

RT2
k

Every k -coloring of the infinite clique admits
an infinite monochromatic subclique.
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RCA0 0 RT2
2 → ACA

(Seetapun)

By preserving a weakness property
using a proto version of the CJS argument.
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A weakness property is a collection of sets
closed downwards under the Turing reduction.

Examples
� {X : X is low}
� {X : A 6≤T X} for some set A
� {X : X is hyperimmune-free}
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Fix a weakness propertyW.

A problem P preservesW if for every Z ∈ W,
every Z -computable P-instance X
has a solution Y such that Y ⊕ Z ∈ W

Lemma
If P preservesW but Q does not, then RCA0 0 P→ Q
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RCA0 0 RT2
2 → ACA

(Seetapun)

By preservingW = {X : X is incomplete }
using a proto version of the CJS argument.
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The success of Mathias forcing
and the CJS argument
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Separations are often achieved by
preserving weakness properties using

canonical notions of forcing
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Separations by weakness properties

� WKL 6`c ACA (cone avoidance)
� RT2

2 6`c ACA (cone avoidance)
� EM 6`c RT2

2 (2 hyperimmunities)
� EM 6`c TS2 (ω hyperimmunities)
� TS2 6`c RT2

2 (2 hyperimmunities)
� RT2

2 6`c TT2
2 (fairness property)

� RT2
2 6`c WWKL (c.b-enum avoidance)

� ...
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A notion of forcing P is canonical for a problem
P if the properties preserved by the problem and

by the notion of forcing coincide.

Restriction to classes of properties
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FAMILIES OF PROPERTIES

Effectiveness

� Lowness

� Hyperimmune-
freeness

� Hyperarithmetic

� . . .

Genericity

� Cone avoidance

� Preservation of
non-Σ0

n definitions

� Preservation of
hyperimmunity

� . . .
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EXAMPLE

P is an open genericity property if P is the set of oracles which
do not compute a member of a fixed closed set C ⊆ ωω

Contains already all the genericity properties used in reverse
mathematics.

Theorem (Hirschfeldt and P.)

WKL and the notion of forcing with Π0
1 classes preserve the

same open genericity properties
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Mathias forcing
with a

CJS argument
are sufficient to analyse

Ramsey-type statements.
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[X ]ω denotes the set of infinite subsets of X

A problem P is of Ramsey-type if for every instance I, the set
of solutions is dense and closed downward in ([N]ω,⊆):

∀X ∈ [N]ω, [X ]ω ∩ S(I) 6= ∅

∀X ∈ S(I), [X ]ω ⊆ S(I)
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We can solve Ramsey-type problems
simultaneously.

Given two Ramsey-type problems P and Q, define the problem

P ∩Q =

{
I(P ∩Q) = I(P)× I(Q)

S(I, J) = S(I) ∩ S(J)
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Thm (Dzhafarov and Jockusch)

If a set S is not computable, then for every set A, there is an
infinite set G ⊆ A or G ⊆ A such that S 6≤T G.

Input : a set S 6≤T ∅ and a 2-partition A0 t A1 = N

Output : an infinite set G ⊆ Ai such that S 6≤T G
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(F0,F1,X )
Initial segment Reservoir

� Fi is finite, X is infinite, max Fi < min X (Mathias condition)

� S 6≤T X (Weakness property)

� Fi ⊆ Ai (Combinatorics)
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Extension

(E0,E1,Y ) ≤ (F0,F1,X )

� Fi ⊆ Ei

� Y ⊆ X

� Ei \ Fi ⊆ X

Satisfaction

〈G0,G1〉 ∈ [F0,F1,X ]

� Fi ⊆ Gi

� Gi \ Fi ⊆ X

[E0,E1,Y ] ⊆ [F0,F1,X ]
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(F0,F1,X )  ϕ(G0,G1)

Condition Formula

ϕ(G0,G1) holds for every 〈G0,G1〉 ∈ [F0,F1,X ]
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Input : a set S 6≤T ∅ and a 2-partition A0 t A1 = N

Output : an infinite set G ⊆ Ai such that S 6≤T G

ΦG0
e0 6= S ∨ ΦG1

e1 6= S

The set

c : c  (∃x) ΦG0
e0

(x) ↓6= S(x) ∨ ΦG0
e0

(x) ↑

∨ ΦG1
e1

(x) ↓6= S(x) ∨ ΦG1
e1

(x) ↑

 is dense
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FIRST ATTEMPT

Given a condition c = (F0,F1,X ), suppose the formula

ϕ(x ,n) = (∃d ≤ c)d  ΦG0
e0

(x) ↓= n

is Σ0,X
1 (it is not). Then the set

C = {(x ,n) : ϕ(x ,n)}

is X -c.e.
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FIRST ATTEMPT

C = {(x ,n) : ϕ(x ,n)}

Σ1 case

(∃x)(x ,1− S(x)) ∈ C

Then ∃d ≤ c such that

d  ΦG0
e0 (x) ↓= 1− S(x)

Π1 case

(∃x)(x ,S(x)) 6∈ C

Then

c  ΦG0
e0 (x) 6= S(x)

Impossible case

(∀x)(x ,1− S(x)) 6∈ C

(∀x)(x ,S(x)) ∈ C

Then since C is X -c.e

S ≤T X �
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THE FIRST ATTEMPT FAILS

Given a condition c = (F0,F1,X ), the formula

ϕ(x ,n) = (∃d ≤ c)d  ΦG0
e0

(x) ↓= n

is too complex because it can be translated in

(∃E0 ⊆ X ∩ A0)ΦF0∪E0
e0

(x) ↓= n

which is Σ0,A⊕X
1 and not Σ0,X

1 .
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IDEA: MAKE AN OVERAPPROXIMATION

“Can we find an extension for every instance of RT1
2?”

Given a condition c = (F0,F1,X ), let ψ(x ,n) be the formula

(∀B0tB1 = N)(∃i < 2)(∃Ei ⊆ X∩Bi)ΦFi∪Ei
ei

(x) ↓= n

ψ(x ,n) is Σ0,X
1
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Case 1: ψ(x ,n) holds

Letting Bi = Ai , there is an extension d ≤ c forcing

ΦG0
e0

(x) ↓= n ∨ ΦG1
e1

(x) ↓= n

Case 2: ψ(x ,n) does not hold

(∃B0 t B1 = N)(∀i < 2)(∀Ei ⊆ X ∩ Bi)ΦFi∪Ei
ei

(x) 6= n

The condition (F0,F1,X ∩ Bi) ≤ c forces

ΦG0
e0

(x) 6= n ∨ ΦG1
e1

(x) 6= n
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SECOND ATTEMPT

D = {(x ,n) : ψ(x ,n)}

Σ1 case

(∃x)(x ,1− S(x)) ∈ D

Then ∃d ≤ c ∃i < 2

d  ΦGi
ei

(x) ↓= 1− S(x)

Π1 case

(∃x)(x ,S(x)) 6∈ D

Then ∃d ≤ c ∃i < 2

d  ΦGi
ei

(x) 6= S(x)

Impossible case

(∀x)(x ,1− S(x)) 6∈ D

(∀x)(x ,S(x)) ∈ D

Then since D is X -c.e

S ≤T X �
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CJS ARGUMENT

Context: We build a solution G to a P-instance X

Goal: Decide a property ϕ(G).

Question: For every P-instance Y , can I find a solution G
satisfying ϕ(G)?

If yes: In particular for Y = X , I can satisfy ϕ(G).

If no: If no: By making G be a solution to X and Y
simultaneously, I will satisfy ¬ϕ(G).
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Separations of Ramsey-type statements

using the CJS argument often yield

tight bounds
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RAMSEY’S THEOREM

RTn
k

,r

Over n-tuples

Using k colors

Allows r colors
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Fix a problem P.

A set S is P-encodable if there is an instance of
P such that every solution computes S.

What sets can encode an
instance of RTn

k?
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Thm (Wang)

A set is RTn
k ,`-encodable iff it is computable for large `

(whenever ` is at least the nth Schröder Number)

Thm (Dorais, Dzhafarov, Hirst, Mileti, Shafer)

A set is RTn
k ,`-encodable iff it is hyperarithmetic for small `

(whenever ` < 2n−1)

Thm (Cholak, P.)

A set is RTn
k ,`-encodable iff it is arithmetic for medium `
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RTn
k ,`-ENCODABLE SETS

RT1
k ,` `

≥ 1

RT2
k ,` `

1 ≥ 2

RT3
k ,` `

1− 3 4 ≥ 5

RT4
k ,` `

1− 7 8− 13 ≥ 14

hyp. arith. comp.
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The CJS argument applies
to many frameworks
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COMPUTABLE REDUCTION

Q solver
Computable

transformation

Computable

transformation

P solver

P ≤c Q
Every P-instance I computes a Q-instance J such that for every
solution X to J, X ⊕ I computes a solution to I.
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A function f is hyperimmune if it is not dominated by a
computable function.

A problem P preserves ` among k hyperimmunities if for every
k -tuple f1, . . . , fk of hyperimmune functions and every
computable P-instance I, there is a solution Y such that at least
` among k of the fi are Y -hyperimmune.
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Thm (P.)

RT2
k preserves 2 among k + 1 hyperimmunities, but not RT2

k+1.

Cor (P.)

RT2
k+1 6≤c RT2

k .
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How many applications needed to prove that
RCA0 ` RT2

2 → RT2
5?

Take an RT2
5-instance which does not preserve 2 among 5

hyperimmune sets A0, . . . ,A4.

# of apps of RT2
2 # of i ’s such that Ai is hyperimmune

0 5

1 π(5,2) = 3

2 π(3,2) = 2

3 π(2,2) = 1
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How many applications needed to prove that
RCA0 ` RT2

2 → RT2
5?

We need at least 3 applications of RT2
2 to obtain RT2

5.

By a standard color blindness argument,
3 applications are sufficient.
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The limits of Mathias forcing

and the CJS argument
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f : [N]n+1 → k is stable if for every σ ∈ [N]n, limy f (σ, y) exists.

SRTn
k : RTn

k restricted to stable colorings.

An infinite set C is ~R-cohesive for some sets R0,R1, . . .
if for every i , either C ⊆∗ Ri or C ⊆∗ R i .

COH : Every collection of sets has a cohesive set.
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∅′-computable stable computable

RTn
k ⇔ RTn+1

k

“Every ∆0
2 set has

an infinite subset ⇔ SRT2
2

or cosubset”
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RCA0 ` RT2
2 ↔ COH∧SRT2

2.

Given f : [N]n+1 → 2, define 〈Rx : x ∈ N〉 by

Rx = {y : f (x , y) = 1}

By COH, there is an ~R-cohesive set C.

f : [C]2 → 2 is an instance of SRT2
2
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RCA0 0 COH→ SRT2
2

(Hirschfeldt, Jocksuch, Kjos-Hanssen, Lempp, and Slaman)

By preservingW = {X :

X does not compute an f-homogeneous set }
using a computable Mathias forcing.
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RCA0 0 SRT2
2 → COH

(Chang, Slaman and Yang)

Using the CJS argument in a
non-standard model containing only low sets.
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Turing idealM
� (∀X ∈M)(∀Y ≤T X )[Y ∈M]

� (∀X ,Y ∈M)[X ⊕ Y ∈M]

Examples
� {X : X is computable }
� {X : X ≤T A ∧ X ≤T B} for some sets A and B
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LetM be a Turing ideal and P,Q be problems.

Satisfaction

M |= P
if every P-instance inM

has a solution inM.

Computable entailment

P |=c Q
if every Turing ideal

satisfying P satisfies Q.
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Does SRT2
2 |=c COH?

(Hirschfeldt)

The CJS argument applied to RT1
2 yields solutions to COH.

Does COH ≤c SRT2
2?

(Dzhafarov)
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Have we found the right framework?

Can Mathias forcing and the
CJS argument answer all the

Ramsey-type questions?
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The CJS argument applied to RT1
2 yields solutions to COH.

Fix a computable sequence of sets R0,R1, . . .

Is there a set X , such that
every infinite set H ⊆ X or H ⊆ X

computes an ~R-cohesive set?
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A set X is high if X ′ ≥T ∅′′.

Is there a set X , such that every infinite
set H ⊆ X or H ⊆ X is high?

If yes, then COH ≤oc RT1
2.

If no, well, this is still interesting per se.
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A set S is P-jump-encodable if there is an instance of P such
that the jump of every solution computes S.

Are the RT1
2-jump-encodable sets

precisely the ∅′-computable ones?
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CONCLUSION

We have a minimalistic framework which answers accurately
many questions about Ramsey’s theorem.

This can be taken as evidence that we have found the right
framework.

Does the COH vs SRT2
2 question reveal the limits of the

framework?
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