Can we fish with Mathias forcing?

Ludovic PATEY

September 8, 2017

Introduction

Many theorems can be seen as problems.

Intermediate value theorem
For every continuous function f over an interval $[a, b]$ such that $f(a) \cdot f(b)<0$, there is a real $x \in[a, b]$ such that $f(x)=0$.

König's lemma
Every infinite, finitely branching tree admits an infinite path.

Reverse mathematics

Foundational program that seeks to determine the optimal axioms of ordinary mathematics.

Reverse mathematics

Foundational program that seeks to determine the optimal axioms of ordinary mathematics.

$$
\begin{aligned}
& R_{0} A_{0} \vdash A \leftrightarrow T \\
& \text { in a very weak theory } \mathrm{RCA}_{0} \\
& \text { capturing computable mathematics }
\end{aligned}
$$

RCA_{0}

Robinson arithmetics

$$
\begin{aligned}
& m+1 \neq 0 \\
& m+1=n+1 \rightarrow m=n \\
& \neg(m<0)=m \\
& m<n+1 \leftrightarrow(m<n \vee m=n)
\end{aligned}
$$

Σ_{1}^{0} induction Σ_{1}^{0} scheme
$\varphi(0) \wedge \forall n(\varphi(n) \Rightarrow \varphi(n+1))$ $\Rightarrow \forall n \varphi(n)$
where $\varphi(n)$ is Σ_{1}^{0}

$$
\begin{aligned}
& m+0=m \\
& m+(n+1)=(m+n)+1 \\
& m \times 0=0 \\
& m \times(n+1)=(m \times n)+m
\end{aligned}
$$

Δ_{1}^{0} comprehension scheme

$$
\begin{aligned}
& \forall n(\varphi(n) \Leftrightarrow \psi(n)) \\
& \Rightarrow \exists X \forall n(x \in X \Leftrightarrow \varphi(n))
\end{aligned}
$$

where $\varphi(n)$ is Σ_{1}^{0} with free X, and ψ is Π_{1}^{0}.

Reverse mathematics

Mathematics are computationally very structured

Almost every theorem is empirically equivalent to one among five big subsystems.

Reverse mathematics

Mathematics are computationally very structured

Almost every theorem is empirically equivalent to one among five big subsystems.
$\Pi_{1}^{1} \mathrm{CA}$
\downarrow
ATR
\downarrow
ACA

Except for Ramsey's theory...

RAMSEY'S THEOREM

$[X]^{n}$ is the set of unordered n-tuples of elements of X
A k-coloring of $[X]^{n}$ is a map $f:[X]^{n} \rightarrow k$
A set $H \subseteq X$ is homogeneous for f if $\left|f\left([X]^{n}\right)\right|=1$.
$R T_{k}^{n}$ Every k-coloring of $[\mathbb{N}]^{n}$ admits an infinite homogeneous set.

Pigeonhole principle

RT_{k}^{1}

Every k-partition of \mathbb{N} admits an infinite part.

$$
\begin{array}{rrrrr}
0 & 1 & 2 & 3 & 4 \\
5 & 6 & 7 & 8 & 9 \\
10 & 11 & 12 & 13 & 14 \\
15 & 16 & 17 & 18 & 19 \\
20 & 21 & 22 & 23 & 24 \\
25 & 26 & 27 & 28 & \ldots .
\end{array}
$$

RAMSEY'S THEOREM FOR PAIRS

$R T_{k}^{2}$

Every k-coloring of the infinite clique admits an infinite monochromatic subclique.

$\mathrm{RCA}_{0} \nvdash \mathrm{RT}_{2}^{2} \rightarrow \mathrm{ACA}$
 (Seetapun)

By preserving a weakness property using a proto version of the CJS argument.

A weakness property is a collection of sets closed downwards under the Turing reduction.

Examples

- $\{X: X$ is low $\}$
- $\left\{X: A \not \mathbb{Z}_{T} X\right\}$ for some set A
- $\{X: X$ is hyperimmune-free $\}$

Fix a weakness property \mathcal{W}.

A problem P preserves \mathcal{W} if for every $Z \in \mathcal{W}$, every Z-computable P-instance X has a solution Y such that $Y \oplus Z \in \mathcal{W}$

Lemma
If P preserves \mathcal{W} but Q does not, then $\mathrm{RCA}_{0} \nvdash \mathrm{P} \rightarrow \mathrm{Q}$

$\mathrm{RCA}_{0} \nvdash \mathrm{RT}_{2}^{2} \rightarrow \mathrm{ACA}$ (Seetapun)

By preserving $\mathcal{W}=\{X: X$ is incomplete $\}$ using a proto version of the CJS argument.

The success of Mathias forcing and the CJS argument

Separations are often achieved by preserving weakness properties using canonical notions of forcing

Separations by weakness properties

- WKL \vdash_{c} ACA
- $\mathrm{RT}_{2}^{2} \forall_{c} \mathrm{ACA}$
- $\mathrm{EM} \vdash_{c} \mathrm{RT}_{2}^{2}$
- EM $\vdash_{c} \mathrm{TS}^{2}$
- $\mathrm{TS}^{2} \forall_{c} \mathrm{RT}_{2}^{2}$
- $\mathrm{RT}_{2}^{2} \nvdash_{c} \mathrm{TT}_{2}^{2}$
- $\mathrm{RT}_{2}^{2} \vdash_{c}$ WWKL
(cone avoidance) (cone avoidance)
(2 hyperimmunities)
(ω hyperimmunities)
(2 hyperimmunities)
(fairness property)
(c.b-enum avoidance)

A notion of forcing \mathbb{P} is canonical for a problem
P if the properties preserved by the problem and by the notion of forcing coincide.

Restriction to classes of properties

FAMILIES OF PROPERTIES

Effectiveness

- Lowness
- Hyperimmunefreeness
- Hyperarithmetic
- ...

Genericity

- Cone avoidance
- Preservation of non- Σ_{n}^{0} definitions
- Preservation of hyperimmunity

Example

\mathcal{P} is an open genericity property if \mathcal{P} is the set of oracles which do not compute a member of a fixed closed set $\mathcal{C} \subseteq \omega^{\omega}$

Contains already all the genericity properties used in reverse mathematics.

Theorem (Hirschfeldt and P.)
WKL and the notion of forcing with Π_{1}^{0} classes preserve the same open genericity properties

Mathias forcing

with a

CJS argument

are sufficient to analyse Ramsey-type statements.
$[X]^{\omega}$ denotes the set of infinite subsets of X

A problem P is of Ramsey-type if for every instance I, the set of solutions is dense and closed downward in $\left([\mathbb{N}]^{\omega}, \subseteq\right)$:

$$
\begin{aligned}
& \forall X \in[\mathbb{N}]^{\omega},[X]^{\omega} \cap \mathcal{S}(I) \neq \emptyset \\
& \forall X \in \mathcal{S}(I),[X]^{\omega} \subseteq \mathcal{S}(I)
\end{aligned}
$$

We can solve Ramsey-type problems simultaneously.

Given two Ramsey-type problems P and Q, define the problem

$$
\mathrm{P} \cap \mathrm{Q}=\left\{\begin{array}{l}
\mathcal{I}(\mathrm{P} \cap \mathrm{Q})=\mathcal{I}(\mathrm{P}) \times \mathcal{I}(\mathrm{Q}) \\
\mathcal{S}(I, J)=\mathcal{S}(I) \cap \mathcal{S}(J)
\end{array}\right.
$$

Thm (Dzhafarov and Jockusch)

If a set S is not computable, then for every set A, there is an infinite set $G \subseteq A$ or $G \subseteq \bar{A}$ such that $S \not \Sigma_{T} G$.

Thm (Dzhafarov and Jockusch)

If a set S is not computable, then for every set A, there is an infinite set $G \subseteq A$ or $G \subseteq \bar{A}$ such that $S \not \leq T G$.

Input : a set $S \not \leq_{T} \emptyset$ and a 2-partition $A_{0} \sqcup A_{1}=\mathbb{N}$
Output : an infinite set $G \subseteq A_{i}$ such that $S \not \Sigma_{T} G$

$\left(F_{0}, F_{1}, X\right)$ Initial segment
 \uparrow
 Reservoir

- F_{i} is finite, X is infinite, $\max F_{i}<\min X$
- $S_{\not \leq{ }_{T} X} X$
- $F_{i} \subseteq A_{i}$
(Mathias condition)
(Weakness property)
(Combinatorics)

Extension

$$
\begin{array}{cc}
\text { Extension } & \text { Satisfaction } \\
\left(E_{0}, E_{1}, Y\right) \leq\left(F_{0}, F_{1}, X\right) & \left\langle G_{0}, G_{1}\right\rangle \in\left[F_{0}, F_{1}, X\right] \\
-F_{i} \subseteq E_{i} & -F_{i} \subseteq G_{i} \\
-Y \subseteq X & \sim G_{i} \backslash F_{i} \subseteq X \\
-E_{i} \backslash F_{i} \subseteq X &
\end{array}
$$

$\left[E_{0}, E_{1}, Y\right] \subseteq\left[F_{0}, F_{1}, X\right]$

$$
\left(F_{0}, F_{1}, X\right) \Vdash \varphi\left(G_{0}, G_{1}\right)
$$
 Condition

 Formula

$\varphi\left(G_{0}, G_{1}\right)$ holds for every $\left\langle G_{0}, G_{1}\right\rangle \in\left[F_{0}, F_{1}, X\right]$

Input : a set $S \not \leq T \emptyset$ and a 2-partition $A_{0} \sqcup A_{1}=\mathbb{N}$
Output : an infinite set $G \subseteq A_{i}$ such that $S \not \Sigma_{T} G$

Input : a set $S \not \leq T \emptyset$ and a 2-partition $A_{0} \sqcup A_{1}=\mathbb{N}$
Output : an infinite set $G \subseteq A_{i}$ such that $S \not \Sigma_{T} G$

$$
\Phi_{e_{0}}^{G_{0}} \neq S \vee \Phi_{e_{1}}^{G_{1}} \neq S
$$

Input : a set $S \not \leq T \emptyset$ and a 2-partition $A_{0} \sqcup A_{1}=\mathbb{N}$
Output : an infinite set $G \subseteq A_{i}$ such that $S \not \Sigma_{T} G$

$$
\Phi_{e_{0}}^{G_{0}} \neq S \vee \Phi_{e_{1}}^{G_{1}} \neq S
$$

The set $\left\{\begin{aligned} c: c \Vdash(\exists x) & \Phi_{e_{0}}^{G_{0}}(x) \downarrow \neq S(x) \vee \Phi_{e_{0}}^{G_{0}}(x) \uparrow \\ \vee & \Phi_{e_{1}}^{G_{1}}(x) \downarrow \neq S(x) \vee \Phi_{e_{1}}^{G_{1}}(x) \uparrow\end{aligned}\right\}$ is dense

FIRST ATTEMPT

Given a condition $c=\left(F_{0}, F_{1}, X\right)$, suppose the formula

$$
\varphi(x, n)=(\exists d \leq c) d \Vdash \Phi_{e_{0}}^{G_{0}}(x) \downarrow=n
$$

is $\Sigma_{1}^{0, X}$ (it is not). Then the set

$$
\mathcal{C}=\{(x, n): \varphi(x, n)\}
$$

is X-c.e.

FIRST ATTEMPT

$$
\mathcal{C}=\{(x, n): \varphi(x, n)\}
$$

Σ_{1} case

$(\exists x)(x, 1-S(x)) \in \mathcal{C}$
$d \Vdash \Phi_{e_{0}}^{G_{0}}(x) \downarrow=1-S(x)$
Π_{1} case
$(\exists x)(x, S(x)) \notin \mathcal{C}$

Then
$c \Vdash \Phi_{e_{0}}^{G_{0}}(x) \neq S(x)$

Impossible case

$$
(\forall x)(x, 1-S(x)) \notin \mathcal{C}
$$

$$
(\forall x)(x, S(x)) \in \mathcal{C}
$$

Then since \mathcal{C} is X-c.e
$S \leq_{T} X$?

THE FIRST ATTEMPT FAILS

Given a condition $c=\left(F_{0}, F_{1}, X\right)$, the formula

$$
\varphi(x, n)=(\exists d \leq c) d \Vdash \Phi_{e_{0}}^{G_{0}}(x) \downarrow=n
$$

is too complex because it can be translated in

$$
\left(\exists E_{0} \subseteq X \cap A_{0}\right) \Phi_{e_{0}}^{F_{0} \cup E_{0}}(x) \downarrow=n
$$

which is $\Sigma_{1}^{0, A \oplus X}$ and not $\Sigma_{1}^{0, X}$.

IDEA: MAKE AN OVERAPPROXIMATION

"Can we find an extension for every instance of $R T_{2}^{1}$?"

Given a condition $c=\left(F_{0}, F_{1}, X\right)$, let $\psi(x, n)$ be the formula

$$
\begin{gathered}
\left(\forall B_{0} \sqcup B_{1}=\mathbb{N}\right)(\exists i<2)\left(\exists E_{i} \subseteq X \cap B_{i}\right) \Phi_{e_{i}}^{F_{i} \cup E_{i}}(x) \downarrow=n \\
\psi(x, n) \text { is } \Sigma_{1}^{0, x}
\end{gathered}
$$

Case 1: $\psi(x, n)$ holds
Letting $B_{i}=A_{i}$, there is an extension $d \leq c$ forcing

$$
\Phi_{e_{0}}^{G_{0}}(x) \downarrow=n \vee \Phi_{e_{1}}^{G_{1}}(x) \downarrow=n
$$

Case 2: $\psi(x, n)$ does not hold

$$
\left(\exists B_{0} \sqcup B_{1}=\mathbb{N}\right)(\forall i<2)\left(\forall E_{i} \subseteq X \cap B_{i}\right) \Phi_{e_{i}}^{F_{i} \cup E_{i}}(x) \neq n
$$

The condition $\left(F_{0}, F_{1}, X \cap B_{i}\right) \leq c$ forces

$$
\Phi_{e_{0}}^{G_{0}}(x) \neq n \vee \Phi_{e_{1}}^{G_{1}}(x) \neq n
$$

SECOND ATTEMPT

$$
\mathcal{D}=\{(x, n): \psi(x, n)\}
$$

Σ_{1} case

$(\exists x)(x, 1-S(x)) \in \mathcal{D}$
Π_{1} case
$(\exists x)(x, S(x)) \notin \mathcal{D}$
Impossible case
$(\forall x)(x, 1-S(x)) \notin \mathcal{D}$
$(\forall x)(x, S(x)) \in \mathcal{D}$
Then $\exists d \leq c \exists i<2$
Then $\exists d \leq c \exists i<2$
$d \Vdash \Phi_{e_{i}}^{G_{i}}(x) \downarrow=1-S(x)$ $d \Vdash \Phi_{e^{G}}^{G_{i}}(x) \neq S(x)$
$S \leq_{T} X$?

CJS ARGUMENT

Context: We build a solution G to a P-instance X
Goal: Decide a property $\varphi(G)$.
Question: For every P-instance Y, can I find a solution G satisfying $\varphi(G)$?

If yes: In particular for $Y=X$, I can satisfy $\varphi(G)$.
If no: If no: By making G be a solution to X and Y simultaneously, I will satisfy $\neg \varphi(G)$.

Separations of Ramsey-type statements using the CJS argument often yield tight bounds

Ramsey's theorem

Over n-tuples

 $$
R \mathrm{~T}_{k}^{n}
$$

 Using k colors

Ramsey's theorem

Using k colors

Fix a problem P.
A set S is P -encodable if there is an instance of P such that every solution computes S.

What sets can encode an instance of RT_{k}^{n} ?

Thm (Wang)

A set is $R T_{k, \ell^{\prime}}^{n}$-encodable iff it is computable for large ℓ
(whenever ℓ is at least the nth Schröder Number)

Thm (Wang)

A set is $R T_{k, \ell^{\prime}}^{n}$-encodable iff it is computable for large ℓ
(whenever ℓ is at least the nth Schröder Number)

Thm (Dorais, Dzhafarov, Hirst, Mileti, Shafer)

A set is $R T_{k, \ell}^{n}$-encodable iff it is hyperarithmetic for small ℓ (whenever $\ell<2^{n-1}$)

Thm (Wang)

A set is $R T_{k, \ell^{\prime}}^{n}$-encodable iff it is computable for large ℓ
(whenever ℓ is at least the nth Schröder Number)

Thm (Dorais, Dzhafarov, Hirst, Mileti, Shafer)

A set is $R T_{k, \ell}^{n}$-encodable iff it is hyperarithmetic for small ℓ (whenever $\ell<2^{n-1}$)

Thm (Cholak, P.)

A set is $R T_{k, \ell}^{n}$-encodable iff it is arithmetic for medium ℓ
$R T_{k, \ell}^{n}$-ENCODABLE SETS

The CJS argument applies to many frameworks

Computable reduction

$\mathrm{P} \leq{ }_{c} \mathrm{Q}$

Every P-instance I computes a Q-instance J such that for every solution X to $J, X \oplus I$ computes a solution to I.

A function f is hyperimmune if it is not dominated by a computable function.

A problem P preserves ℓ among k hyperimmunities if for every k-tuple f_{1}, \ldots, f_{k} of hyperimmune functions and every computable P -instance I, there is a solution Y such that at least ℓ among k of the f_{i} are Y-hyperimmune.

Thm (P.)

$R T_{k}^{2}$ preserves 2 among $k+1$ hyperimmunities, but not $R T_{k+1}^{2}$.

Cor (P.)

$R T_{k+1}^{2} \not \leq_{c} R_{k}^{2}$.

How many applications needed to prove that $\mathrm{RCA}_{0} \vdash \mathrm{RT}_{2}^{2} \rightarrow \mathrm{RT}_{5}^{2}$?

Take an RT_{5}^{2}-instance which does not preserve 2 among 5 hyperimmune sets A_{0}, \ldots, A_{4}.

\# of apps of RT_{2}^{2}	\# of i 's such that A_{i} is hyperimmune
0	5
1	$\pi(5,2)=3$
2	$\pi(3,2)=2$
3	$\pi(2,2)=1$

How many applications needed to prove that $\mathrm{RCA}_{0} \vdash \mathrm{RT}_{2}^{2} \rightarrow \mathrm{RT}_{5}^{2}$?

We need at least 3 applications of $R T_{2}^{2}$ to obtain $R T_{5}^{2}$.

By a standard color blindness argument, 3 applications are sufficient.

The limits of Mathias forcing and the CJS argument

$f:[\mathbb{N}]^{n+1} \rightarrow k$ is stable if for every $\sigma \in[\mathbb{N}]^{n}, \lim _{y} f(\sigma, y)$ exists. $\mathrm{SR} \mathrm{T}_{k}^{n}: \mathrm{RT}_{k}^{n}$ restricted to stable colorings.

An infinite set C is \vec{R}-cohesive for some sets R_{0}, R_{1}, \ldots if for every i, either $C \subseteq^{*} R_{i}$ or $C \subseteq^{*} \bar{R}_{i}$.

COH : Every collection of sets has a cohesive set.

Ø'-computable RT_{k}^{n}
stable computable
$R T_{k}^{n+1}$

Ø'-computable

$$
\mathrm{RT}_{k}^{n}
$$

stable computable
$R T_{k}^{n+1}$
"Every Δ_{2}^{0} set has an infinite subset

SRT_{2}^{2} or cosubset"

$\mathrm{RCA}_{0} \vdash \mathrm{RT}_{2}^{2} \leftrightarrow \mathrm{COH} \wedge \mathrm{SRT}_{2}^{2}$.

Given $f:[\mathbb{N}]^{n+1} \rightarrow 2$, define $\left\langle R_{x}: x \in \mathbb{N}\right\rangle$ by

$$
R_{x}=\{y: f(x, y)=1\}
$$

By COH , there is an \vec{R}-cohesive set C.
$f:[C]^{2} \rightarrow 2$ is an instance of SRT_{2}^{2}

$\mathrm{RCA}_{0} \nvdash \mathrm{COH} \rightarrow \mathrm{SRT}_{2}^{2}$

(Hirschfeldt, Jocksuch, Kjos-Hanssen, Lempp, and Slaman)

By preserving $\mathcal{W}=\{X$:
X does not compute an f-homogeneous set $\}$ using a computable Mathias forcing.

$\mathrm{RCA}_{0} \nvdash \mathrm{SRT}_{2}^{2} \rightarrow \mathrm{COH}$ (Chang, Slaman and Yang)

Using the CJS argument in a non-standard model containing only low sets.

Turing ideal \mathcal{M}
 - $(\forall X \in \mathcal{M})\left(\forall Y \leq_{T} X\right)[Y \in \mathcal{M}]$
 - $(\forall X, Y \in \mathcal{M})[X \oplus Y \in \mathcal{M}]$

Examples

- $\{X: X$ is computable $\}$
- $\left\{X: X \leq_{T} A \wedge X \leq_{T} B\right\}$ for some sets A and B

Let \mathcal{M} be a Turing ideal and P, Q be problems.

Satisfaction

$\mathcal{M} \equiv \mathrm{P}$
if every P-instance in \mathcal{M} has a solution in \mathcal{M}.

Computable entailment

$$
\mathrm{P} \models_{c} \mathrm{Q}
$$

if every Turing ideal satisfying P satisfies Q.

Does $\mathrm{SRT}_{2}^{2} \models_{c} \mathrm{COH}$?

(Hirschfeldt)

The CJS argument applied to RT_{2}^{1} yields solutions to COH .

$$
\text { Does } \underset{\text { (Dzhafarov) }}{\mathrm{COH}} \leq_{c} \mathrm{SRT}_{2}^{2} ?
$$

Have we found the right framework?

Can Mathias forcing and the
 CJS argument answer all the Ramsey-type questions?

The CJS argument applied to RT_{2}^{1} yields solutions to COH .
Fix a computable sequence of sets R_{0}, R_{1}, \ldots

Is there a set X, such that every infinite set $H \subseteq X$ or $H \subseteq \bar{X}$
computes an \vec{R}-cohesive set?

A set X is high if $X^{\prime} \geq_{T} \emptyset^{\prime \prime}$.

Is there a set X, such that every infinite set $H \subseteq X$ or $H \subseteq \bar{X}$ is high?

If yes, then $\mathrm{COH} \leq_{o c} \mathrm{RT}_{2}^{1}$.
If no, well, this is still interesting per se.

A set S is P -jump-encodable if there is an instance of P such that the jump of every solution computes S.

Are the RT_{2}^{1}-jump-encodable sets precisely the \emptyset^{\prime}-computable ones?

Conclusion

We have a minimalistic framework which answers accurately many questions about Ramsey's theorem.

This can be taken as evidence that we have found the right framework.

Does the COH vs SRT_{2}^{2} question reveal the limits of the framework?

References

Peter A. Cholak, Carl G. Jockusch, and Theodore A. Slaman. On the strength of Ramsey's theorem for pairs.
Journal of Symbolic Logic, 66(01):1-55, 2001.
國 Carl G. Jockusch.
Ramsey's theorem and recursion theory.
Journal of Symbolic Logic, 37(2):268-280, 1972.
Rudovic Patey.
The reverse mathematics of Ramsey-type theorems.
PhD thesis, Université Paris Diderot, 2016.
目 Wei Wang.
Some logically weak Ramseyan theorems.
Advances in Mathematics, 261:1-25, 2014.

