Redeveloping Takeuti-Yasumoto forcing

Satoru Kuroda
GPWU, Gunma, Japan
9, September, 2017
CTFM 2017

Forcing in Bounded Arithmetic

- Forcing was introduced in bounded arithmetic by Paris-Wilkie proving the relativized independence of the pigeonhole principle, followed by Ajtai and Riis.
- Krajíček gave several forcing construction for PTIME theories in a different context.
- Takeuti and Yasumoto succeeded in building a theory of Boolean valued models in bounded arithmetic.
- We will give a reformulation of Takeuti-Yasumoto forcing in two-sort bounded arithmetic.
- Correct proofs are given for some theorems of Takeuti-Yasumoto.
- T-Y forcing method can be applied to other complexity classes such as $N C^{1}$.
- We wil also discuss relations to Krajíček's forcing.

Forcing in Bounded Arithmetic: An Overview

Paris-Wilkie used forcing argument to prove a relativized independence of the Pigeonhole Principle from weak system of arithmetic

Theorem (Paris-Wilkie)

There exists a model $(M, R) \models I \exists_{1}(R)$ in which R is a bijection from $n+1$ to n for some $n \in M$.
The construction of R uses a simple back-and-force argument but can be regarded as a forcing construction.
Ajtai uses a similar idea to prove a stronger result

Theorem (Ajtai)

There exists a model $(M, R) \models I \Delta_{0}(R)$ in which R is a bijection from $n+1$ to n for some $n \in M$.
Ajtai's construction resembles to Cohen style forcing; R is defined as a generic in the forcing condition

$$
\mathcal{P}=\left\{f \subset n+1 \rightarrow n:|f|<n^{1-\epsilon} \text { for some } \epsilon>0\right\} .
$$

However the proof requires a difficult argument which utilizes special type of switching lemma.

Krajičcek Forcing

- Paris-Wilkie-Ajtai forcing gives a only relativized result.
- On the other hand, Krajiček introduced a different view in forcing construction.
- Krajíček's idea is to construct a models of weak arithmetic having particular properties starting from a nonstandard model with some assumption in computational complexity or proof complexity.

Theorem (Krajíček)
Let $M \models P V+N P \nsubseteq P /$ poly. Then there exists a Π_{1}^{B}-elementary extension M^{\prime} in which $N P \nsubseteq$ co-NP.

Theorem (Krajíček)

Let $M \models V^{1}$ in which there is no $E F$-proof of a propositional formula τ. Then there exists a Π_{1}^{B}-elementary extension $M^{\prime} \models V^{1}$ in which $\neg \tau$ is satisfiable.

Takeuti-Yasumoto forcing

- In two consecutive papers, Takeuti and Yasumoto gave a construction of generic models of Bounded Arithmetic which is a disguise of Boolean valued models in set theory.
- Their construction is inspired by the previous forcing arguments but the motivation is rather different.
- Namely, they tried to relate the separation problem in the standard world to the generic models.
- However, we are interested in the technical aspects of Takeuti-Yasumoto forcing so we ignore their original motivations.
- Our motivation is to give a general framework for forcing in bounded arithmetic based on Takeuti-Yasumoto's approach.

Basic Bounded Arithmetic

One-sort systems (Buss)

- Language:

First order language L_{A} comprises

$$
\begin{aligned}
& 0, s_{0}(x)=2 x, s_{1}(x)=2 x+1, x+y, x \cdot y,\lfloor x / 2\rfloor, \\
& |x|=\lceil\log (x+1)\rceil, x \# y=2^{|x| \cdot|y|} .
\end{aligned}
$$

- Quantifiers and classes of formulas
$\forall x<|t|, \exists x<|t|$: sharply bounded quantifiers
$\forall x<t, \exists x<t$: nonsharply bounded quantifiers
\sum_{i}^{b} is the set of L_{A} formulas with $\leq i$ alternations of nonsharply bounded quantifiers starting with an existential quantifier. Π_{i}^{b} is defined dually.
- Connections with complexity classes
Σ_{0}^{b} formulas are polynomial time predicates
Σ_{1}^{b} and Π_{1}^{b} are exactly NP and co-NP predicates resp.

Basic Bounded Arithmetic

Two-sort systems (Cook-Nguyen)

- Language:

Two-sort language L_{A}^{2} comprises number variables x, y, z, \ldots, string variables X, Y, Z, \ldots and

$$
0, x+y, x \cdot y,|X|, x \in X
$$

- Quantifiers and classes of formulas $\forall x<t, \exists x<t$: bounded number quantifiers $\forall X<t \equiv \forall X(|X|<t \rightarrow \cdots), \exists X<t \equiv \exists X(|X|<t \wedge \cdots)$: bounded string quantifiers
Σ_{i}^{B} is the set of L_{A}^{2} formulas with $\leq i$ alternations of bounded string quantifiers starting with an existential quantifier.
Π_{i}^{b} is defined dually.
- Connections with complexity classes
\sum_{0}^{B} formulas are FO predicates
Σ_{1}^{B} and Π_{1}^{B} are exactly NP and co-NP predicates resp.

Theories for the Polynomial Hierarchy

Definition (Buss)

For $i \geq 0, S_{2}^{i}$ is the L_{A}-theory whose axioms are defining axioms for L_{A} symbols together with
$\Sigma_{i}^{b}-$ PIND : $\varphi(0) \wedge \forall x(\varphi(\lfloor x / 2\rfloor) \rightarrow \varphi(x)) \rightarrow \forall x \varphi(x), \quad \varphi(x) \in \Sigma_{i}^{b}$.
Definition (Cook-Nguyen)
For $i \geq 0, V^{i}$ is the L_{A}^{2}-theory whose axioms are defining axioms for L_{A}^{2} symbols together with
$\sum_{i}^{B}-C O M P: \forall a\left(\exists X<a \forall y<a(y \in X \leftrightarrow \varphi(y)), \quad \varphi(x) \in \Sigma_{i}^{B}\right.$.
Proposition
V^{0} proves $\sum_{i}^{B}-I N D \leftrightarrow \Sigma_{i}^{B}$-COMP.
Theorem (Buss, Cook-Nguyen)
For $i \geq 1, A$ function is computable in $P^{\Sigma_{i}^{p}}$ if and only if it is \sum_{i}^{b} definable in S_{2}^{i} if and only if it is \sum_{i}^{B} definable in V^{i}.

RSUV isomorphism

Theorem (Takeuti, Razborov)

There are translations $\varphi^{\#} \in \Sigma_{\infty}^{B}$ for $\varphi \in \Sigma_{\infty}^{b}$ and $\psi^{b} \in \Sigma_{\infty}^{b}$ for $\psi \in \Sigma_{\infty}^{B}$ such that

- if $S_{2}^{i} \vdash \varphi$ then $V^{i} \vdash \varphi^{\#}$,
- if $V^{i} \vdash \psi$ then $S_{2}^{i} \vdash \psi^{b}$,
- if $\left(\varphi^{\#}\right)^{b}=\varphi$ and $\left(\psi^{b}\right)^{\varphi}=\psi$.

This theorem is more intuitively understood in a model theoretical manner.
An L_{A}^{2}-structure consists of a pair $\left(M_{0}, M\right)$ of universes where M_{0} is a set of numbers and M is a set of strings. Then
Theorem
If $\left(M_{0}, M\right) \models V^{i}$ then $M \models S_{2}^{i}$ where each element of M is regarded as number in binary. Conversely, if $M=S_{2}^{i}$ and $M_{0}=\{|x|: x \in M\}$ then $\left(M_{0}, M\right) \models V^{i}$.

Theories for polynomial time

Definition

Let $L_{P V}$ be the language which consists of function symbols for polynomial time functions. $P V$ denotes the $L_{P V}$-theory whose axioms are defining axioms for symbols together with open induction.

Definition (Cook-Nguyen)

$V P$ is the L_{A}^{2}-theory V^{0} extended by a single axiom $M C V$ which expresses that any monotone circuits can be evaluated.

Proposition

$P V$ is a conservative extension of $V P . V^{1}$ is $\forall \Sigma_{1}^{B}$ conservative over $V P$.
The following result is known as KPT witnessing:
Theorem (Krajíček-Pudlák-Takeuti, Buss)
If $V P=V^{1}$ then $V P$ proves that $P H=N P /$ poly.

Basic definitions for T-Y forcing

Let $M \models T h(\mathbb{N})$ be countable nonstandard, $n \in M \backslash \omega$ and $n_{0}=|n|$. Define

$$
M^{*}=\{x \in M: x \leq n \underbrace{\# \cdots \# k}_{k} \text { for some } k \in \omega\}
$$

and $M_{0}^{*}=\left\{|x|: x \in M^{*}\right\}$.
We define the Boolean algebra $\mathbb{B}_{C}=\left\{C \in M^{*}: C\right.$ is a circuit with n_{0} inputs $\}$.

For $C, C^{\prime} \in \mathbb{B}_{C}, C \leq C^{\prime} \Leftrightarrow \forall X\left(|X|=n \rightarrow \operatorname{eval}(C, X) \leq \operatorname{eval}\left(C^{\prime}, X\right)\right)$.
An ideal $I \subseteq \mathbb{B}_{C}$ is M_{0}-complete if it is closed under $\bigvee_{i<a}$ with $a \in M_{0}$.
A set $D \subseteq \mathbb{B}_{C}$ is dense over $/$ if for all $X \in \mathbb{B}_{C} \backslash /$ there is $Y \in D \backslash /$ such that $Y \leq X$.

A maximal filter $G \subseteq \mathbb{B}_{C}$ is \mathcal{M}-generic over I if for any D dense over $/$ and definable in $M,(D \backslash I) \cap G \neq \emptyset$.

Generic model

$M^{\mathbb{B} c}=\left\{X \in M^{*}: X: a \rightarrow \mathbb{B}\right.$ for some $\left.a \in M_{0}^{*}\right\}$. i.e. $M^{\mathbb{B} c}$ is the set of sequences of circuits.

For $X: a \rightarrow \mathbb{B}_{C}$ and \mathcal{M}-generic maximal filter G, define $i_{G}(X)=\{x<a: X(x) \in G\}$.
(String part of) Generic Model is defined as $M[G]=\left\{{ }_{G}(X): X \in M^{\mathbb{B}} c\right\}$
As in set theory, we can show that
Lemma
If G is \mathcal{M}-generic then $M^{*} \subseteq M[G]$.
Since all strings in $M[G]$ are of length $a \in M_{0}^{*}$, we may regard ($M_{0}^{*}, M[G]$) as a L_{A}^{2}-structure.
Takeuti and Yasumoto gave several examples of M_{0}-complete ideals I so that $M^{*} \subsetneq M[G]$.

Forcing theorem

We have a translation of $\varphi(\bar{x}, \bar{X}) \in \sum_{0}^{B}$ into a propositional formula such as Paris-Wilkie translation. We fix such a translation and denote by $\llbracket \varphi(\bar{x}, \bar{X}) \rrbracket$. Then we have a forcing theorem for Σ_{0}^{B} formulas.
Theorem
Let $\varphi(\bar{x}, \bar{X}) \in \Sigma_{0}^{B}, \bar{x} \in M_{0}^{*}$ and $X_{i}: a \rightarrow M^{\mathbb{B}} c$. If G is a \mathcal{M}-generic over some M_{0}-complete ideal $I \subseteq \mathbb{B}_{C}$ then

$$
\left(M_{0}^{*}, M[G]\right) \models \varphi\left(\bar{x}, i_{G}\left(X_{1}\right), \ldots, i_{G}\left(X_{k}\right)\right) \Leftrightarrow \llbracket \varphi\left(\bar{x}, X_{1}, \ldots, X_{k}\right) \rrbracket \in G .
$$

Since \mathbb{B}_{C} is closed under polynomial time functions, we also have Theorem $\left(M_{0}^{*}, M[G]\right) \models V P$.

Remark

 Note that any open PV-formula can be represented by circuits. So we assume that there is a translation of open $P V$-formulas in \mathbb{B}_{C}.
Relating Generic model and $P=N P$

Theorem (Takeuti-Yasumoto,K)
If $P=N P$ then for any M_{0}-complete ideal $I \subseteq \mathbb{B}_{C}$ and \mathcal{M}-generic maximal filter G over $I,\left(M_{0}^{*}, M[G]\right) \models \Sigma_{1}^{B}$-COMP, i.e. $M[G] \models S_{2}^{1}$.
(Proof Sketch). If $P=N P$ is true then for any Σ_{1}^{b} formula $\exists Z<t \varphi(x, X, Z)$, we can compute the witness Z by a polynomial time function $F(x, X)$ using binary search. The function $F(x, X)$ can be represented in $\left(M_{0}^{*}, M^{*}\right)$ by a sequences $C_{0}^{x}, \ldots, C_{t}^{x}$ of circuits in \mathbb{B}_{C}. Then we can construct $Y: a \rightarrow \mathbb{B}_{C}$ such that for all $x<a$,

$$
Y(x) \in G \Leftrightarrow \text { there is } Z: t \rightarrow \mathbb{B}_{C} \text { such that } \llbracket \varphi(x, X, Z) \rrbracket \in G .
$$

For each $x<a, C_{x, x}: t \rightarrow \mathbb{B}_{C}$ be such that $C_{x, X}(i)=C_{i}^{x}(X)$ and set

$$
Y(x)=\llbracket \varphi\left(x, X, C_{x, x}\right) \rrbracket .
$$

Generic model and $N P \neq c o-N P$

Krajiček considers the problem of extending the model of $V P+P \neq N P$ to a model of $V P$ in which $N P \neq c o-N P$.
The construction of generic model by Krajíček can be obtained by T-Y forcing.
Theorem (Krajíček, K)
If $\left(M_{0}^{*}, M^{*}\right) \vDash N P \nsubseteq P /$ poly then there exists an M_{0}-complete ideal $I \subseteq \mathbb{B}_{C}$ such that $\left(M_{0}^{*}, M[G]\right) \models N P \nsubseteq$ co-NP.
(Proof Sketch).
Let $\operatorname{Sat}_{n}(X)$ denote the formula " X is a satisfiable formula with n inputs".
Suppose that $\left(M_{0}^{*}, M^{*}\right) \models P \nsubseteq P /$ poly. Then $\operatorname{Sat}_{n_{0}}(X)$ is not computed by a circuit in $\left(M_{0}^{*}, M^{*}\right)$ for some $n_{0} \in M_{0}^{*}$.
We construct a chain $M^{*}=M_{0} \subseteq M_{1} \subseteq M_{2} \subseteq \cdots$ inductively. Assume that we have constructed M_{i} and let $\varphi(X, Z) \in \Sigma_{0}^{B}$ be such that $\exists Z<t(|X|) \varphi(X, Z)$ represents a \sum_{1}^{B} complete predicate withe parameters from M_{i}. Let $\bar{p}=p_{0}, \ldots, p_{n_{0}}$ and define

$$
T=\left\{\neg \llbracket W \models \bar{p} \rrbracket: W: n_{0} \rightarrow \mathbb{B}_{C}\right\} \cup\left\{\llbracket \varphi(\bar{b}, Z) \rrbracket: Z: t\left(n_{0}\right) \rightarrow \mathbb{B}_{C}\right\} .
$$

Generic model and $N P \neq c o-N P$

T is consistent in $\left(M_{0}^{*}, M^{*}\right)$, i.e. there is no $T^{\prime} \subseteq T$ such that $\left|T^{\prime}\right| \in M_{0}^{*}$ and $\left(M_{0}^{*}, M^{*}\right) \models \exists P(P$ is an EF-proof of $\wedge T \rightarrow)$.

From now, we switch the partial order on \mathbb{B}_{C} to

$$
X \leq X \Leftrightarrow \exists P\left(P \text { is an EF-proof of } X \rightarrow X^{\prime}\right) .
$$

Lemma (K)

If $T \subseteq \mathbb{B}_{C}$ is consistent then there exists a M_{0}-complete ideal $I \subseteq \mathbb{B}_{C}$ such that $T \subseteq G$ whenever G is \mathcal{M}-generic over I.
(Proof). Define the M_{0}-complete ideal I_{T} by

$$
I_{T}=\left\{C \in \mathbb{B}_{C}: T \cup\{C\} \text { is inconsistent }\right\} .
$$

Let $X \in T$ and define $D_{X}=\left\{Z \in \mathbb{B}_{C}: Z \leq X\right\}$.
Claim: D_{X} is dense over I_{T}.

Generic model and $N P \neq c o-N P$

Claim: D_{X} is dense over I_{T}.
To see this, let $Y \in \mathbb{B}_{C} \backslash I_{T}$. Then $T \cup\{Y\}$ is consistent. So we have $X \wedge Y \leq X$ and $X \wedge Y \leq Y$. Since $X \wedge Y \notin I$ we have the claim.

Let G be \mathcal{M}-generic over I_{T}. Then there is $Z \in G \cap D_{X}$ and since G is upward closed, $X \in G$.
Let $M^{i+1}=M^{i}[G]$ be the generic model obtained form M^{i}. Since

$$
T=\left\{\neg \llbracket W \models \bar{p} \rrbracket: W: n_{0} \rightarrow \mathbb{B}_{C}\right\} \cup\left\{\llbracket \varphi(\bar{b}, Z) \rrbracket: Z: t\left(n_{0}\right) \rightarrow \mathbb{B}_{C}\right\} \subseteq G
$$

we have

$$
\left(M_{0}^{*}, M^{i}[G]\right) \models \neg \operatorname{Sat}_{n_{0}}\left(i_{G}(\bar{p})\right) \wedge \forall Z<t\left(n_{0}\right) \varphi\left(i_{G}(\bar{p}), Z\right) .
$$

where φ contains parameters from M^{i}. So repeating this construction, we have the claim of the theorem.

Generic model satisfying Σ_{1}^{B} induction

Krajiček gave a construction of a generic model of \sum_{1}^{B}-IND based on the forcing notion.
A set $S \subseteq \mathbb{B}_{C}$ is l-consistent if there is no EF proof of 0 from S.

$$
\mathcal{P}=\left\{S \subseteq \mathbb{B}_{C}: \begin{array}{ll}
& S \text { is definable in } M \text { and } \\
& \left.S \text { is } / \text {-consistent for some } I \in M_{0} \backslash M_{0}^{*}\right\} .
\end{array}\right.
$$

\mathcal{P} is partially ordered with the reverse inclusion.
A set $\mathcal{D} \subseteq \mathcal{P}$ is definable if there exists a formula $\varphi(S)$ where S is a extra predicate symbol such that

$$
\mathcal{D}=\left\{S \in \mathcal{P}:\left(M_{0}, M\right) \models \varphi(S)\right\} .
$$

\mathcal{D} is dense in \mathcal{P} if for all $S \in \mathcal{P}$ there exists $S^{\prime} \in \mathcal{D}$ such that $S^{\prime} \leq_{\mathcal{P}} S$. $\mathcal{G} \subseteq \mathcal{P}$ is \mathcal{P}-generic if it intersects with any dense definable subset of \mathcal{P}.
Remark

- The generic extension $M[G]$ is defined as for $T-Y$ forcing.
- It is easily seen that we can take \mathcal{G} so that $G=\cup \mathcal{G}$ is a maximal filter.

Generic model satisfying \sum_{1}^{B} induction

Theorem (Krajíček)
If \mathcal{G} is \mathcal{P}-generic and $G=\cup \mathcal{G}$ then $\left(M_{0}^{*}, M[G]\right) \models \Sigma_{1}^{B}$-IND. Moreover, there is no EF-proof of τ in $\left(M_{0}^{*}, M^{*}\right)$ then

$$
\left(M_{0}^{*}, M[G]\right) \models \operatorname{Sat}(\neg \tau) .
$$

The fact that $\left(M_{0}^{*}, M[G]\right) \models \Sigma_{1}^{B}$-IND follows from the following observation:

Lemma
Let $S \subseteq \mathbb{B}_{C}$ be a l-consistent set, $\varphi(x, Z) \in \Sigma_{0}^{B}$ and $a \in M_{0}^{*}$. Then at least one of the following sets is $I^{1 / 3}$-consistent:

- $S \cup\left\{\neg \llbracket \varphi(0, Z) \rrbracket: Z: a \rightarrow \mathbb{B}_{c}\right\}$.
- $S \cup\{\llbracket \varphi(a, Z) \rrbracket\}$ for some $Z: a \rightarrow \mathbb{B}_{C}$.
- $S \cup\{\llbracket \varphi(x, Z) \rrbracket\} \cup\left\{\neg \llbracket \varphi(x+1, Z) \rrbracket: Z: a \rightarrow \mathbb{B}_{C}\right\}$. for some $x<a$ and $Z: a \rightarrow \mathbb{B}_{C}$.

Generic model satisfying \sum_{1}^{B} induction

$G=\cup \mathcal{G}$ in the previous slide can be obtained as a \mathcal{M}-generic in the sense of Takeuti-Yasumoto.
Theorem (K)
There is an M_{0}-complete ideal $I \subseteq \mathbb{B}_{C}$ such that if \mathcal{G} is \mathcal{P}-generic then $G=\cup \mathcal{G}$ is \mathcal{M}-generic over I.
(Proof). Define an M_{0}-complete ideal

$$
\begin{array}{ll}
I_{\mathcal{P}}=\left\{X \in \mathbb{B}_{C}:\right. & \text { there exists } S \text { such that }\{X\} \cup S \text { is } l \text {-inconsistent } \\
& \text { for some } \left.I \in M_{0}^{*}\right\}
\end{array}
$$

Let \mathcal{G} be \mathcal{P}-generic. We show that $G=\cup \mathcal{G}$ is \mathcal{M}-generic over $I_{\mathcal{P}}$. Let D be dense over $\mathcal{I}_{\mathcal{P}}$ and define

$$
\mathcal{D}=\left\{S \in \mathcal{P}: S \cap\left(D \backslash I_{\mathcal{P}}\right) \neq \emptyset\right\} .
$$

Claim: \mathcal{D} is dense in \mathcal{P}.
Let $S \in \mathcal{P}$. If $S \notin \mathcal{D}$ then $S \cap D=\emptyset$. So there exists $X \in S \backslash I_{\mathcal{P}}$ such that $X \notin D$. Since D is dense over $I_{\mathcal{P}}$, we have $X^{\prime} \in D \backslash I_{\mathcal{P}}$ such that $X^{\prime} \leq X$.

Generic model satisfying \sum_{1}^{B} induction

We claim that $S^{\prime}=\left\{X^{\prime}\right\} \cup S \in \mathcal{D}$.
$S^{\prime} \cap\left(D \backslash I_{\mathcal{P}}\right) \neq \emptyset$ is trivial.
To show that $S^{\prime} \in \mathcal{P}$, notice that $X^{\prime} \notin \boldsymbol{I}_{\mathcal{P}}$. so $\left\{X^{\prime}\right\} \cup S$ is l-consistent for all S and $I \in M_{0}^{*}$.

Fix one such S. Note that S is definable in M. So by overspill, there exists $I \in M_{0} \backslash M_{0}^{*}$ such that $\left\{X^{\prime}\right\} \cup S$ is l-consistent. Thus we have $S^{\prime} \in \mathcal{P}$.

By Claim we obtain $\mathcal{G} \cap \mathcal{D} \neq \emptyset$ and so $G \cap\left(D \backslash I_{\mathcal{P}}\right) \neq \emptyset$.

Corollary

There is an M_{0}-complete ideal $I \subseteq \mathbb{B}_{C}$ and an \mathcal{M}-generic G over I such that $\left(M_{0}, M[G]\right) \models \sum_{1}^{B}$-COMP. Moreover, if a propositional formula τ does not have a EF proof in $\left(M_{0}^{*}, M^{*}\right)$ then $\left(M_{0}^{*}, M[G]\right) \models \operatorname{Sat}(\neg \tau)$.

Summary and Open Problems

We have proved that
Theorem
Let G be \mathcal{M}-generic over M_{0}-complete ideal $I \subseteq \mathbb{B}_{C}$. If $P=N P$ then $\left(M_{0}^{*}, M[G]\right) \models \sum_{1}^{B}-I N D$.
and
Theorem
There exists an M_{0}-complete ideal I and \mathcal{M}-generic G over I such that $\left(M_{0}^{*}, M[G]\right) \models \Sigma_{1}^{B}-I N D$.
On the other hand, it is hard to construct a model violating Σ_{1}^{B}-IND without assumptions since it implies $P \neq N P$.
So we might expect to prove the existence of such a model under some natural assumption and we conjecture the following.

Problem

Show that if $P \neq N P$ then there exists an M_{0}-complete ideal such that $\left(M_{0}^{*}, M[G]\right) \not \models \sum_{1}^{B}$-IND whenever G is \mathcal{M}-generic over I.

Summary and Open Problems

As we have seen, generic models also have relations with Propositional Proofs.
Intuitively, \mathbb{B}_{C} corresponds to extended Frege proofs. So it seems that the following problem arises naturally.

Problem

Show that if Extended Frege system is not super then there is an M_{0}-complete ideal I such that $\left(M_{0}^{*}, M[G]\right) \models T A U T \notin \sum_{1}^{B}$ whenever G is \mathcal{M}-generic over I.
One of the main goals is to show that certain combinatorial principles are independent from weak systems. That is

Problem

Let Φ denote some combinatorial principle in NP or beyond. Show that there exists a generic model $\left(M_{0}^{*}, M[G]\right) \models \neg \Phi$ under the assumption $P \neq N P$.

References

- J. Krajíček, On Frege and Extended Frege Proof Systems. in:Feasible Mathematics II, Birkhäuser, (1995) pp.284-319.
- G. Takeuti and M. Yasumoto, Forcing on Bounded Arithmetic. in:Gödel '96, Lecture Notes in Logic, vol.6, (1996) pp.120-138.
- G. Takeuti and M. Yasumoto, Forcing on Bounded Arithmetic II. JSL, vol.63(3) (1998), pp.860-868.

