

Redeveloping Takeuti-Yasumoto forcing

Satoru Kuroda

GPWU, Gunma, Japan

9, September, 2017 CTFM 2017

▲□▶ ▲圖▶ ▲臣▶ ▲臣▶ ―臣 … のへで

Forcing in Bounded Arithmetic

- Forcing was introduced in bounded arithmetic by Paris-Wilkie proving the relativized independence of the pigeonhole principle, followed by Ajtai and Riis.
- Krajíček gave several forcing construction for PTIME theories in a different context.
- Takeuti and Yasumoto succeeded in building a theory of Boolean valued models in bounded arithmetic.
- We will give a reformulation of Takeuti-Yasumoto forcing in two-sort bounded arithmetic.
- Correct proofs are given for some theorems of Takeuti-Yasumoto.
- T-Y forcing method can be applied to other complexity classes such as NC^1 .
- We wil also discuss relations to Krajíček's forcing.

Forcing in Bounded Arithmetic : An Overview

Paris-Wilkie used forcing argument to prove a relativized independence of the Pigeonhole Principle from weak system of arithmetic

Theorem (Paris-Wilkie)

There exists a model $(M, R) \models I \exists_1(R)$ in which R is a bijection from n+1 to n for some $n \in M$.

The construction of R uses a simple back-and-force argument but can be regarded as a forcing construction.

Ajtai uses a similar idea to prove a stronger result

Theorem (Ajtai)

There exists a model $(M, R) \models I\Delta_0(R)$ in which R is a bijection from n+1 to n for some $n \in M$.

Ajtai's construction resembles to Cohen style forcing; R is defined as a generic in the forcing condition

$$\mathcal{P} = \{ f \subset n+1 \to n : |f| < n^{1-\epsilon} \text{ for some } \epsilon > 0 \}.$$

However the proof requires a difficult argument which utilizes special type of switching lemma.

Krajíček Forcing

- Paris-Wilkie-Ajtai forcing gives a only relativized result.
- On the other hand, Krajíček introduced a different view in forcing construction.
- Krajíček's idea is to construct a models of weak arithmetic having particular properties starting from a nonstandard model with some assumption in computational complexity or proof complexity.

Theorem (Krajíček)

Let $M \models PV + NP \nsubseteq P/poly$. Then there exists a Π_1^B -elementary extension M' in which $NP \nsubseteq co-NP$.

Theorem (Krajíček)

Let $M \models V^1$ in which there is no EF-proof of a propositional formula τ . Then there exists a Π_1^B -elementary extension $M' \models V^1$ in which $\neg \tau$ is satisfiable. Overview

Takeuti-Yasumoto forcing

- In two consecutive papers, Takeuti and Yasumoto gave a construction of generic models of Bounded Arithmetic which is a disguise of Boolean valued models in set theory.
- Their construction is inspired by the previous forcing arguments but the motivation is rather different.
- Namely, they tried to relate the separation problem in the standard world to the generic models.
- However, we are interested in the technical aspects of Takeuti-Yasumoto forcing so we ignore their original motivations.
- Our motivation is to give a general framework for forcing in bounded arithmetic based on Takeuti-Yasumoto's approach.

Basic Bounded Arithmetic

One-sort systems (Buss)

• Language: First order language L_A comprises

0,
$$s_0(x) = 2x$$
, $s_1(x) = 2x + 1$, $x + y$, $x \cdot y$, $\lfloor x/2 \rfloor$,
 $|x| = \lceil \log(x+1) \rceil$, $x \# y = 2^{|x| \cdot |y|}$.

- Quantifiers and classes of formulas $\forall x < |t|, \exists x < |t|$: sharply bounded quantifiers $\forall x < t, \exists x < t$: nonsharply bounded quantifiers \sum_{i}^{b} is the set of L_{A} formulas with $\leq i$ alternations of nonsharply bounded quantifiers starting with an existential quantifier. Π_{i}^{b} is defined dually.
- Connections with complexity classes Σ_0^b formulas are polynomial time predicates Σ_1^b and Π_1^b are exactly NP and co-NP predicates resp.

Basic Bounded Arithmetic

Two-sort systems (Cook-Nguyen)

• Language:

Two-sort language L^2_A comprises number variables x, y, z, \ldots , string variables X, Y, Z, \ldots and

$$0, x + y, x \cdot y, |X|, x \in X.$$

- Quantifiers and classes of formulas $\forall x < t, \exists x < t :$ bounded number quantifiers $\forall X < t \equiv \forall X(|X| < t \rightarrow \cdots), \exists X < t \equiv \exists X(|X| < t \land \cdots) :$ bounded string quantifiers Σ_i^B is the set of L_A^2 formulas with $\leq i$ alternations of bounded string quantifiers starting with an existential quantifier. Π_i^b is defined dually.
- Connections with complexity classes
 - Σ_0^B formulas are FO predicates
 - $\Sigma_1^{\check{B}}$ and Π_1^{B} are exactly NP and co-NP predicates resp.

Theories for the Polynomial Hierarchy

Definition (Buss)

For $i \geq$ 0, S_2^i is the $L_A\text{-theory}$ whose axioms are defining axioms for L_A symbols together with

 $\Sigma_i^b\operatorname{-PIND}: \varphi(0) \land \forall x \ (\varphi(\lfloor x/2 \rfloor) \to \varphi(x)) \to \forall x \varphi(x), \quad \varphi(x) \in \Sigma_i^b.$

Definition (Cook-Nguyen)

For $i \ge 0$, V^i is the L^2_A -theory whose axioms are defining axioms for L^2_A symbols together with Σ^B_i -COMP : $\forall a \ (\exists X < a \forall y < a(y \in X \leftrightarrow \varphi(y)), \quad \varphi(x) \in \Sigma^B_i.$

Proposition

 V^0 proves Σ^B_i -IND $\leftrightarrow \Sigma^B_i$ -COMP.

Theorem (Buss, Cook-Nguyen)

For $i \geq 1$, A function is computable in $P^{\sum_i^p}$ if and only if it is \sum_i^b definable in S_2^i if and only if it is Σ_i^B definable in V^i .

RSUV isomorphism

Theorem (Takeuti, Razborov)

There are translations $\varphi^{\#} \in \Sigma_{\infty}^{B}$ for $\varphi \in \Sigma_{\infty}^{b}$ and $\psi^{\flat} \in \Sigma_{\infty}^{b}$ for $\psi \in \Sigma_{\infty}^{B}$ such that

- if $S_2^i \vdash \varphi$ then $V^i \vdash \varphi^{\#}$,
- if $V^i \vdash \psi$ then $S_2^i \vdash \psi^{\flat}$,
- if $(\varphi^{\#})^{\flat} = \varphi$ and $(\psi^{\flat})^{\varphi} = \psi$.

This theorem is more intuitively understood in a model theoretical manner.

An L^2_A -structure consists of a pair (M_0, M) of universes where M_0 is a set of numbers and M is a set of strings. Then

Theorem

If $(M_0, M) \models V^i$ then $M \models S_2^i$ where each element of M is regarded as number in binary. Conversely, if $M \models S_2^i$ and $M_0 = \{|x| : x \in M\}$ then $(M_0, M) \models V^i$.

Theories for polynomial time

Definition

Let L_{PV} be the language which consists of function symbols for polynomial time functions. PV denotes the L_{PV} -theory whose axioms are defining axioms for symbols together with open induction.

Definition (Cook-Nguyen)

VP is the L_A^2 -theory V^0 extended by a single axiom MCV which expresses that any monotone circuits can be evaluated.

Proposition

PV is a conservative extension of VP. V^1 is $\forall \Sigma_1^B$ conservative over VP. The following result is known as KPT witnessing:

Theorem (Krajíček-Pudlák-Takeuti, Buss) If $VP = V^1$ then VP proves that PH = NP/poly.

Basic definitions for T-Y forcing

Let $M \models Th(\mathbb{N})$ be countable nonstandard, $n \in M \setminus \omega$ and $n_0 = |n|$. Define

$$M^* = \{x \in M : x \le n \underbrace{\# \cdots \# k}_k \text{ for some } k \in \omega\}$$

and $M_0^* = \{ |x| : x \in M^* \}.$

We define the Boolean algebra $\mathbb{B}_{C} = \{C \in M^* : C \text{ is a circuit with } n_0 \text{ inputs}\}.$

 $\mathsf{For}\ C, C' \in \mathbb{B}_C,\ C \leq C' \Leftrightarrow \forall X\ (|X| = n \to \mathit{eval}(C, X) \leq \mathit{eval}(C', X)).$

An ideal $I \subseteq \mathbb{B}_C$ is M_0 -complete if it is closed under $\bigvee_{i < a}$ with $a \in M_0$.

A set $D \subseteq \mathbb{B}_C$ is dense over I if for all $X \in \mathbb{B}_C \setminus I$ there is $Y \in D \setminus I$ such that $Y \leq X$.

A maximal filter $G \subseteq \mathbb{B}_C$ is \mathcal{M} -generic over I if for any D dense over Iand definable in M, $(D \setminus I) \cap G \neq \emptyset$.

Generic model

 $M^{\mathbb{B}_{\mathcal{C}}} = \{X \in M^* : X : a \to \mathbb{B} \text{ for some } a \in M_0^*\}.$ i.e. $M^{\mathbb{B}_{\mathcal{C}}}$ is the set of sequences of circuits.

For $X : a \to \mathbb{B}_C$ and \mathcal{M} -generic maximal filter G, define $i_G(X) = \{x < a : X(x) \in G\}.$

(String part of) Generic Model is defined as $M[G] = \{i_G(X) : X \in M^{\mathbb{B}_C}\}$

As in set theory, we can show that

Lemma

If G is \mathcal{M} -generic then $M^* \subseteq M[G]$.

Since all strings in M[G] are of length $a \in M_0^*$, we may regard $(M_0^*, M[G])$ as a L^2_A -structure.

Takeuti and Yasumoto gave several examples of M_0 -complete ideals I so that $M^* \subsetneq M[G]$.

Forcing theorem

We have a translation of $\varphi(\bar{x}, \bar{X}) \in \Sigma_0^B$ into a propositional formula such as Paris-Wilkie translation. We fix such a translation and denote by $[\![\varphi(\bar{x}, \bar{X})]\!]$. Then we have a forcing theorem for Σ_0^B formulas.

Theorem

Let $\varphi(\bar{x}, \bar{X}) \in \Sigma_0^B$, $\bar{x} \in M_0^*$ and $X_i : a \to M^{\mathbb{B}_C}$. If G is a \mathcal{M} -generic over some M_0 -complete ideal $I \subseteq \mathbb{B}_C$ then

 $(M_0^*, M[G]) \models \varphi(\bar{x}, i_G(X_1), \dots, i_G(X_k)) \Leftrightarrow \llbracket \varphi(\bar{x}, X_1, \dots, X_k) \rrbracket \in G.$

Since \mathbb{B}_C is closed under polynomial time functions, we also have

Theorem $(M_0^*, M[G]) \models VP.$

Remark

Note that any open PV-formula can be represented by circuits. So we assume that there is a translation of open PV-formulas in \mathbb{B}_{C} .

Relating Generic model and P = NP

Theorem (Takeuti-Yasumoto,K)

If P = NP then for any M_0 -complete ideal $I \subseteq \mathbb{B}_C$ and \mathcal{M} -generic maximal filter G over I, $(M_0^*, M[G]) \models \Sigma_1^B$ -COMP, i.e. $M[G] \models S_2^1$.

(Proof Sketch). If P = NP is true then for any Σ_1^b formula $\exists Z < t \ \varphi(x, X, Z)$, we can compute the witness Z by a polynomial time function F(x, X) using binary search. The function F(x, X) can be represented in (M_0^*, M^*) by a sequences C_0^x, \ldots, C_t^x of circuits in \mathbb{B}_C . Then we can construct $Y : a \to \mathbb{B}_C$ such that for all x < a,

 $Y(x) \in G \Leftrightarrow$ there is $Z: t \to \mathbb{B}_C$ such that $\llbracket \varphi(x, X, Z) \rrbracket \in G$.

For each x < a, $C_{x,X} : t \to \mathbb{B}_C$ be such that $C_{x,X}(i) = C_i^{\times}(X)$ and set

$$Y(x) = \llbracket \varphi(x, X, C_{x,X}) \rrbracket.$$

Generic model and $NP \neq co-NP$

Krajíček considers the problem of extending the model of $VP + P \neq NP$ to a model of VP in which $NP \neq co-NP$.

The construction of generic model by Krajíček can be obtained by T-Y forcing.

Theorem (Krajíček, K)

If $(M_0^*, M^*) \models NP \not\subseteq P/poly$ then there exists an M_0 -complete ideal $I \subseteq \mathbb{B}_C$ such that $(M_0^*, M[G]) \models NP \not\subset co-NP$.

(Proof Sketch).

Let $Sat_n(X)$ denote the formula "X is a satisfiable formula with n inputs".

Suppose that $(M_0^*, M^*) \models P \not\subset P/poly$. Then $Sat_{n_0}(X)$ is not computed by a circuit in (M_0^*, M^*) for some $n_0 \in M_0^*$. We construct a chain $M^* = M_0 \subseteq M_1 \subseteq M_2 \subseteq \cdots$ inductively. Assume that we have constructed M_i and let $\varphi(X, Z) \in \Sigma_0^B$ be such that $\exists Z < t(|X|) \varphi(X, Z)$ represents a Σ_1^B complete predicate withe parameters from M_i . Let $\bar{p} = p_0, \ldots, p_{p_0}$ and define

$$T = \{\neg \llbracket W \models \bar{p} \rrbracket : W : n_0 \to \mathbb{B}_C\} \cup \{\llbracket \varphi(\bar{b}, Z) \rrbracket : Z : t(n_0) \to \mathbb{B}_C\}.$$

Generic model and $NP \neq co-NP$

T is consistent in (M_0^*, M^*) , i.e. there is no $T' \subseteq T$ such that $|T'| \in M_0^*$ and $(M_0^*, M^*) \models \exists P \ (P \text{ is an EF-proof of } \land T \rightarrow).$

From now, we switch the partial order on $\mathbb{B}_{\mathcal{C}}$ to

$$X \leq X \Leftrightarrow \exists P \ (P \text{ is an EF-proof of } X \to X').$$

Lemma (K)

If $T \subseteq \mathbb{B}_C$ is consistent then there exists a M_0 -complete ideal $I \subseteq \mathbb{B}_C$ such that $T \subseteq G$ whenever G is \mathcal{M} -generic over I. (Proof). Define the M_0 -complete ideal I_T by

 $I_{\mathcal{T}} = \{ C \in \mathbb{B}_{C} : \mathcal{T} \cup \{ C \} \text{ is inconsistent} \}.$

Let $X \in T$ and define $D_X = \{Z \in \mathbb{B}_C : Z \leq X\}.$

Claim: D_X is dense over I_T .

Generic model and $NP \neq co-NP$

Claim: D_X is dense over I_T .

To see this, let $Y \in \mathbb{B}_C \setminus I_T$. Then $T \cup \{Y\}$ is consistent. So we have $X \wedge Y \leq X$ and $X \wedge Y \leq Y$. Since $X \wedge Y \notin I$ we have the claim.

Let G be \mathcal{M} -generic over $I_{\mathcal{T}}$. Then there is $Z \in G \cap D_X$ and since G is upward closed, $X \in G$. Let $M^{i+1} = M^i[G]$ be the generic model obtained form M^i . Since

$$T = \{\neg \llbracket W \models \bar{p} \rrbracket : W : n_0 \to \mathbb{B}_C\} \cup \{\llbracket \varphi(\bar{b}, Z) \rrbracket : Z : t(n_0) \to \mathbb{B}_C\} \subseteq G$$

we have

$$(M_0^*, M^i[G]) \models \neg Sat_{n_0}(i_G(\bar{p})) \land \forall Z < t(n_0)\varphi(i_G(\bar{p}), Z).$$

where φ contains parameters from M^i . So repeating this construction, we have the claim of the theorem.

Krajíček gave a construction of a generic model of Σ_1^B -IND based on the forcing notion.

A set $S \subseteq \mathbb{B}_C$ is *I*-consistent if there is no EF proof of 0 from *S*.

 $\mathcal{P} = \{ S \subseteq \mathbb{B}_C : S \text{ is definable in } M \text{ and} \\ S \text{ is } I\text{-consistent for some } I \in M_0 \setminus M_0^* \}.$

 ${\cal P}$ is partially ordered with the reverse inclusion.

A set $\mathcal{D} \subseteq \mathcal{P}$ is definable if there exists a formula $\varphi(S)$ where S is a extra predicate symbol such that

$$\mathcal{D} = \{ S \in \mathcal{P} : (M_0, M) \models \varphi(S) \}.$$

 \mathcal{D} is dense in \mathcal{P} if for all $S \in \mathcal{P}$ there exists $S' \in \mathcal{D}$ such that $S' \leq_{\mathcal{P}} S$. $\mathcal{G} \subseteq \mathcal{P}$ is \mathcal{P} -generic if it intersects with any dense definable subset of \mathcal{P} . Remark

- The generic extension *M*[*G*] is defined as for *T*-*Y* forcing.
- It is easily seen that we can take \mathcal{G} so that $G = \bigcup \mathcal{G}$ is a maximal filter.

Theorem (Krajíček)

If \mathcal{G} is \mathcal{P} -generic and $G = \cup \mathcal{G}$ then $(M_0^*, M[G]) \models \Sigma_1^B$ -IND. Moreover, there is no EF-proof of τ in (M_0^*, M^*) then

$$(M_0^*, M[G]) \models Sat(\neg \tau).$$

The fact that $(M_0^*, M[G]) \models \Sigma_1^B$ -IND follows from the following observation:

Lemma

Let $S \subseteq \mathbb{B}_C$ be a *l*-consistent set, $\varphi(x, Z) \in \Sigma_0^B$ and $a \in M_0^*$. Then at least one of the following sets is $l^{1/3}$ -consistent:

- $S \cup \{\neg \llbracket \varphi(0, Z) \rrbracket : Z : a \to \mathbb{B}_C \}.$
- $S \cup \{\llbracket \varphi(a, Z) \rrbracket\}$ for some $Z : a \to \mathbb{B}_C$.
- $S \cup \{\llbracket \varphi(x, Z) \rrbracket\} \cup \{\neg \llbracket \varphi(x + 1, Z) \rrbracket : Z : a \rightarrow \mathbb{B}_C\}$. for some x < aand $Z : a \rightarrow \mathbb{B}_C$.

 $G = \cup \mathcal{G}$ in the previous slide can be obtained as a \mathcal{M} -generic in the sense of Takeuti-Yasumoto.

Theorem (K)

There is an M_0 -complete ideal $I \subseteq \mathbb{B}_C$ such that if \mathcal{G} is \mathcal{P} -generic then $G = \cup \mathcal{G}$ is \mathcal{M} -generic over I.

(Proof). Define an M_0 -complete ideal

$$I_{\mathcal{P}} = \{ X \in \mathbb{B}_{C} : \text{ there exists } S \text{ such that } \{ X \} \cup S \text{ is } I \text{-inconsistent} \\ \text{ for some } I \in M_{0}^{*} \}$$

Let \mathcal{G} be \mathcal{P} -generic. We show that $G = \bigcup \mathcal{G}$ is \mathcal{M} -generic over $I_{\mathcal{P}}$. Let Dbe dense over $I_{\mathcal{P}}$ and define

$$\mathcal{D} = \{ S \in \mathcal{P} : S \cap (D \setminus I_{\mathcal{P}}) \neq \emptyset \}.$$

Claim: \mathcal{D} is dense in \mathcal{P} .

Let $S \in \mathcal{P}$. If $S \notin \mathcal{D}$ then $S \cap D = \emptyset$. So there exists $X \in S \setminus I_{\mathcal{P}}$ such that $X \notin D$. Since D is dense over $I_{\mathcal{P}}$, we have $X' \in D \setminus I_{\mathcal{P}}$ such that X' < X. ▲ロト ▲帰ト ▲ヨト ▲ヨト 三日 - の々ぐ

We claim that
$$S' = \{X'\} \cup S \in \mathcal{D}$$
.

 $S' \cap (D \setminus I_{\mathcal{P}}) \neq \emptyset$ is trivial.

To show that $S' \in \mathcal{P}$, notice that $X' \notin I_{\mathcal{P}}$. so $\{X'\} \cup S$ is *I*-consistent for all S and $I \in M_0^*$.

Fix one such S. Note that S is definable in M. So by overspill, there exists $I \in M_0 \setminus M_0^*$ such that $\{X'\} \cup S$ is *I*-consistent. Thus we have $S' \in \mathcal{P}$.

By Claim we obtain $\mathcal{G} \cap \mathcal{D} \neq \emptyset$ and so $\mathcal{G} \cap (\mathcal{D} \setminus I_{\mathcal{P}}) \neq \emptyset$.

Corollary

There is an M_0 -complete ideal $I \subseteq \mathbb{B}_C$ and an \mathcal{M} -generic G over I such that $(M_0, M[G]) \models \Sigma_1^B$ -COMP. Moreover, if a propositional formula τ does not have a EF proof in (M_0^*, M^*) then $(M_0^*, M[G]) \models Sat(\neg \tau)$.

Summary and Open Problems

We have proved that

Theorem

```
Let G be \mathcal{M}-generic over M_0-complete ideal I \subseteq \mathbb{B}_C. If P = NP then (M_0^*, M[G]) \models \Sigma_1^B-IND.
```

and

Theorem

There exists an M_0 -complete ideal I and M-generic G over I such that $(M_0^*, M[G]) \models \Sigma_1^B$ -IND.

On the other hand, it is hard to construct a model violating Σ_1^B -IND without assumptions since it implies $P \neq NP$.

So we might expect to prove the existence of such a model under some natural assumption and we conjecture the following.

Problem

Show that if $P \neq NP$ then there exists an M_0 -complete ideal such that $(M_0^*, M[G]) \not\models \Sigma_1^B$ -IND whenever G is \mathcal{M} -generic over I.

Summary and Open Problems

As we have seen, generic models also have relations with Propositional Proofs.

Intuitively, $\mathbb{B}_{\mathcal{C}}$ corresponds to extended Frege proofs. So it seems that the following problem arises naturally.

Problem

Show that if Extended Frege system is not super then there is an M_0 -complete ideal I such that $(M_0^*, M[G]) \models TAUT \notin \Sigma_1^B$ whenever G is \mathcal{M} -generic over I.

One of the main goals is to show that certain combinatorial principles are independent from weak systems. That is

Problem

Let Φ denote some combinatorial principle in NP or beyond. Show that there exists a generic model $(M_0^*, M[G]) \models \neg \Phi$ under the assumption $P \neq NP$.

・ロト ・ 日・ ・ 田・ ・ 日・ うらぐ

- J. Krajíček, On Frege and Extended Frege Proof Systems. in:Feasible Mathematics II, Birkhäuser, (1995) pp.284–319.
- G. Takeuti and M. Yasumoto, Forcing on Bounded Arithmetic. in:Gödel '96, Lecture Notes in Logic, vol.6, (1996) pp.120–138.
- G. Takeuti and M. Yasumoto, Forcing on Bounded Arithmetic II. JSL, vol.63(3) (1998), pp.860–868.