1. Definitions	2. Equivalence	3. Weak P–H–R numbers 0000	4. PT and higher d	

Dickson's lemma and weak Ramsey theory

Yasuhiko Omata Joint work with Florian Pelupessy

Mathematical Institute, Tohoku University

CTFM2017 September 9, 2017

0. Introduction ●○○	1. Definitions 0000000	2. Equivalence 0000	3. Weak P–H–R numbers 0000	4. PT and higher <i>d</i>	

Introduction

- This talk consists of 5 sections:
 - Introduction
 - Definitions
 - 2 Equivalence
 - 3 Weak Paris–Harrington–Ramsey numbers
 - 4 Phase transition and higher dimensions

We consider the weak Paris-Harrington principle (WPH), in connection with miniaturized Dickson's lemma (MDL).

- WPH:
 - A weak version of PH;

originally used by Erdös and Mills (1981).

MDL:

A Friedman-style miniaturization of Dickson's lemma

0. Introduction ○●○	1. Definitions 0000000	2. Equivalence 0000	3. Weak P–H–R numbers 0000	 PT and higher d 000000 	
Results					

Our main result is:

■ WPH and MDL are equivalent. (§2)

This equivalence is shown based on the construction between *bad colorings* and *sequences*.

This construction has consequences:

- A sharp classification of weak Paris-Harrington-Ramsey numbers. (§3)
- Bounds for *weak Ramsey numbers*. (§3)
- A phase transition for WPH. (§4)

We will work in RCA_0^* (Recursive Comprehension Axiom *).

RCA^{*}₀ consists of...

- basic axioms together with exp
- Σ_0^0 -induction
- Δ_1^0 -comprehension

$$\mathsf{RCA}_0^* = \mathsf{RCA}_0 - \Sigma_1^0$$
-ind $+ \Sigma_0^0$ -ind $+ \exp$

RCA^{*}₀ is...

- Π_2^0 -conservative over EFA (Elementary Function Arithmetic)
- conservative over $\mathsf{B}\Sigma_1^0$ (Σ_1^0 Bounding) + exp

 Definitions 	2. Equivalence	Weak P–H–R numbers	4. PT and higher d	Ending
000000				

Section 1 Definitions

	 Definitions ○●○○○○○○ 	2. Equivalence 0000	3. Weak P–H–R numbers 0000	4. PT and higher <i>d</i>	
Notation	for colori	ngs			

In this talk: $a, R, D, c(\text{color}), d(\text{dimension}) \in \mathbb{N}, f : \mathbb{N} \to \mathbb{N}$ identify: $R = \{0, .., R-1\}$

■
$$[X]^2 = \{ (m,n) \in X^2 \mid m < n \}$$

= the set of (unordered) pairs in X
■ $[X]^d = \{ (m_0, ..., m_{d-1}) \in X^d \mid m_0 < \dots < m_{d-1} \}$
For a while, *d* is 2.

• coloring:
$$C: [R]^2 \to c$$

V· a cot

• $H \subseteq R$ is *C*-homogeneous if $C|_{[H]^2}$ is constant, i.e. C(h,h') = C(h'',h''') for all h < h',h'' < h''' in *H*.

}

	 Definitions 00●0000 	2. Equivalence 0000	3. Weak P–H–R numbers 0000	4. PT and higher <i>d</i>	
FRT and	PH				

Let c (color) be given.

Finite Ramsey's theorem for pairs:

 (FRT_c)

 $(\forall a) \ (\exists R)$ s.t. for every $C \colon [R]^2 \to c$ there exists $H \subseteq R$ which is C-homogeneous and |H| > a.

• The Paris–Harrington principle for pairs:

 (PH_c)

 $(\forall a) \ (\exists R) \text{ s.t. for every } C \colon [R]^2 \to c \text{ there exists}$ $H \subseteq R \text{ which is } C\text{-homogeneous and } |H| > a + \min H.$

	 Definitions 000●000 	2. Equivalence 0000	3. Weak P–H–R numbers 0000	4. PT and higher <i>d</i> 000000	
Weak FF	RT and w	eak PH			

Given
$$C: [R]^2 \rightarrow c$$
,

- $H \subseteq R$ is *C*-homogeneous if $C|_{[H]^2}$ is constant, i.e. C(h,h') = C(h'',h''') for all h < h',h'' < h''' in *H*.
- $H = \{h_0 < h_1 < h_2 < \cdots\} \subseteq R$ is *C*-weakly homogeneous if $C(h_i, h_{i+1}) = C(h_{i+1}, h_{i+2})$ for all h_i, h_{i+1}, h_{i+2} in *H*.
- Weak finite Ramsey's theorem for pairs:

(WFRT_c) $(\forall a) \ (\exists R) \text{ s.t. for every } C \colon [R]^2 \to c \text{ there exists}$ $H \subseteq R \text{ which is } C \text{-weakly homogeneous and } |H| > a.$

The weak Paris–Harrington principle for pairs:

 (WPH_c)

$$(\forall a) \ (\exists R)$$
 s.t. for every $C \colon [R]^2 \to c$ there exists

 $H \subseteq R$ which is *C*-weakly homogeneous and $|H| > a + \min H$.

	1. Definitions 0000●00	2. Equivalence	3. Weak P–H–R numbers 0000	4. PT and higher <i>d</i> 000000	
Appendir	ng functio	on <i>f</i>			

$$\begin{array}{l} \mbox{(WPH}_c) & (\forall a) \ (\exists R) \ {\rm s.t.} \ {\rm for \ every} \ C \colon [R]^2 \to c \ {\rm there \ exists} \\ & H \subseteq R \ {\rm which \ is \ } C {\rm -weakly \ homogeneous \ and \ } |H| > a + \min H. \end{array}$$

We parametrize the "id" in "
$$a + \min H$$
":

$$\begin{array}{ll} (\operatorname{WPH}_c^f) & (\forall a) \ (\exists R) \text{ s.t. for every } C \colon [R]^2 \to c \text{ there exists} \\ & H \subseteq R \text{ which is } C \text{-weakly homogeneous and } |H| > f(a + \min H). \end{array}$$

(Note again that we treat pairs only, for a while)

Notation for sequences and Dickson's lemma:

For $\overline{m}, \overline{n} \in \mathbb{N}^c$, define $\overline{m} \leq \overline{n}$ if $(\forall k) \ (\overline{m})_k \leq (\overline{n})_k$ e.g. $(1,2,3) \leq (2,3,4), \ (1,2,3) \nleq (2,3,1)$

 $\overline{m}_0, \overline{m}_1, \dots$ in \mathbb{N}^c is *good* if there exist i < j such that $\overline{m}_i \leq \overline{m}_j$

A sequence which is not good (i.e. $\forall i < j \ \exists k \ (\overline{m}_i)_k > (\overline{m}_j)_k$) is bad sequence.

Dickson's lemma:

(DL_c) Every infinite sequence $\overline{m}_0, \overline{m}_1, \dots$ in \mathbb{N}^c is good.

 Definitions 000000● 	2. Equivalence	3. Weak P–H–R numbers 0000	4. PT and higher <i>d</i>	

Miniaturizing Dickson's lemma

We consider the following *Friedman-style miniaturization* of Dickson's lemma:

 $\label{eq:model} \begin{array}{ll} & \mbox{Miniaturized Dickson's lemma:} \\ (\mathrm{MDL}^f_c) & (\exists D) \mbox{ s.t. every sequence } \overline{m}_0, \ldots, \overline{m}_D \mbox{ in } \mathbb{N}^c \\ & \mbox{ with } (\forall i) \ |\overline{m}_i|_{\infty} < f(a+i) \mbox{ is good} \\ & \mbox{ where } \ |\overline{m}|_{\infty} = \max_{k < c}(\overline{m})_k \mbox{ (max norm).} \end{array}$

(We have function parameter f again)

1. Definitions 0000000	2. Equivalence ●000	3. Weak P–H–R numbers 0000	4. PT and higher <i>d</i> 000000	

Section 2

Equivalence

1. Definitions 0000000	 Equivalence ○●○○ 	3. Weak P–H–R numbers 0000	4. PT and higher <i>d</i>	

Theorem 1

Main theorem

For every c and f, WPH^f_c and MDL^f_c are equivalent.

(proof)

- Say $C: [R]^2 \to c$ is (a, f)-bad if for every C-weakly homogeneous set $H \subseteq R$, $|H| \le f(a + \min H)$.
- $\overline{m}_0, \ldots, \overline{m}_D$ in \mathbb{N}^c is (a, f)-bounded if $(\forall i) |\overline{m}_i|_{\infty} < f(a+i)$. $|\overline{m}_i|_{\infty} < f(a+i)$ for all *i*. Call (a, f)-bounded bad sequences (a, f)-bad.

A bad coloring/sequence is a counter-example for WPH_c^f/MDL_c^f . The theorem is a direct consequence of the next lemma:

1. Definitions 0000000	2. Equivalence 00●0	3. Weak P–H–R numbers 0000	4. PT and higher <i>d</i>	

Construction of bad colorings/sequences

Lemma

- **1** Existence of an (a, f)-bad coloring $C: [R]^2 \to c$ implies existence of an (a, f)-bad sequence $\overline{m}_0, \ldots, \overline{m}_R$.
- 2 Existence of an (a, f)-bad sequence $\overline{m}_0, \ldots, \overline{m}_D$ implies existence of an (a, f)-bad coloring $C: [D]^2 \to c$.

(Sketch of the proof)

1 $\overline{m}_0, \ldots, \overline{m}_R$ is defined as: $(\overline{m}_i)_k > (\overline{m}_j)_k$ whenever C(i, j) = k. **2** $C: [D]^2 \to c$ is defined as: C(i, j) = k where $(\overline{m}_i)_k > (\overline{m}_j)_k$.

	1. Definitions 0000000	2. Equivalence 000●	3. Weak P–H–R numbers 0000	4. PT and higher <i>d</i>	
Corollary	relativize	ad W/PH a	and DI		

Theorem 1

For every c and f, WPH $_c^f$ and MDL $_c^f$ are equivalent.

Corollary 2

For every c, $\forall f WPH_c^f$ and DL_c are equivalent.

Note:

- **DL**_c \leftrightarrow WO(ω^{c})
- $\operatorname{WO}(\omega^{c+4}) \rightarrow \forall f \operatorname{PH}^f_c$ and the converse is not known

	1. Definitions	2. Equivalence	3. Weak P–H–R numbers	4. PT and higher d	
000 0	0000000	0000	0000	000000	0

Section 3

Weak Paris-Harrington-Ramsey numbers

16 / 26

0. Introduction 1. Definitions 2. Equivalence 3. Weak P-H-R numbers 4. PT and higher d Ending 000 000000 0000 000000 0 0

Weak Paris-Harrington-Ramsey numbers for pairs

$$\begin{array}{l} (\mathrm{WPH}^f_c) & (\forall a) \ (\exists R) \ \mathrm{s.t.} \ \mathrm{for \ every} \ C \colon [R]^2 \to c \ \mathrm{there \ exists} \\ & H \subseteq R \ \mathrm{which} \ \mathrm{is} \ C \text{-weakly homogeneous and} \ |H| > f(a + \min H). \\ & \mathrm{Define} \ R^f_c(a) = \mathrm{the \ least} \ R \ \mathrm{such \ that \ this \ holds.} \end{array}$$

$$\begin{array}{ll} (\mathrm{MDL}_c^f) & (\forall a) \ (\exists D) \ \mathrm{s.t.} \ \mathrm{every} \ \mathrm{sequence} \ \overline{m}_0, \ldots, \overline{m}_D \ \mathrm{in} \ \mathbb{N}^c \\ & \mathrm{with} \ (\forall i) \ |\overline{m}_i|_{\infty} < f(a+i) \ \mathrm{is} \ \mathrm{good}. \\ & \mathrm{Define} \ D_c^f(a) = \mathrm{the} \ \mathrm{least} \ D \ \mathrm{such} \ \mathrm{that} \ \mathrm{this} \ \mathrm{holds}. \end{array}$$

Our construction shows:

Corollary 3

$$R_c^f(a) = D_c^f(a)$$

This gives a classification for R_c^f in the fast growing hierarchy, derived from those for D_c^f (Schnoebelen et al. 2011):

Corollary 4

Let $\gamma \geq 1$. If f is nondecreasing and a proper member of \mathfrak{F}_{γ} , then R_c^f is a proper member of $\mathfrak{F}_{\gamma+c-1}$. Where \mathfrak{F}_{γ} is the class of γ -th level in the fast growing hierarchy.

 \mathfrak{F}_{γ} is the smallest class (containing some basic functions and the γ -th fast growing function F_{γ}) which is closed under composition and bounded primitive recursion.

1. Definitions	2. Equivalence 0000	3. Weak P–H–R numbers 000●	4. PT and higher <i>d</i>	

Weak Ramsey numbers for pairs

Define $wr_c(a)$ = the least R which witnesses

$$\begin{array}{l} (\text{WFRT}_c) & (\forall a) \ (\exists R) \text{ s.t. for every } C \colon [R]^2 \to c \text{ there exists} \\ & H \subseteq R \text{ which is } C \text{-weakly homogeneous and } |H| > a. \\ & (\text{WFRT}_c \text{ is } \text{WPH}_c^{f_a} \text{ where } f_a \text{ is the constant function } x \mapsto a) \end{array}$$

 $R_c^f(a) = D_c^f(a)$ implies the following simple formula:

Theorem 5

$$wr_c(a) = a^c$$

(Note: For (normal, not weak) Ramsey number $r_c(a)$, $r_2(5)$ is not known.)

000 000000 0000 0000 0000 0000 0	1. Definitions	2. Equivalence	3. Weak P–H–R numbers	4. PT and higher d	Ending
				•00000	

Section 4

Phase Transition and higher dimensions

 φ_f : a statement which has a parameter $f: \mathbb{N} \to \mathbb{N}$. Phase Transition for φ_f (over T): Find functions $f_0 < f_1 < f_2 < \cdots < f$ such that $(\forall n) \ T \models \varphi_{f_n}$ and $T \nvDash \varphi_f$

E.g. $f_n = n$ -th fast growing function, f = Ackermann function then $(\forall n) \ \text{I}\Sigma_1 \models \text{Tot}(f_n) \text{ and } \text{I}\Sigma_1 \not\models \text{Tot}(f)$

 0. Introduction
 1. Definitions
 2. Equivalence
 3. Weak P-H-R numbers
 4. PT and higher d
 Ending

 000
 0000
 0000
 0000
 0000
 0
 0

Phase transition for WPH (for pairs)

We drop colors: $WPH^f \equiv \forall cWPH^f_c$

 $wr_c(a) = a^c$ gives the following:

Theorem 6

1 RCA₀^{*} (or EFA) proves WPH^{*f*} for $f(x) = \log(x)$.

2 For all *n*, RCA₀^{*} + I Σ_1^0 (or PRA) does not prove WPH^{*f_n*} where $f_n(x) = \sqrt[n]{x}$.

	1. Definitions 0000000	2. Equivalence 0000	3. Weak P–H–R numbers 0000	 PT and higher d 000●00 	
For highe	er dimens	ion			

We will extend WPH for higher dimensions. Firstly define weak Ramsey number for dimension *d*:

Given d, c and a, $wr_c^d(a)$ is the least R such that (WFRT_c^d) $(\forall a) (\exists R)$ s.t. for every $C: [R]^d \to c$ there exists $H \subseteq R$ which is C-weakly homogeneous and |H| > a.

Lemma

For
$$a \ge d \ge 1$$
 and $c \ge 1$,
1 $wr_c^d(a) \le M \Rightarrow wr_c^{d+1}(a) \le 2^{M^{d+1}}$,
2 $wr_c^d(a) \ge M \Rightarrow wr_{5c}^{d+1}(a) \ge 2^M$.

	1. Definitions 0000000	2. Equivalence	3. Weak P–H–R numbers 0000	 PT and higher d 0000●0 	
Bounds f	or wr_c^d				

By induction on d:

Theorem 7

1 For each (standard) $d \ge 2$,

$$wr_{c}^{d}(a) \leq 2^{\cdots^{2^{a^{k_{0}^{c}}}}} d(a-2) 2$$
's

where $k_0 = (d+1)!$.

2 For each (standard) $d \ge 2$, $c \ge 1$ and $a \ge d$,

$$wr^{d}_{k_{1}c}(a) \geq 2^{\cdots^{2^{a^{c}}}} (d-2) 2$$
's

where $k_1 = 5^{d-2}$.

Phase transition for WPH in higher dimensions

We use superscript to denote dimension:

$$\begin{array}{l} (\text{WPH}^{d,f}) & (\forall c) \ (\forall a) \ (\exists R) \text{ s.t. for every } C \colon [R]^d \to c \text{ there exists} \\ & H \subseteq R \text{ which is } C \text{-weakly homogeneous and } |H| > f(a + \min H) \end{array}$$

Bounds for $wr_c^d(a)$ give us:

Theorem

Let $d \ge 2$ standard.

1 RCA₀^{*} (EFA) proves WPH^{d,f} for
$$f(x) = \log^{(d-1)}(x)$$
.

2 For all *n*, $\text{RCA}_0^*(\text{EFA}) + \text{I}\Sigma_{d-1}^0$ does not prove WPH^{d,f_n} where $f_n(x) = \sqrt[n]{\log^{(d-2)}(x)}$.

Thank you very much!

References:

Paul Erdös and George Mills.

Some Bounds for the Ramsey-Paris-Harrington Numbers.

Journal of Combinatorial Theory, Series A, 30(1):53–70, 1981.

Diego Figueira, Santiago Figueira, Sylvain Schmitz, and Philippe Schnoebelen.

Ackermannian and Primitive-Recursive Bounds with Dickson's Lemma. pages 269–278, 2011.

Yasuhiko Omata and Florian Pelupessy. Dickson's lemma and weak Ramsey theory. *ArXiv e-prints*, 2015, to be updated soon.