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Why Soergel bimodules?

Soergel bimodules are an algebraic replacement for various
geometric objects from geometric representation theory.
For example, in category O we have equivalences

Block O0

Soergel
bimodules
over R,Wf

(A subcat. of)
DbpShCpF`fqq

HompPw0 ,´q hypercohomology

[Soergel]

We will use the Elias–Williamson diagrammatic presentation of the
category D of Soergel bimodules using diagrams. First we define
the auxiliary category DBS of Bott–Samelson bimodules.



Soergel bimodules Linkage

Why Soergel bimodules?

Soergel bimodules are an algebraic replacement for various
geometric objects from geometric representation theory.

For example, in category O we have equivalences

Block O0

Soergel
bimodules
over R,Wf

(A subcat. of)
DbpShCpF`fqq

HompPw0 ,´q hypercohomology

[Soergel]

We will use the Elias–Williamson diagrammatic presentation of the
category D of Soergel bimodules using diagrams. First we define
the auxiliary category DBS of Bott–Samelson bimodules.



Soergel bimodules Linkage

Why Soergel bimodules?

Soergel bimodules are an algebraic replacement for various
geometric objects from geometric representation theory.
For example, in category O we have equivalences

Block O0

Soergel
bimodules
over R,Wf

(A subcat. of)
DbpShCpF`fqq

HompPw0 ,´q hypercohomology

[Soergel]

We will use the Elias–Williamson diagrammatic presentation of the
category D of Soergel bimodules using diagrams. First we define
the auxiliary category DBS of Bott–Samelson bimodules.



Soergel bimodules Linkage

Why Soergel bimodules?

Soergel bimodules are an algebraic replacement for various
geometric objects from geometric representation theory.
For example, in category O we have equivalences

Block O0

Soergel
bimodules
over R,Wf

(A subcat. of)
DbpShCpF`fqq

HompPw0 ,´q hypercohomology

[Soergel]

We will use the Elias–Williamson diagrammatic presentation of the
category D of Soergel bimodules using diagrams. First we define
the auxiliary category DBS of Bott–Samelson bimodules.



Soergel bimodules Linkage

Why Soergel bimodules?

Soergel bimodules are an algebraic replacement for various
geometric objects from geometric representation theory.
For example, in category Op,st`Wfρ we have equivalences

Op,st`Wfρ

Soergel
bimodules

over Fp, Wf

(A subcat. of)
DbpShFp

pF`fqq
HompPw0 ,´q hypercohomology

[Soergel]

We will use the Elias–Williamson diagrammatic presentation of the
category D of Soergel bimodules using diagrams. First we define
the auxiliary category DBS of Bott–Samelson bimodules.



Soergel bimodules Linkage

Why Soergel bimodules?

Soergel bimodules are an algebraic replacement for various
geometric objects from geometric representation theory.
For example, in category T iltp we have equivalences

T iltp

Antisph.
category

over Fp, W

(A subcat. of)
DbpShFp

pF`^qq
„ „

[AMRW] pp ą hq

We will use the Elias–Williamson diagrammatic presentation of the
category D of Soergel bimodules using diagrams. First we define
the auxiliary category DBS of Bott–Samelson bimodules.



Soergel bimodules Linkage

Why Soergel bimodules?

Soergel bimodules are an algebraic replacement for various
geometric objects from geometric representation theory.
For example, in category T iltp we have equivalences

T iltp

Antisph.
category

over Fp, W

(A subcat. of)
DbpShFp

pF`^qq
„ „

[AMRW] pp ą hq

We will use the Elias–Williamson diagrammatic presentation of the
category D of Soergel bimodules using diagrams.

First we define
the auxiliary category DBS of Bott–Samelson bimodules.



Soergel bimodules Linkage

Why Soergel bimodules?

Soergel bimodules are an algebraic replacement for various
geometric objects from geometric representation theory.
For example, in category T iltp we have equivalences

T iltp

Antisph.
category

over Fp, W

(A subcat. of)
DbpShFp

pF`^qq
„ „

[AMRW] pp ą hq

We will use the Elias–Williamson diagrammatic presentation of the
category D of Soergel bimodules using diagrams. First we define
the auxiliary category DBS of Bott–Samelson bimodules.



Soergel bimodules Linkage

Setup

k a field of characteristic p ‰ 2

W an irreducible affine Weyl group

S the Coxeter generators

Sf Ă S the generators of the finite Weyl group Wf

s̃ P S the affine generator

Identify S with a set of colors. Write expressions or words in S
with underlines, e.g. x . Let

V “
à

sPS

kαs

be the linear reflection representation of W over k. Write R for
the symmetric algebra generated by V , with each αs in degree 2.
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Objects and morphisms of DBS

Objects Each expression x “ st ¨ ¨ ¨ u gives an object Bx called
a Bott–Samelson bimodule.

Morphisms HomDBS
pBx ,By q is k-spanned by certain kinds of

graphs with bottom boundary x and top boundary y ,
e.g.

t s s

s t s t Bstst

t s

t s s Btss

b̋

f

Tensor product of objects/morphisms “ horizontal concatenation.
Composition of morphisms “ vertical concatenation.
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The generating morphisms (i.e. allowed vertices in the graphs) are

univalent (dot) trivalent (fork) 2ms,t-valent (braid)
degree `1 degree ´1 degree 0

where ms,t ă 8 is the order of st in W .
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The most basic (usually unwritten) relation is isotopy, that is, we
can move edges and vertices continuously:

“ “ ,

“ “ ,

etc.
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Polynomial relations

“ αs ,

f ´ spf q “ Bspf q ,

where

Bs : R ÝÑ R

f ÞÝÑ
f ´ spf q

αs

is the Demazure operator.
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One color relations

“ ,

“ ,

“ 0.
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Other relations (omitted)

The other relations are more complicated. These include:

§ Two color relations, which show how dots and forks interact
with braids. Some of these involve a version of the
Jones–Wenzl projectors from the Temperley–Lieb algebra.

§ Three color or Zamolodchikov relations, which involve lots of
braids.
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The category D

Add direct sums, grade shifts to DBS to get D‘,p´qBS .

Definition

D is the Karoubi envelope (“ idempotent completion) of D‘,p´qBS .

In other words, add a new object for each idempotent
endomorphism which doesn’t factor through an object in DBS.

Theorem (Soergel’s categorification theorem)

The split Grothendieck ring rDs is isomorphic to HW . Also, there
is a bijection

W ÝÑ tindecomposables in Du
x ÞÝÑ Bx ,

and rBx s corresponds to an element of Hx `
ř

wăx Zě0rv˘1sHw .
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We can understand the ungraded isomorphism rDungrs – ZW using
localization as follows.

Let Q “ FracR and consider the morphism

αs
´1

in Q bR DBS. This morphism is idempotent, corresponding to a
summand isomorphic to Q. Let Qs be the complement summand.
It turns out that Qx – Qy ô x “ y . Call such modules standard.

Proposition

Q bR Bx –ungr

à

w a subexpression of x

Qw ,

and v“1rBx s corresponds to
ř

Hw P ZW .
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It turns out that Qx – Qy ô x “ y . Call such modules standard.

Proposition

Q bR Bx –ungr

à

w a subexpression of x

Qw ,

and v“1rBx s corresponds to
ř

Hw P ZW .
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Indecomposable Soergel bimodules

Theorem (Soergel’s conjecture [Elias–Williamson])

Let x PW . When k “ R, rBx s is the KL basis element Hx .

In general Soergel’s conjecture holds only when p " 0. In this
situation we write pHx for the element corresponding to rBx s.
These form the p-canonical basis for HW .

Proposition (Williamson–Braden, Jensen–Williamson)

If x PW and x “ ys with y ă x , we have

pHx P Hx `
ÿ

wăx

Zě0rv˘1sHw ,

pHyHs P
pHx `

ÿ

wăx

Zě0rv˘1s pHw .
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Motivation

Question

Are there better bounds for the p-canonical basis?

Idea

Look at the other side of the Riche–Williamson correspondence.

Proposition (Andersen)

Let T be a tilting module for a reductive group G over k. For all
r P N, there is a tilting module Tpr for the corresponding quantum
group Upr over C at a pr -th root of unity with chpT q “ chpTpr q.

Think of this as a kind of “higher order linkage principle” for tilting
modules.
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Example (higher order linkage)

G “ SL2, W “ Ã1, p “ 3.

W

id 0 01 010 0101 01010

Wp
id 0 01 010 0101 01010

The longer marks generate the p-affine Weyl subgroup Wp ďW .
Start with a single dot (a simple tilting module).

1. For each dot, add a new dot by reflecting in the current
highest wall, or delete at left boundary (wall-crossing)

2. Color dot pairs in adjacent small alcoves, or single dots at
leftmost alcove (Up-tilting characters)

3. Color dot pairs/singletons in the same Wp-orbit in adjacent
large alcoves (Up2-tilting characters)

4. Remove entire color groups from both simultaneously
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W

id 0 01 010 0101 01010

Wp
id 0 01 010 0101 01010

The longer marks generate the p-affine Weyl subgroup Wp ďW .
Start with a single dot (a simple tilting module).

1. For each dot, add a new dot by reflecting in the current
highest wall, or delete at left boundary (wall-crossing)

2. Color dot pairs in adjacent small alcoves, or single dots at
leftmost alcove (Up-tilting characters)

3. Color dot pairs/singletons in the same Wp-orbit in adjacent
large alcoves (Up2-tilting characters)

4. Remove entire color groups from both simultaneously



Soergel bimodules Linkage

Example (higher order linkage)
G “ SL2, W “ Ã1, p “ 3.
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W
id 0 01 010 0101 01010

Wp
id 0 01 010 0101 01010

The longer marks generate the p-affine Weyl subgroup Wp ďW .
Start with a single dot (a simple tilting module).

1. For each dot, add a new dot by reflecting in the current
highest wall, or delete at left boundary (wall-crossing)

2. Color dot pairs in adjacent small alcoves, or single dots at
leftmost alcove (Up-tilting characters)

3. Color dot pairs/singletons in the same Wp-orbit in adjacent
large alcoves (Up2-tilting characters)

4. Remove entire color groups from both simultaneously



Soergel bimodules Linkage

Example (higher order linkage)
G “ SL2, W “ Ã1, p “ 3.
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The Frobenius embedding

We will extend these ideas to the category D.
Write Sp “ Sf Y ts̃pu for the generators of Wp. Let

F : W ÝÑW

s ÞÝÑ s for s P Sf ,

s̃ ÞÝÑ s̃p

be the natural “p-scaling” or Frobenius homomorphism. We can
use F to twist V and DBS to V F and DF

BS respectively.
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F extends to a monoidal functor

F : DF
BS ÝÑ R̂ bR DBS,std

Bx ÞÝÑ BF pxq

§ R̂ ď Q is a particular localization of R

§ DBS,std contains both Bott–Samelson bimodules and standard
bimodules

§ F fixes Sf-colored strings and “expands” the affine s̃-colored
strings
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Example (Frobenius embedding)

W “ Ã2, p “ 3. Color the affine generator blue.
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Example (Frobenius embedding)

W “ Ã2, p “ 3. Color the affine generator blue.

� // `l.o.t.
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Example (Frobenius embedding)

W “ Ã2, p “ 3. Color the affine generator blue.

We will abbreviate the images of these vertices using strings colored
cyan.
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The linkage category

Finally, the menorah morphism is the following diagram

abbr
„

Definition

DBS,p|˚ is the category generated from all these morphisms. The
linkage category Dp|˚ is the Karoubi envelope of DBS,p|˚.
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Tensor actions on Dp|˚

Tensor products give Dp|˚ the structure of a categorical bimodule:

DF Dp|˚ D
BFpxqb´ ´bBy

Theorem (H.)

As a left DF -submodule, we have

Dp|˚ –
à

wPWpzW

DF b R̂w ,

where R̂w denotes a standard bimodule for a minimal length coset
representative. Moreover, this decomposition is also a block
decomposition of Dp|˚.
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The linkage functor

By decomposing the right action in terms of the block
decomposition, we obtain the linkage functor.

Theorem (H.)

There is a functor

pr : DungrÝÑEndDF ,ungrbR̂

ˆ

´

DF ,ungrbR̂
¯‘|WpzW |

˙

from Dungr to left DF ,ungr b R̂-endofunctors of a direct sum
category of |WpzW | copies of DF ,ungr b R̂.

The grading doesn’t pass through because the block
decomposition uses lots of fractions in R̂.
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Example (linkage functor)

W “ Ã1, p “ 3.

101 10 1 id 0 01 010 0101 01010

prpB010q “ prpB0q prpB1q prpB0q

“

¨

˝

R̂ R̂ 0

R̂ R̂ 0
0 0 B0p

˛

‚

¨

˝

B1 0 0

0 R̂ R̂

0 R̂ R̂

˛

‚

¨

˝

R̂ R̂ 0

R̂ R̂ 0
0 0 B0p

˛

‚

“

¨

˚

˝

B1 ‘ R̂ B1 ‘ R̂ B0p

B1 ‘ R̂ B1 ‘ R̂ B0p

B0p B0p B0p0p

˛

‹

‚
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˝2

“ ´2

pr

˜

˝2
¸

“

¨

˚

˚

˚

˝

A A 0
A A 0

0 0
´

α1
1

¯

´

1
α1

¯

˛

‹

‹

‹

‚

p˝2

“

¨

˚

˚

˚

˚

˚

˝

A2 A2 0
A2 A2 0

0 0 α1

´

α1
1

¯

´

1
α1

¯

˛

‹

‹

‹

‹

‹

‚

“ ´2pr

˜ ¸

where

A “

¨

˚

˚

˝

α´1
0

´α
´1
0
pα1`2α0q

´α
´1
0

¯

´ ´α
´1
0

α
´1
0
pα1`2α0q

¯

´
α1`2α0
α0

˛

‹

‹

‚
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Decategorified linkage

Corollary

Let p
v“1Hx denote the image of the p-canonical basis element in

ZW . Then

p
v“1Hx P

ÿ

yPWp

wPWpzW

Zě0F
` p
v“1HF´1pyq

˘

Hw .

The result follows by reading the first row of prpBxq. It is directly
analogous to higher order linkage for tilting modules.
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Example (decategorified linkage)

W “ Ã1, p “ 3.

W
101 10 1 id 0 01 010 0101 01010

Wp
101 10 1 id 0 01 010 0101 01010

3H010 “ H010
3H0101 “ H0101 ` H01
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W “ Ã1, p “ 3.

W
101 10 1 id 0 01 010 0101 01010

Wp
101 10 1 id 0 01 010 0101 01010

3H010 “ H010

3H0101 “ H0101 ` H01



Soergel bimodules Linkage

Example (decategorified linkage)

W “ Ã1, p “ 3.

W
101 10 1 id 0 01 010 0101 01010

Wp
101 10 1 id 0 01 010 0101 01010

3H010 “ H010

3H0101 “ H0101 ` H01



Soergel bimodules Linkage

Example (decategorified linkage)
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