<u>Restriction</u> of characters to Sylow *p*-subgroups

Eugenio Giannelli

Trinity Hall, University of Cambridge

National University of Singapore, December 2017

Eugenio Giannelli (Trinity Hall, Cambridge) Restriction of characters to Sylow p-subgroups 590

イロト イポト イヨト イヨト

Introduction

590

イロト イヨト イヨト イヨト

Let G be a finite group, p prime, $P \in Syl_p(G)$.

We let Irr(G) be the set of irreducible characters of G, and

◆□▶ ◆□▶ ◆臣▶ ◆臣▶ ─臣 ─ のへで

Let G be a finite group, p prime, $P \in Syl_p(G)$.

We let Irr(G) be the set of irreducible characters of G, and we write $Irr_{p'}(G) = \{\chi \in Irr(G) | p \text{ does not divide } \chi(1)\}.$

Let G be a finite group, p prime, $P \in Syl_p(G)$. We let Irr(G) be the set of irreducible characters of G, and we write $Irr_{p'}(G) = \{\chi \in Irr(G) | p \text{ does not divide } \chi(1)\}.$

Notice that $\operatorname{Irr}_{p'}(P) = \{\lambda \in \operatorname{Irr}(P) \mid \lambda(1) = 1\} =: \operatorname{Lin}(P).$

Let G be a finite group, p prime, $P \in Syl_p(G)$.

We let $\operatorname{Irr}(G)$ be the set of irreducible characters of G, and we write $\operatorname{Irr}_{p'}(G) = \{\chi \in \operatorname{Irr}(G) \mid p \text{ does not divide } \chi(1)\}.$ Notice that $\operatorname{Irr}_{p'}(P) = \{\lambda \in \operatorname{Irr}(P) \mid \lambda(1) = 1\} =: \operatorname{Lin}(P).$

Conjecture (McKay; 1972)

Let G be a finite group, p prime. Then $|Irr_{p'}(G)| = |Irr_{p'}(N_G(P))|$.

◆□▶ ◆□▶ ◆臣▶ ◆臣▶ ─臣 ─ のへで

Theorem (Malle, Spaeth; 2015) Let G be a finite group, and p = 2. Then $|\operatorname{Irr}_{2'}(G)| = |\operatorname{Irr}_{2'}(N_G(P))|$.

Eugenio Giannelli (Trinity Hall, Cambridge) Restriction of characters to Sylow *p*-subgroups

3

500

- 4 同下 4 日下 4 日下

Theorem (Malle, Spaeth; 2015) Let G be a finite group, and p = 2. Then $|\operatorname{Irr}_{2'}(G)| = |\operatorname{Irr}_{2'}(\mathsf{N}_G(P))|$.

And what about me?

Э

- 4 回 ト 4 ヨ ト 4 ヨ ト

Theorem (Malle, Spaeth; 2015) Let G be a finite group, and p = 2. Then $|\operatorname{Irr}_{2'}(G)| = |\operatorname{Irr}_{2'}(\mathsf{N}_G(P))|$.

And what about me?

Let S_n be the symmetric group and let $P_n \in Syl_2(S_n)$.

Goal (2016)

Find a canonical bijection Φ : $Irr_{2'}(S_n) \longrightarrow Irr_{2'}(N_{S_n}(P_n))$

200

<ロ> (四) (四) (三) (三) (三)

Theorem (Malle, Spaeth; 2015) Let G be a finite group, and p = 2. Then $|\operatorname{Irr}_{2'}(G)| = |\operatorname{Irr}_{2'}(\mathsf{N}_G(P))|$.

And what about me?

Let S_n be the symmetric group and let $P_n \in Syl_2(S_n)$.

Goal (2016)

Find a canonical bijection Φ : $Irr_{2'}(S_n) \longrightarrow Irr_{2'}(N_{S_n}(P_n))$

Fact: $\mathbf{N}_{S_n}(P_n) = P_n$. Hence $\operatorname{Irr}_{2'}(\mathbf{N}_{S_n}(P_n)) = \operatorname{Lin}(P_n)$.

◆□▶ ◆□▶ ◆臣▶ ◆臣▶ ─臣 ─ のへで

◆□ > ◆□ > ◆臣 > ◆臣 > □臣 = のへで

Theorem A (G, 2016) Let $\chi \in Irr_{2'}(S_{2^k})$ then: (i) There exists a unique $\chi^* \in Lin(P_{2^k})$ such that $\chi \downarrow_{P_{2^k}} = \chi^* + \Delta$. (Here Δ is a sum of irreducible characters of even degree). (ii) Moreover, $\star : Irr_{2'}(S_{2^k}) \longrightarrow Irr_{2'}(\mathsf{N}_{S_{2^k}}(P_{2^k}))$ is a bijection.

◆□ > ◆□ > ◆三 > ◆三 > 一三 - のへで

Theorem A (G, 2016) Let $\chi \in Irr_{2'}(S_{2^k})$ then: (i) There exists a unique $\chi^* \in Lin(P_{2^k})$ such that $\chi \downarrow_{P_{2^k}} = \chi^* + \Delta$. (Here Δ is a sum of irreducible characters of even degree). (ii) Moreover, $\star : Irr_{2'}(S_{2^k}) \longrightarrow Irr_{2'}(\mathsf{N}_{S_{2^k}}(P_{2^k}))$ is a bijection.

Are there other cases where we can find such a nice correspondence?

◆□ > ◆□ > ◆三 > ◆三 > 一三 - のへで

Theorem A (G, 2016) Let $\chi \in Irr_{2'}(S_{2^k})$ then: (i) There exists a unique $\chi^* \in Lin(P_{2^k})$ such that $\chi \downarrow_{P_{2^k}} = \chi^* + \Delta$. (Here Δ is a sum of irreducible characters of even degree). (ii) Moreover, $\star : Irr_{2'}(S_{2^k}) \longrightarrow Irr_{2'}(\mathsf{N}_{S_{2^k}}(P_{2^k}))$ is a bijection.

Are there other cases where we can find such a nice correspondence?

Theorem B (G, 2016)

Let $n \in \mathbb{N}$ and $\chi \in Irr(S_n)$, then:

(i) There always exists a $\lambda \in \operatorname{Lin}(P_n)$ such that $\lambda \mid \chi \downarrow_{P_n}$.

(ii) λ is unique if and only if $n = 2^k$ and $\chi \in Irr_{2'}(S_{2^k})$.

Theorem C (G, Kleshchev, Navarro, Tiep 2016)

There exists a combinatorially defined canonical bijection $\Phi : \operatorname{Irr}_{2'}(S_n) \longrightarrow \operatorname{Irr}_{2'}(\mathsf{N}_{S_n}(P_n)).$ Moreover $\Phi(\chi) \mid \chi \downarrow_{P_n}$, for all $\chi \in \operatorname{Irr}(S_n).$

◆□ > ◆□ > ◆三 > ◆三 > 一三 - のへで

Restriction to Sylow *p*-subgroups

Eugenio Giannelli (Trinity Hall, Cambridge) Restriction of characters to Sylow *p*-subgroups 590

イロト イヨト イヨト

This is joint work with Gabriel Navarro.

590

◆□ ▶ ◆□ ▶ ◆ □ ▶ ◆ □ ▶

200

イロト イヨト イヨト

Problem

Let $\chi \in Irr(G)$. What can we say about $\chi \downarrow_P$?

200

・ロン ・回 と ・ ヨン

Problem

Let $\chi \in Irr(G)$. What can we say about $\chi \downarrow_P$?

Let $L_{\chi} = \{\lambda \in \operatorname{Lin}(P) : \lambda \mid \chi \downarrow_P\}.$

200

Problem

Let $\chi \in Irr(G)$. What can we say about $\chi \downarrow_P$?

Let
$$L_{\chi} = \{\lambda \in \operatorname{Lin}(P) \; : \; \lambda \mid \chi \downarrow_P \}.$$

 $|L_{\chi}|$ = number of distinct linear constituents of $\chi \downarrow_{P}$.

200

Problem

Let $\chi \in Irr(G)$. What can we say about $\chi \downarrow_P$?

Let
$$L_{\chi} = \{\lambda \in \operatorname{Lin}(P) \; : \; \lambda \mid \chi \downarrow_P \}.$$

 $|L_{\chi}|$ = number of distinct linear constituents of $\chi \downarrow_{P}$.

Facts

• If $\chi \in \operatorname{Irr}_{p'}(G)$ then $|L_{\chi}| \neq 0$.

Problem

Let $\chi \in Irr(G)$. What can we say about $\chi \downarrow_P$?

Let
$$L_{\chi} = \{\lambda \in \operatorname{Lin}(P) \; : \; \lambda \mid \chi \downarrow_P \}.$$

 $|L_{\chi}|$ = number of distinct linear constituents of $\chi \downarrow_{P}$.

Facts

- If $\chi \in \operatorname{Irr}_{p'}(G)$ then $|L_{\chi}| \neq 0$.
- If $p \mid \chi(1)$ then $|L_{\chi}|$ could in principle take any value $\{0, 1, 2, \ldots\}$.

Problem

Let $\chi \in Irr(G)$. What can we say about $\chi \downarrow_P$?

Let
$$L_{\chi} = \{\lambda \in \operatorname{Lin}(P) \; : \; \lambda \mid \chi \downarrow_P \}.$$

 $|L_{\chi}|$ = number of distinct linear constituents of $\chi \downarrow_{P}$.

Facts

• If
$$\chi \in \operatorname{Irr}_{p'}(G)$$
 then $|L_{\chi}| \neq 0$.

• If $p \mid \chi(1)$ then $|L_{\chi}|$ could in principle take any value $\{0, 1, 2, \ldots\}$.

• If $G = S_n$ and p = 2 then $|L_{\chi}| \neq 0$ for all χ .

Let p be any prime and let $\chi \in Irr(S_n)$ then $|L_{\chi}| \neq 0$.

200

(日) (四) (三) (三)

Let p be any prime and let $\chi \in Irr(S_n)$ then $|L_{\chi}| \neq 0$.

Some ideas about the proof of Theorem A:

200

<ロト <回ト < 三ト < 三ト

Let p be any prime and let $\chi \in Irr(S_n)$ then $|L_{\chi}| \neq 0$.

Some ideas about the proof of Theorem A:

• It is enough to prove it for $n = p^k$. Let $P_{p^k} \in Syl_n(S_{p^k})$.

200

イロト イポト イヨト イヨト

Let p be any prime and let $\chi \in Irr(S_n)$ then $|L_{\chi}| \neq 0$.

Some ideas about the proof of Theorem A:

• It is enough to prove it for $n = p^k$. Let $P_{p^k} \in \operatorname{Syl}_p(S_{p^k})$.

•
$$P_{p^k} \cong C_p \wr \cdots \wr C_p \wr C_p = P_{p^{k-1}} \wr C_p = B \rtimes C_p$$
,

• where $B = P_{p^{k-1}} \times P_{p^{k-1}} \times \cdots \times P_{p^{k-1}}$ is the base group above.

◆□▶ ◆□▶ ◆臣▶ ◆臣▶ ─臣 ─ のへで

Let p be any prime and let $\chi \in Irr(S_n)$ then $|L_{\chi}| \neq 0$.

Some ideas about the proof of Theorem A:

• It is enough to prove it for $n = p^k$. Let $P_{p^k} \in \operatorname{Syl}_p(S_{p^k})$.

•
$$P_{p^k} \cong (C_p \wr \cdots \wr C_p) \wr C_p = P_{p^{k-1}} \wr C_p = B \rtimes C_p,$$

• where $B = P_{p^{k-1}} \times P_{p^{k-1}} \times \cdots \times P_{p^{k-1}}$ is the base group above.

◆□▶ ◆□▶ ◆臣▶ ◆臣▶ ─臣 ─ のへで

Let p be any prime and let $\chi \in Irr(S_n)$ then $|L_{\chi}| \neq 0$.

Some ideas about the proof of Theorem A:

• It is enough to prove it for $n = p^k$. Let $P_{p^k} \in \operatorname{Syl}_p(S_{p^k})$.

•
$$P_{p^k} \cong (C_p \wr \cdots \wr C_p) \wr C_p = P_{p^{k-1}} \wr C_p = B \rtimes C_p,$$

• where $B = P_{p^{k-1}} \times P_{p^{k-1}} \times \cdots \times P_{p^{k-1}}$ is the base group above.

Remark

Let $\lambda \in Irr(P_{p^k})$. Then $\lambda(1) = 1$ if and only if there exists

 $\varphi \in \operatorname{Lin}(P_{p^{k-1}})$ such that $\varphi \times \varphi \times \cdots \times \varphi \mid \lambda \downarrow_B$.

...blackboard...

.....more generally, let n = qm for some $q, m \in \mathbb{N}$ and let $D = S_m \times S_m \times \cdots \times S_m < S_{am}$.

◆□▶ ◆□▶ ◆目▶ ◆目▶ ●目 - のへで

.....more generally, let n=qm for some $q,m\in\mathbb{N}$ and let

$$D = S_m \times S_m \times \cdots \times S_m \leq S_{qm}.$$

Theorem B (The q-section of a character/partition) Let $\chi \in Irr(S_n)$. Then, there exists $\Delta(\chi) \in Irr(S_m)$ such that $\Delta(\chi) \times \Delta(\chi) \times \cdots \times \Delta(\chi) \mid \chi \downarrow_D$.

200

イロト イポト イヨト イヨト 二日

.....more generally, let n=qm for some $q,m\in\mathbb{N}$ and let

$$D = S_m \times S_m \times \cdots \times S_m \leq S_{qm}.$$

Theorem B (The q-section of a character/partition) Let $\chi \in Irr(S_n)$. Then, there exists $\Delta(\chi) \in Irr(S_m)$ such that $\Delta(\chi) \times \Delta(\chi) \times \cdots \times \Delta(\chi) \mid \chi \downarrow_D$.

What about arbitrary groups?

200

イロト イポト イヨト イヨト 二日

Conjecture C

Let $\chi \in Irr(G)$ be such that $p \mid \chi(1)$. If $|L_{\chi}| \neq 0$ then $|L_{\chi}| \geq p$.

Eugenio Giannelli (Trinity Hall, Cambridge) Restriction of characters to Sylow *p*-subgroups 200

<ロト <回ト < 三ト < 三ト

Conjecture C

Let $\chi \in Irr(G)$ be such that $p \mid \chi(1)$. If $|L_{\chi}| \neq 0$ then $|L_{\chi}| > p$.

Theorem D

Conjecture C holds for the following classes of groups:

Eugenio Giannelli (Trinity Hall, Cambridge) Restriction of characters to Sylow p-subgroups San

(日) (四) (三) (三)

Conjecture C

Let $\chi \in \operatorname{Irr}(G)$ be such that $p \mid \chi(1)$. If $|L_{\chi}| \neq 0$ then $|L_{\chi}| \geq p$.

Theorem D

Conjecture C holds for the following classes of groups:

- Symmetric and Alternating groups. (Strong form).
- p-solvable groups.
- Groups with abelian Sylow p-subgroup. (Strong form).
- All the sporadic simple groups.

San

イロト イポト イヨト イヨト 三日

Conjecture C

Let $\chi \in Irr(G)$ be such that $p \mid \chi(1)$. (If $|L_{\chi}| \neq 0$) then $|L_{\chi}| > p$.

Theorem D

Conjecture C holds for the following classes of groups:

- Symmetric and Alternating groups. (Strong form).
- p-solvable groups.
- Groups with abelian Sylow p-subgroup. (Strong form).
- All the sporadic simple groups.

San

<ロト <回ト < 三ト < 三ト

5900

< □ > < □ > < □ > < □ > < □ > < □ > = □

Let $\chi \in Irr(G)$ be such that $p \mid \chi(1)$. If $\chi \downarrow_P$ has a linear constituent λ then there exists a subgroup $D \lneq P$ of index p such that $(\lambda \downarrow_D) \uparrow^P$ is a constituent of $\chi \downarrow_P$.

Let $\chi \in Irr(G)$ be such that $p \mid \chi(1)$. If $\chi \downarrow_P$ has a linear constituent λ then there exists a subgroup $D \lneq P$ of index p such that $(\lambda \downarrow_D) \uparrow^P$ is a constituent of $\chi \downarrow_P$.

Groups with abelian Sylow *p*-subgroups

Let $\chi \in Irr(G)$ be such that $p \mid \chi(1)$. If $\chi \downarrow_P$ has a linear constituent λ then there exists a subgroup $D \lneq P$ of index p such that $(\lambda \downarrow_D) \uparrow^P$ is a constituent of $\chi \downarrow_P$.

Groups with abelian Sylow *p*-subgroups

Roughly speaking, the same as above holds.

- If B is the p-block of χ then $D \leq P$ is a *defect group* of B.

(Key tool: Green's theory of vertices and sources).

◆□▶ ◆□▶ ◆三▶ ◆三▶ ● □ ● ○○○

Future work: Prove Conjecture C, for all finite groups.....

- 12

990

イロト イヨト イヨト イヨト

Future work: Prove Conjecture C, for all finite groups.....

Suspect

Let $\chi \in Irr(G)$ be such that $p \mid \chi(1)$. If $|L_{\chi}| \neq 0$ then then there exists a subgroup $D \lneq P$ and $\lambda \in Lin(D)$ such that $(\lambda) \uparrow^{P}$ is a constituent of $\chi \downarrow_{P}$.

 Eugenio Giannelli (Trinity Hall, Cambridge)
 Restriction of characters to Sylow p-subgroups

Permutation characters and Sylow *p*-subgroups

(A question of Alex Zalesski)

3

200

イロト イポト イヨト イヨト

Eugenio Giannelli (Trinity Hall, Cambridge) Restriction of characters to Sylow *p*-subgroups

990

Question

What can we say about $(1_{P_n}) \uparrow^{S_n}$?

Can we determine its irreducible constituents?

200

Question

What can we say about $(1_{P_n}) \uparrow^{S_n}$?

Can we determine its irreducible constituents?

A partition $\lambda \vdash n$ is a non-increasing finite sequence of positive integers $\lambda = (\lambda_1, \dots, \lambda_k)$, such that $\sum \lambda_i = n$.

Question

What can we say about $(1_{P_n})\uparrow^{S_n}$?

Can we determine its irreducible constituents?

A partition $\lambda \vdash n$ is a non-increasing finite sequence of positive integers $\lambda = (\lambda_1, \dots, \lambda_k)$, such that $\sum \lambda_i = n$.

$$\operatorname{Irr}(S_n) = \{\chi^{\lambda} \mid \lambda \vdash n\}$$

Question

What can we say about $(1_{P_n})\uparrow^{S_n}$?

Can we determine its irreducible constituents?

A partition $\lambda \vdash n$ is a non-increasing finite sequence of positive integers $\lambda = (\lambda_1, \dots, \lambda_k)$, such that $\sum \lambda_i = n$.

$$\operatorname{Irr}(S_n) = \{\chi^{\lambda} \mid \lambda \vdash n\}$$

Equivalent Question

Given $\lambda \vdash n$, is 1_{P_n} an irreducible constituent of $(\chi^{\lambda}) \downarrow_{P_n}$?

Eugenio Giannelli (Trinity Hall, Cambridge) Restriction of characters to Sylow *p*-subgroups

Let p be an odd prime and let n > 10 be a natural number. Then the trivial character 1_{P_n} is a constituent of $(\chi^{\lambda}) \downarrow_{P_n}$ for all $\lambda \vdash n$, unless $n = p^k$ and $\lambda \in \{(p^k - 1, 1), (2, 1^{p^k - 2})\}.$

na C

- 4 同下 4 日下 4 日下 - 日

Let p be an odd prime and let n > 10 be a natural number. Then the trivial character 1_{P_n} is a constituent of $(\chi^{\lambda}) \downarrow_{P_n}$ for all $\lambda \vdash n$, unless $n = p^k$ and $\lambda \in \{(p^k - 1, 1), (2, 1^{p^k - 2})\}.$

Some Corollaries and Remarks

Let p be an odd prime and let n > 10 be a natural number. Then the trivial character 1_{P_n} is a constituent of $(\chi^{\lambda}) \downarrow_{P_n}$ for all $\lambda \vdash n$, unless $n = p^k$ and $\lambda \in \{(p^k - 1, 1), (2, 1^{p^k - 2})\}.$

Some Corollaries and Remarks

• We determine the number of irreducible representations of the corresponding Hecke Algebra $\mathcal{H}(S_n, P_n, 1_{P_n})$.

◆□ > ◆□ > ◆三 > ◆三 > 一三 - のへで

Let p be an odd prime and let n > 10 be a natural number. Then the trivial character 1_{P_n} is a constituent of $(\chi^{\lambda}) \downarrow_{P_n}$ for all $\lambda \vdash n$, unless $n = p^k$ and $\lambda \in \{(p^k - 1, 1), (2, 1^{p^k - 2})\}.$

Some Corollaries and Remarks

- We determine the number of irreducible representations of the corresponding Hecke Algebra $\mathcal{H}(S_n, P_n, 1_{P_n})$.
- We obtain a similar characterization for Alternating groups.

◆□ > ◆□ > ◆三 > ◆三 > 一三 - のへで

Let p be an odd prime and let n > 10 be a natural number. Then the trivial character 1_{P_n} is a constituent of $(\chi^{\lambda}) \downarrow_{P_n}$ for all $\lambda \vdash n$, unless $n = p^k$ and $\lambda \in \{(p^k - 1, 1), (2, 1^{p^k - 2})\}.$

Some Corollaries and Remarks

- We determine the number of irreducible representations of the corresponding Hecke Algebra $\mathcal{H}(S_n, P_n, 1_{P_n})$.
- We obtain a similar characterization for Alternating groups.
- The situation is completely different, and more chaotic when p = 2.

590

イロト イポト イヨト イヨト 二日

Thank you very much!!

5900

< □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □