Restriction of characters to Sylow p-subgroups

Eugenio Giannelli

Trinity Hall, University of Cambridge
National University of Singapore, December 2017

Introduction

Let G be a finite group, p prime, $P \in \operatorname{Syl}_{p}(G)$.
We let $\operatorname{Irr}(G)$ be the set of irreducible characters of G, and

Let G be a finite group, p prime, $P \in \operatorname{Syl}_{p}(G)$.
We let $\operatorname{Irr}(G)$ be the set of irreducible characters of G, and we write $\operatorname{Irr}_{p^{\prime}}(G)=\{\chi \in \operatorname{Irr}(G) \mid p$ does not divide $\chi(1)\}$.

Let G be a finite group, p prime, $P \in \operatorname{Syl}_{p}(G)$.
We let $\operatorname{Irr}(G)$ be the set of irreducible characters of G, and we write $\operatorname{Irr}_{p^{\prime}}(G)=\{\chi \in \operatorname{Irr}(G) \mid p$ does not divide $\chi(1)\}$.

Notice that $\operatorname{Irr}_{p^{\prime}}(P)=\{\lambda \in \operatorname{Irr}(P) \mid \lambda(1)=1\}=: \operatorname{Lin}(P)$.

Let G be a finite group, p prime, $P \in \operatorname{Syl}_{p}(G)$.
We let $\operatorname{Irr}(G)$ be the set of irreducible characters of G, and we write $\operatorname{Irr}_{p^{\prime}}(G)=\{\chi \in \operatorname{Irr}(G) \mid p$ does not divide $\chi(1)\}$.

Notice that $\operatorname{Irr}_{p^{\prime}}(P)=\{\lambda \in \operatorname{Irr}(P) \mid \lambda(1)=1\}=: \operatorname{Lin}(P)$.

Conjecture (McKay; 1972)

Let G be a finite group, p prime. Then $\left|\operatorname{Irr}_{p^{\prime}}(G)\right|=\left|\operatorname{Irr}_{p^{\prime}}\left(\mathbf{N}_{G}(P)\right)\right|$.

Theorem (Malle, Spaeth; 2015)
 Let G be a finite group, and $p=2$. Then $\left|\operatorname{Irr}_{2^{\prime}}(G)\right|=\left|\operatorname{Irr}_{2^{\prime}}\left(\mathbf{N}_{G}(P)\right)\right|$.

Theorem (Malle, Spaeth; 2015)
 Let G be a finite group, and $p=2$. Then $\left|\operatorname{Irr}_{2^{\prime}}(G)\right|=\left|\operatorname{Irr}_{2^{\prime}}\left(\mathbf{N}_{G}(P)\right)\right|$.

And what about me?

```
Theorem (Malle, Spaeth; 2015)
Let \(G\) be a finite group, and \(p=2\). Then \(\left|\operatorname{Irr}_{2^{\prime}}(G)\right|=\left|\operatorname{Irr}_{2^{\prime}}\left(\mathbf{N}_{G}(P)\right)\right|\).
```

And what about me?
Let S_{n} be the symmetric group and let $P_{n} \in \operatorname{Syl}_{2}\left(S_{n}\right)$.

Goal (2016)

Find a canonical bijection $\Phi: \operatorname{Irr}_{2^{\prime}}\left(S_{n}\right) \longrightarrow \operatorname{Irr}_{2^{\prime}}\left(\mathbf{N}_{S_{n}}\left(P_{n}\right)\right)$

```
Theorem (Malle, Spaeth; 2015)
Let \(G\) be a finite group, and \(p=2\). Then \(\left|\operatorname{Irr}_{2^{\prime}}(G)\right|=\left|\operatorname{Irr}_{2^{\prime}}\left(\mathbf{N}_{G}(P)\right)\right|\).
```

And what about me?
Let S_{n} be the symmetric group and let $P_{n} \in \operatorname{Syl}_{2}\left(S_{n}\right)$.

Goal (2016)

Find a canonical bijection $\Phi: \operatorname{Irr}_{2^{\prime}}\left(S_{n}\right) \longrightarrow \operatorname{Irr}_{2^{\prime}}\left(\mathbf{N}_{S_{n}}\left(P_{n}\right)\right)$
Fact: $\mathbf{N}_{S_{n}}\left(P_{n}\right)=P_{n}$. Hence $\operatorname{Irr}_{2^{\prime}}\left(\mathbf{N}_{S_{n}}\left(P_{n}\right)\right)=\operatorname{Lin}\left(P_{n}\right)$.

Since $P_{n}=P_{2^{n_{1}}} \times P_{2^{n_{2}}} \times \cdots \times P_{2^{n t}}$, the case $n=2^{k}$ is key.

Since $P_{n}=P_{2^{n_{1}}} \times P_{2^{n_{2}}} \times \cdots \times P_{2^{n_{t}}}$, the case $n=2^{k}$ is key.
Theorem A $(G, 2016)$
Let $\chi \in \operatorname{Irr}_{2^{\prime}}\left(S_{2^{k}}\right)$ then:
(i) There exists a unique $\chi^{\star} \in \operatorname{Lin}\left(P_{2^{k}}\right)$ such that $\chi \downarrow_{P_{2^{k}}}=\chi^{\star}+\Delta$. (Here Δ is a sum of irreducible characters of even degree).
(ii) Moreover, $\star: \operatorname{Irr}_{2^{\prime}}\left(S_{2^{k}}\right) \longrightarrow \operatorname{Irr}_{2^{\prime}}\left(\mathbf{N}_{2^{k}}\left(P_{2^{k}}\right)\right)$ is a bijection.

Since $P_{n}=P_{2^{n_{1}}} \times P_{2^{n_{2}}} \times \cdots \times P_{2^{n t}}$, the case $n=2^{k}$ is key.
Theorem A $(G, 2016)$
Let $\chi \in \operatorname{Irr}_{2^{\prime}}\left(S_{2^{k}}\right)$ then:
(i) There exists a unique $\chi^{\star} \in \operatorname{Lin}\left(P_{2^{k}}\right)$ such that $\chi \downarrow P_{2^{k}}=\chi^{\star}+\Delta$. (Here Δ is a sum of irreducible characters of even degree).
(ii) Moreover, $\star: \operatorname{Irr}_{2^{\prime}}\left(S_{2^{k}}\right) \longrightarrow \operatorname{Irr}_{2^{\prime}}\left(\mathbf{N}_{2_{2^{k}}}\left(P_{2^{k}}\right)\right)$ is a bijection.

Are there other cases where we can find such a nice correspondence?

Since $P_{n}=P_{2^{n_{1}}} \times P_{2^{n_{2}}} \times \cdots \times P_{2^{n_{t}}}$, the case $n=2^{k}$ is key.

Theorem A (G, 2016)

Let $\chi \in \operatorname{Irr}_{2^{\prime}}\left(S_{2^{k}}\right)$ then:
(i) There exists a unique $\chi^{\star} \in \operatorname{Lin}\left(P_{2^{k}}\right)$ such that $\chi \downarrow_{P_{2^{k}}}=\chi^{\star}+\Delta$. (Here Δ is a sum of irreducible characters of even degree).
(ii) Moreover, $\star: \operatorname{Irr}_{2^{\prime}}\left(S_{2^{k}}\right) \longrightarrow \operatorname{Irr}_{2^{\prime}}\left(\mathbf{N}_{S_{2^{k}}}\left(P_{2^{k}}\right)\right)$ is a bijection.

Are there other cases where we can find such a nice correspondence?

Theorem B $(G, 2016)$

Let $n \in \mathbb{N}$ and $\chi \in \operatorname{Irr}\left(S_{n}\right)$, then:
(i) There always exists a $\lambda \in \operatorname{Lin}\left(P_{n}\right)$ such that $\lambda \mid \chi \downarrow_{P_{n}}$.
(ii) λ is unique if and only if $n=2^{k}$ and $\chi \in \operatorname{Irr}_{2^{\prime}}\left(S_{2^{k}}\right)$.

Theorem C (G, Kleshchev, Navarro, Tiep 2016)

There exists a combinatorially defined canonical bijection $\Phi: \operatorname{Irr}_{2^{\prime}}\left(S_{n}\right) \longrightarrow \operatorname{Irr}_{2^{\prime}}\left(\mathbf{N}_{S_{n}}\left(P_{n}\right)\right)$. Moreover $\Phi(\chi) \mid \chi \downarrow_{P_{n}}$, for all $\chi \in \operatorname{Irr}\left(S_{n}\right)$.

Restriction to Sylow p-subgroups

This is joint work with Gabriel Navarro.

Now: p an arbitrary prime, G any finite group and $P \in \operatorname{Syl}_{p}(G)$.

Now: p an arbitrary prime, G any finite group and $P \in \operatorname{Syl}_{p}(G)$.

Problem
 Let $\chi \in \operatorname{Irr}(G)$. What can we say about $\chi \downarrow_{P}$?

Now: p an arbitrary prime, G any finite group and $P \in \operatorname{Syl}_{p}(G)$.

Problem

Let $\chi \in \operatorname{Irr}(G)$. What can we say about $\chi \downarrow_{p}$?

$$
\text { Let } L_{\chi}=\left\{\lambda \in \operatorname{Lin}(P): \lambda \mid \chi \downarrow_{P}\right\} .
$$

Now: p an arbitrary prime, G any finite group and $P \in \operatorname{Syl}_{p}(G)$.

Problem

Let $\chi \in \operatorname{Irr}(G)$. What can we say about $\chi \downarrow_{p}$?
Let $L_{\chi}=\left\{\lambda \in \operatorname{Lin}(P): \lambda \mid \chi \downarrow_{P}\right\}$.
$\left|L_{\chi}\right|=$ number of distinct linear constituents of $\chi \downarrow_{p}$.

Now: p an arbitrary prime, G any finite group and $P \in \operatorname{Syl}_{p}(G)$.

Problem

Let $\chi \in \operatorname{Irr}(G)$. What can we say about $\chi \downarrow_{P}$?
Let $L_{\chi}=\left\{\lambda \in \operatorname{Lin}(P): \lambda \mid \chi \downarrow_{P}\right\}$.
$\left|L_{\chi}\right|=$ number of distinct linear constituents of $\chi \downarrow_{\rho}$.

Facts

- If $\chi \in \operatorname{Irr}_{p^{\prime}}(G)$ then $\left|L_{\chi}\right| \neq 0$.

Now: p an arbitrary prime, G any finite group and $P \in \operatorname{Syl}_{p}(G)$.

Problem

Let $\chi \in \operatorname{Irr}(G)$. What can we say about $\chi \downarrow_{P}$?
Let $L_{\chi}=\left\{\lambda \in \operatorname{Lin}(P): \lambda \mid \chi \downarrow_{P}\right\}$.
$\left|L_{\chi}\right|=$ number of distinct linear constituents of $\chi \downarrow_{\rho}$.

Facts

- If $\chi \in \operatorname{Irr}_{p^{\prime}}(G)$ then $\left|L_{\chi}\right| \neq 0$.
- If $p \mid \chi(1)$ then $\left|L_{\chi}\right|$ could in principle take any value $\{0,1,2, \ldots\}$.

Now: p an arbitrary prime, G any finite group and $P \in \operatorname{Syl}_{p}(G)$.

Problem

Let $\chi \in \operatorname{Irr}(G)$. What can we say about $\chi \downarrow_{P}$?
Let $L_{\chi}=\left\{\lambda \in \operatorname{Lin}(P): \lambda \mid \chi \downarrow_{P}\right\}$.
$\left|L_{\chi}\right|=$ number of distinct linear constituents of $\chi \downarrow_{p}$.

Facts

- If $\chi \in \operatorname{Irr}_{p^{\prime}}(G)$ then $\left|L_{\chi}\right| \neq 0$.
- If $p \mid \chi(1)$ then $\left|L_{\chi}\right|$ could in principle take any value $\{0,1,2, \ldots\}$.
- If $G=S_{n}$ and $p=2$ then $\left|L_{\chi}\right| \neq 0$ for all χ.

Theorem A

Let p be any prime and let $\chi \in \operatorname{Irr}\left(S_{n}\right)$ then $\left|L_{\chi}\right| \neq 0$.

Theorem A

Let p be any prime and let $\chi \in \operatorname{Irr}\left(S_{n}\right)$ then $\left|L_{\chi}\right| \neq 0$.
Some ideas about the proof of Theorem A:

Theorem A

Let p be any prime and let $\chi \in \operatorname{Irr}\left(S_{n}\right)$ then $\left|L_{\chi}\right| \neq 0$.
Some ideas about the proof of Theorem A:

- It is enough to prove it for $n=p^{k}$. Let $P_{p^{k}} \in \operatorname{Syl}_{p}\left(S_{p^{k}}\right)$.

Theorem A

Let p be any prime and let $\chi \in \operatorname{Irr}\left(S_{n}\right)$ then $\left|L_{\chi}\right| \neq 0$.
Some ideas about the proof of Theorem A:

- It is enough to prove it for $n=p^{k}$. Let $P_{p^{k}} \in \operatorname{Syl}_{p}\left(S_{p^{k}}\right)$.
- $P_{p^{k}} \cong C_{p} \backslash \cdots \prec C_{p} \prec C_{p}=P_{p^{k-1}} \backslash C_{p}=B \rtimes C_{p}$,
- where $B=P_{p^{k-1}} \times P_{p^{k-1}} \times \cdots \times P_{p^{k-1}}$ is the base group above.

Theorem A

Let p be any prime and let $\chi \in \operatorname{Irr}\left(S_{n}\right)$ then $\left|L_{\chi}\right| \neq 0$.
Some ideas about the proof of Theorem A:

- It is enough to prove it for $n=p^{k}$. Let $P_{p^{k}} \in \operatorname{Syl}_{p}\left(S_{p^{k}}\right)$.
- $P_{p^{k}} \cong\left(C_{p} \backslash \cdots \prec C_{p}\right)\left\langle C_{p}=P_{p^{k-1}} \prec C_{p}=B \rtimes C_{p}\right.$,
- where $B=P_{p^{k-1}} \times P_{p^{k-1}} \times \cdots \times P_{p^{k-1}}$ is the base group above.

Theorem A

Let p be any prime and let $\chi \in \operatorname{Irr}\left(S_{n}\right)$ then $\left|L_{\chi}\right| \neq 0$.
Some ideas about the proof of Theorem A:

- It is enough to prove it for $n=p^{k}$. Let $P_{p^{k}} \in \operatorname{Syl}_{p}\left(S_{p^{k}}\right)$.
- $P_{p^{k}} \cong\left(C_{p} \backslash \cdots \imath C_{p}\right)\left\langle C_{p}=P_{p^{k-1}} \backslash C_{p}=B \rtimes C_{p}\right.$,
- where $B=P_{p^{k-1}} \times P_{p^{k-1}} \times \cdots \times P_{p^{k-1}}$ is the base group above.

Remark

Let $\lambda \in \operatorname{Irr}\left(P_{p^{k}}\right)$. Then $\lambda(1)=1$ if and only if there exists $\varphi \in \operatorname{Lin}\left(P_{p^{k-1}}\right)$ such that $\varphi \times \varphi \times \cdots \times \varphi \mid \lambda \downarrow_{B}$.
...blackboard...

.....more generally, let $n=q m$ for some $q, m \in \mathbb{N}$ and let

 $D=S_{m} \times S_{m} \times \cdots \times S_{m} \leq S_{q m}$......more generally, let $n=q m$ for some $q, m \in \mathbb{N}$ and let
$D=S_{m} \times S_{m} \times \cdots \times S_{m} \leq S_{q m}$.
Theorem B (The q-section of a character/partition)
Let $\chi \in \operatorname{Irr}\left(S_{n}\right)$. Then, there exists $\Delta(\chi) \in \operatorname{Irr}\left(S_{m}\right)$ such that $\Delta(\chi) \times \Delta(\chi) \times \cdots \times \Delta(\chi) \mid \chi \downarrow_{D}$.
.....more generally, let $n=q m$ for some $q, m \in \mathbb{N}$ and let
$D=S_{m} \times S_{m} \times \cdots \times S_{m} \leq S_{q m}$.
Theorem B (The q-section of a character/partition)
Let $\chi \in \operatorname{Irr}\left(S_{n}\right)$. Then, there exists $\Delta(\chi) \in \operatorname{Irr}\left(S_{m}\right)$ such that $\Delta(\chi) \times \Delta(\chi) \times \cdots \times \Delta(\chi) \mid \chi \downarrow_{D}$.

What about arbitrary groups?

Conjecture C

Let $\chi \in \operatorname{Irr}(G)$ be such that $p \mid \chi(1) . \quad$ If $\left|L_{\chi}\right| \neq 0$ then $\left|L_{\chi}\right| \geq p$.

Conjecture C
 Let $\chi \in \operatorname{Irr}(G)$ be such that $p \mid \chi(1)$. If $\left|L_{\chi}\right| \neq 0$ then $\left|L_{\chi}\right| \geq p$.

Theorem D
Conjecture C holds for the following classes of groups:

Conjecture C

Let $\chi \in \operatorname{Irr}(G)$ be such that $p|\chi(1) . \quad| f\left|L_{x}\right| \neq 0$ then $\left|L_{x}\right| \geq p$.

Theorem D

Conjecture C holds for the following classes of groups:

- Symmetric and Alternating groups. (Strong form).
- p-solvable groups.
- Groups with abelian Sylow p-subgroup. (Strong form).
- All the sporadic simple groups.

Conjecture C

 Let $\chi \in \operatorname{Irr}(G)$ be such that $p \mid \chi(1) .\left(I f\left|L_{\chi}\right| \neq 0\right)$ then $\left|L_{x}\right| \geq p$.
Theorem D

Conjecture C holds for the following classes of groups:

- Symmetric and Alternating groups. (Strong form).
- p-solvable groups.
- Groups with abelian Sylow p-subgroup. (Strong form).
- All the sporadic simple groups.

Solvable groups

Solvable groups

Let $\chi \in \operatorname{Irr}(G)$ be such that $p \mid \chi(1)$. If $\chi \downarrow_{P}$ has a linear constituent λ then there exists a subgroup $D \lesseqgtr P$ of index p such that $\left(\lambda \downarrow_{D}\right) \uparrow^{P}$ is a constituent of $\chi \downarrow_{P}$.

Solvable groups

Let $\chi \in \operatorname{Irr}(G)$ be such that $p \mid \chi(1)$. If $\chi \downarrow_{P}$ has a linear constituent λ then there exists a subgroup $D \lesseqgtr P$ of index p such that $\left(\lambda \downarrow_{D}\right) \uparrow^{P}$ is a constituent of $\chi \downarrow_{P}$.

Groups with abelian Sylow p-subgroups

Solvable groups

Let $\chi \in \operatorname{Irr}(G)$ be such that $p \mid \chi(1)$. If $\chi \downarrow_{P}$ has a linear constituent λ then there exists a subgroup $D \lesseqgtr P$ of index p such that $\left(\lambda \downarrow_{D}\right) \uparrow^{P}$ is a constituent of $\chi \downarrow_{P}$.

Groups with abelian Sylow p-subgroups

Roughly speaking, the same as above holds.

- If B is the p-block of χ then $D \leq P$ is a defect group of B.
(Key tool: Green's theory of vertices and sources).

Future work: Prove Conjecture C, for all finite groups.....

Future work: Prove Conjecture C, for all finite groups.....

Suspect
 Let $\chi \in \operatorname{Irr}(G)$ be such that $p \mid \chi(1)$. If $\left|L_{\chi}\right| \neq 0$ then then there exists a subgroup $D \lesseqgtr P$ and $\lambda \in \operatorname{Lin}(D)$ such that $(\lambda) \uparrow^{P}$ is a constituent of $\chi \downarrow_{P}$.

Permutation characters and Sylow p-subgroups

(A question of Alex Zalesski)

Notation: Let 1_{G} be the trivial character of G.

Notation: Let 1_{G} be the trivial character of G.

Question

What can we say about $\left(1_{P_{n}}\right) \uparrow \uparrow^{S_{n}}$?
Can we determine its irreducible constituents?

Notation: Let 1_{G} be the trivial character of G.

Question

What can we say about $\left(1_{P_{n}}\right) \uparrow \uparrow^{S_{n}}$?
Can we determine its irreducible constituents?

A partition $\lambda \vdash n$ is a non-increasing finite sequence of positive integers $\lambda=\left(\lambda_{1}, \ldots, \lambda_{k}\right)$, such that $\sum \lambda_{i}=n$.

Notation: Let 1_{G} be the trivial character of G.

Question

What can we say about $\left(1_{P_{n}}\right) \uparrow \uparrow^{S_{n}}$?
Can we determine its irreducible constituents?

A partition $\lambda \vdash n$ is a non-increasing finite sequence of positive integers $\lambda=\left(\lambda_{1}, \ldots, \lambda_{k}\right)$, such that $\sum \lambda_{i}=n$.

$$
\operatorname{Irr}\left(S_{n}\right)=\left\{\chi^{\lambda} \mid \lambda \vdash n\right\}
$$

Notation: Let 1_{G} be the trivial character of G.

Question

What can we say about $\left(1_{P_{n}}\right) \uparrow^{S_{n}}$?
Can we determine its irreducible constituents?
A partition $\lambda \vdash n$ is a non-increasing finite sequence of positive integers $\lambda=\left(\lambda_{1}, \ldots, \lambda_{k}\right)$, such that $\sum \lambda_{i}=n$.

$$
\operatorname{Irr}\left(S_{n}\right)=\left\{\chi^{\lambda} \mid \lambda \vdash n\right\}
$$

Equivalent Question

Given $\lambda \vdash n$, is $1_{P_{n}}$ an irreducible constituent of $\left(\chi^{\lambda}\right) \downarrow_{P_{n}}$?

Theorem (G, Law; 2017)

Let p be an odd prime and let $n>10$ be a natural number. Then the trivial character $1_{P_{n}}$ is a constituent of $\left(\chi^{\lambda}\right) \downarrow_{P_{n}}$ for all $\lambda \vdash n$, unless $n=p^{k}$ and $\lambda \in\left\{\left(p^{k}-1,1\right),\left(2,1^{p^{k}-2}\right)\right\}$.

Theorem (G, Law; 2017)

Let p be an odd prime and let $n>10$ be a natural number. Then the trivial character $1_{P_{n}}$ is a constituent of $\left(\chi^{\lambda}\right) \downarrow_{P_{n}}$ for all $\lambda \vdash n$, unless $n=p^{k}$ and $\lambda \in\left\{\left(p^{k}-1,1\right),\left(2,1^{p^{k}-2}\right)\right\}$.

Some Corollaries and Remarks

Theorem (G, Law; 2017)

Let p be an odd prime and let $n>10$ be a natural number. Then the trivial character $1_{P_{n}}$ is a constituent of $\left(\chi^{\lambda}\right) \downarrow_{P_{n}}$ for all $\lambda \vdash n$, unless $n=p^{k}$ and $\lambda \in\left\{\left(p^{k}-1,1\right),\left(2,1^{p^{k}-2}\right)\right\}$.

Some Corollaries and Remarks

- We determine the number of irreducible representations of the corresponding Hecke Algebra $\mathcal{H}\left(S_{n}, P_{n}, 1_{P_{n}}\right)$.

Theorem (G, Law; 2017)

Let p be an odd prime and let $n>10$ be a natural number. Then the trivial character $1_{P_{n}}$ is a constituent of $\left(\chi^{\lambda}\right) \downarrow_{P_{n}}$ for all $\lambda \vdash n$, unless $n=p^{k}$ and $\lambda \in\left\{\left(p^{k}-1,1\right),\left(2,1^{p^{k}-2}\right)\right\}$.

Some Corollaries and Remarks

- We determine the number of irreducible representations of the corresponding Hecke Algebra $\mathcal{H}\left(S_{n}, P_{n}, 1_{P_{n}}\right)$.
- We obtain a similar characterization for Alternating groups.

Theorem (G, Law; 2017)

Let p be an odd prime and let $n>10$ be a natural number. Then the trivial character $1_{P_{n}}$ is a constituent of $\left(\chi^{\lambda}\right) \downarrow_{P_{n}}$ for all $\lambda \vdash n$, unless $n=p^{k}$ and $\lambda \in\left\{\left(p^{k}-1,1\right),\left(2,1^{p^{k}-2}\right)\right\}$.

Some Corollaries and Remarks

- We determine the number of irreducible representations of the corresponding Hecke Algebra $\mathcal{H}\left(S_{n}, P_{n}, 1_{P_{n}}\right)$.
- We obtain a similar characterization for Alternating groups.
- The situation is completely different, and more chaotic when $p=2$.

Thank you very much!!

