Invariants of Kazhdan–Lusztig cells

Edmund Howse

Department of Mathematics National University of Singapore

19.12.2017

Coxeter groups

Let $S = \{s_1, \ldots, s_n\}$ be a finite non-empty set, and let W be a group with presentation

$$W = \langle s_1, \dots, s_n : s_i^2 = e, (s_i s_j)^{m_{ij}} = e \rangle,$$

where $m_{ij} = m_{ji} \in \{2, 3, 4, ...\} \cup \{\infty\}$ if $i \neq j$.

Then we say that W is a Coxeter group with generating set S, and the ordered pair (W, S) is a Coxeter system.

Denote by $\ell: W \longrightarrow \mathbb{Z}_{\geqslant 0}$ the corresponding length function.

Coxeter groups

Let $S = \{s_1, \ldots, s_n\}$ be a finite non-empty set, and let W be a group with presentation

$$W = \langle s_1, \dots, s_n : s_i^2 = e, (s_i s_j)^{m_{ij}} = e \rangle,$$

where $m_{ij} = m_{ji} \in \{2, 3, 4, ...\} \cup \{\infty\}$ if $i \neq j$.

Then we say that W is a Coxeter group with generating set S, and the ordered pair (W, S) is a Coxeter system.

Denote by $\ell: W \longrightarrow \mathbb{Z}_{\geqslant 0}$ the corresponding length function.

A weight function is any map $\mathscr{L}: W \longrightarrow \mathbb{Z}$ such that:

$$\ell(yw) = \ell(y) + \ell(w) \ \Rightarrow \ \mathcal{L}(yw) = \mathcal{L}(y) + \mathcal{L}(w).$$

A weight function is determined by its values on S; we have

$$m_{ij}$$
 is odd $\Rightarrow \mathcal{L}(s_i) = \mathcal{L}(s_j)$.

Throughout this talk, we assume $\mathcal{L}(s) > 0$ for all $s \in S$.

Iwahori–Hecke algebras

The Iwahori–Hecke algebra $\mathcal{H} := \mathcal{H}(W, S, \mathcal{L})$ associated to a weighted Coxeter system is a deformation of the group algebra of W over $\mathcal{A} = \mathbb{Z}[v, v^{-1}]$. It is an associative unital \mathcal{A} -algebra, with:

- basis: $\{T_w : w \in W\},\$
- identity: T_e ,
- generators: $\{T_s : s \in S\},\$
- parameters: $\{v^{\mathcal{L}(s)} : s \in S\},\$
- relations:

$$T_s T_w = \begin{cases} T_{sw} & \text{if } \ell(sw) > \ell(w), \\ T_{sw} + (v^{\mathscr{L}(s)} - v^{-\mathscr{L}(s)}) T_w & \text{if } \ell(sw) < \ell(w). \end{cases}$$

Let \mathcal{K} be a the field of fractions of \mathcal{A} . If W is a finite Weyl group, then $\mathcal{K} \otimes_{\mathcal{A}} \mathcal{H}$ is split semisimple, and isomorphic to $\mathcal{K}[W]$.

The Kazhdan–Lusztig basis

There exists a 'new' basis for \mathcal{H} – the KL basis $\{C_w : w \in W\}$. Describing C_w in terms of the standard basis defines the Kazhdan–Lusztig polynomials $P_{y,w} \in \mathcal{A}$:

$$C_w = \sum_{y \in W} P_{y,w} T_y.$$

The Kazhdan–Lusztig basis

There exists a 'new' basis for \mathcal{H} – the KL basis $\{C_w : w \in W\}$. Describing C_w in terms of the standard basis defines the Kazhdan–Lusztig polynomials $P_{y,w} \in \mathcal{A}$:

$$C_w = \sum_{y \in W} P_{y,w} T_y.$$

The KL polynomials depend on \mathscr{L} . Suppose that $\mathscr{L} = \ell$. Then the coefficients of $P_{y,w}$ are all non-negative (Elias–Williamson, 2014).

The Kazhdan–Lusztig basis

There exists a 'new' basis for \mathcal{H} – the KL basis $\{C_w : w \in W\}$. Describing C_w in terms of the standard basis defines the Kazhdan–Lusztig polynomials $P_{y,w} \in \mathcal{A}$:

$$C_w = \sum_{y \in W} P_{y,w} T_y.$$

The KL polynomials depend on \mathcal{L} . Suppose that $\mathcal{L} = \ell$. Then the coefficients of $P_{u,w}$ are all non-negative (Elias-Williamson, 2014).

We have multiplication rules for the KL basis.

$$C_s C_w = \begin{cases} C_{sw} + \sum_{\substack{y: \substack{y < w \\ sy < y}}} M_{y,w}^s C_y & \text{if } \ell(sw) > \ell(w), \\ \left(v^{\mathcal{L}(s)} + v^{-\mathcal{L}(s)}\right) C_w & \text{if } \ell(sw) < \ell(w). \end{cases}$$

$$C_s C_w = \begin{cases} C_{sw} + \sum_{\substack{y \colon y < w \\ sy < y}} M_{y,w}^s C_y & \text{if } \ell(sw) > \ell(w), \\ \left(v^{\mathscr{L}(s)} + v^{-\mathscr{L}(s)}\right) C_w & \text{if } \ell(sw) < \ell(w). \end{cases}$$

The *left elementary* relation $\leq_{L,E}$ defined by

$$y \leqslant_{L,E} w$$
 if $\left\{ \begin{array}{l} \text{there exists some } s \in S \text{ such that} \\ C_y \text{ occurs in } C_s C_w \end{array} \right.$

can be extended to its reflexive, transitive closure – the Kazhdan–Lusztig preorder \leq_L .

$$C_s C_w = \begin{cases} C_{sw} + \sum_{\substack{y \colon y < w \\ sy < y}} M_{y,w}^s C_y & \text{if } \ell(sw) > \ell(w), \\ \left(v^{\mathscr{L}(s)} + v^{-\mathscr{L}(s)}\right) C_w & \text{if } \ell(sw) < \ell(w). \end{cases}$$

The left elementary relation $\leq_{L,E}$ defined by

$$y \leqslant_{L,E} w$$
 if $\left\{ \begin{array}{l} \text{there exists some } s \in S \text{ such that} \\ C_y \text{ occurs in } C_s C_w \end{array} \right.$

can be extended to its reflexive, transitive closure – the Kazhdan–Lusztig preorder \leq_L . The associated equivalence relation on W is denoted \sim_L , and is defined by

$$y \sim_L w \stackrel{\text{def.}}{\iff} y \leqslant_L w \text{ and } w \leqslant_L y.$$

The resulting equivalence classes are called left cells. As the M-polynomials depend on \mathcal{L} , so does the partition of W into cells.

$$C_s C_w = \begin{cases} C_{sw} + \sum_{\substack{y \colon y < w \\ sy < y}} M_{y,w}^s C_y & \text{if } \ell(sw) > \ell(w), \\ \left(v^{\mathscr{L}(s)} + v^{-\mathscr{L}(s)}\right) C_w & \text{if } \ell(sw) < \ell(w). \end{cases}$$

The *left elementary* relation $\leq_{L,E}$ defined by

$$y \leqslant_{L,E} w$$
 if $\left\{ \begin{array}{l} \text{there exists some } s \in S \text{ such that} \\ C_y \text{ occurs in } C_s C_w \end{array} \right.$

can be extended to its reflexive, transitive closure – the Kazhdan–Lusztig preorder \leq_L . The associated equivalence relation on W is denoted \sim_L , and is defined by

$$y \sim_L w \stackrel{\text{def.}}{\Longleftrightarrow} y \leqslant_L w \text{ and } w \leqslant_L y.$$

The resulting equivalence classes are called left cells. As the M-polynomials depend on \mathcal{L} , so does the partition of W into cells.

An analogous preorder \leq_R and equivalence relation \sim_R exist, with equivalence classes called right cells.

Finally, the two-sided preorder \leq_{LR} arising from the relation

$$y \leqslant_{LR,E} w \stackrel{\text{def.}}{\Longleftrightarrow} y \leqslant_{L,E} w \text{ or } y \leqslant_{R,E} w$$

leads to the relation \sim_{LR} and equivalence classes called two-sided cells.

Finally, the two-sided preorder \leq_{LR} arising from the relation

$$y \leqslant_{LR,E} w \ \ \stackrel{\mathrm{def.}}{\Longleftrightarrow} \ \ y \leqslant_{L,E} w \ \ \mathrm{or} \ \ y \leqslant_{R,E} w$$

leads to the relation \sim_{LR} and equivalence classes called two-sided cells.

- $y \sim_L w \iff y^{-1} \sim_R w^{-1}$.
- The relation \sim_{LR} contains the relations \sim_{L} and \sim_{R} , and so two-sided cells are unions of both left and right cells.

Finally, the two-sided preorder \leq_{LR} arising from the relation

$$y \leqslant_{LR,E} w \ \ \stackrel{\text{def.}}{\Longleftrightarrow} \ \ y \leqslant_{L,E} w \ \ \text{or} \ \ y \leqslant_{R,E} w$$

leads to the relation \sim_{LR} and equivalence classes called two-sided cells.

- $y \sim_L w \iff y^{-1} \sim_R w^{-1}$.
- The relation \sim_{LR} contains the relations \sim_{L} and \sim_{R} , and so two-sided cells are unions of both left and right cells.

Let $\Gamma \subseteq W$ be a left cell, and $w \in \Gamma$. Then

$$I_{\leqslant}^{\Gamma} := \langle C_z : z \leqslant_L w \rangle_{\mathcal{A}}$$

$$I_{\leqslant}^{\Gamma} := \langle C_z : z \leqslant_L w, z \nsim_L w \rangle_{\mathcal{A}}$$

are two left ideals of $\mathcal{H},$ and $[\Gamma] := I_{\leqslant}^{\Gamma}/I_{<}^{\Gamma}$ is a \mathcal{H} -module.

So, $[\Gamma]_{\mathcal{K}} := \mathcal{K} \otimes_{\mathcal{A}} [\Gamma]$ is a $\mathcal{K} \otimes_{\mathcal{A}} \mathcal{H}$ -module.

Cells of the symmetric group

For each $w \in \mathfrak{S}_n$, we may associate a pair of standard tableaux (P(w), Q(w)), both of shape $\operatorname{sh}(w)$ via the Robinson–Schensted correspondence.

Cells of the symmetric group

$$\mathfrak{S}_n \cong W(A_{n-1}) \qquad \begin{array}{c} s_1 & s_2 \\ \bullet & \bullet \end{array} \dots \dots \dots$$

For each $w \in \mathfrak{S}_n$, we may associate a pair of standard tableaux (P(w), Q(w)), both of shape $\operatorname{sh}(w)$ via the Robinson–Schensted correspondence.

Theorem (Kazhdan–Lusztig, 1979)

Let \mathcal{H} be the Iwahori–Hecke algebra of \mathfrak{S}_n , and let $y, w \in \mathfrak{S}_n$.

- $y \sim_L w \iff Q(y) = Q(w) \iff y \approx_\tau w$.
- $y \sim_R w \iff P(y) = P(w) \iff y \stackrel{*}{\longleftrightarrow} w$.
- $y \sim_{LR} w \iff \operatorname{sh}(y) = \operatorname{sh}(w)$.
- Every left cell module is irreducible.
- ullet Every irreducible \mathcal{H} -module is isomorphic to a left cell module.
- $[\Gamma] \cong [\Gamma']$ if and only if Γ , Γ' lie in the same two-sided cell.
- $\mathcal{K} \otimes_{\mathcal{A}} \mathcal{H} \cong \bigoplus_{\Gamma \subseteq \mathfrak{S}_n} [\Gamma]_{\mathcal{K}}.$

$$W_n := W(B_n) \quad \stackrel{t}{\bullet} \quad \stackrel{s_1}{\bullet} \quad \stackrel{s_2}{\bullet} \quad \dots \quad \stackrel{s_{n-1}}{\bullet}$$

Let $\mathscr{L}: W_n \longrightarrow \mathbb{Z}$ be a weight function; it suffices to describe its values on S, so denote $b := \mathscr{L}(t)$, $a := \mathscr{L}(s_i)$.

$$W_n := W(B_n) \quad \stackrel{t}{\bullet} \quad \stackrel{s_1}{\bullet} \quad \stackrel{s_2}{\bullet} \quad \dots \quad \stackrel{s_{n-1}}{\bullet}$$

Let $\mathscr{L}: W_n \longrightarrow \mathbb{Z}$ be a weight function; it suffices to describe its values on S, so denote $b := \mathscr{L}(t), a := \mathscr{L}(s_i)$.

• The resulting partition of W_n into Kazhdan–Lusztig cells depends only on the value b/a.

$$W_n := W(B_n) \quad \stackrel{t}{\bullet} \quad \stackrel{s_1}{\bullet} \quad \stackrel{s_2}{\bullet} \quad \dots \quad \stackrel{s_{n-1}}{\bullet}$$

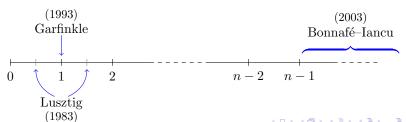
Let $\mathscr{L}: W_n \longrightarrow \mathbb{Z}$ be a weight function; it suffices to describe its values on S, so denote $b := \mathscr{L}(t), a := \mathscr{L}(s_i)$.

- The resulting partition of W_n into Kazhdan–Lusztig cells depends only on the value b/a.
- The cells of W_n are independent of the exact value of b/a provided it is sufficiently large (with respect to n); this situation is known as the 'asymptotic case', and occurs precisely when b/a > n-1.

$$W_n := W(B_n) \quad \stackrel{t}{\bullet} \quad \stackrel{s_1}{\bullet} \quad \stackrel{s_2}{\bullet} \quad \dots \quad \stackrel{s_{n-1}}{\bullet}$$

Let $\mathcal{L}: W_n \longrightarrow \mathbb{Z}$ be a weight function; it suffices to describe its values on S, so denote $b := \mathcal{L}(t)$, $a := \mathcal{L}(s_i)$.

- The resulting partition of W_n into Kazhdan-Lusztig cells depends only on the value b/a.
- The cells of W_n are independent of the exact value of b/a provided it is sufficiently large (with respect to n); this situation is known as the 'asymptotic case', and occurs precisely when b/a > n-1.
- We know the cells for W_n with respect to \mathcal{L} if b/a is equal to...



For each $w \in W_n$, we may associate a pair of standard bitableaux (A(w), B(w)), both of shape $\operatorname{sh}(w)$, via a generalised Robinson–Schensted correspondence.

Let \mathcal{H} be the Iwahori–Hecke algebra of (W_n, S, \mathcal{L}) , and let $y, w \in W_n$.

For each $w \in W_n$, we may associate a pair of standard bitableaux (A(w), B(w)), both of shape $\operatorname{sh}(w)$, via a generalised Robinson–Schensted correspondence.

Let \mathcal{H} be the Iwahori–Hecke algebra of (W_n, S, \mathcal{L}) , and let $y, w \in W_n$.

Theorem (Bonnafé-Iancu, Bonnafé, 2003)

 \mathcal{L} is an asymptotic weight function if and only if b/a > n-1. Suppose that we are in the asymptotic case. Then:

- $y \sim_L w \iff B(y) = B(w)$.
- $y \sim_R w \iff A(y) = A(w)$.
- $y \sim_{LR} w \iff \operatorname{sh}(y) = \operatorname{sh}(w)$.
- Every left cell module is irreducible.
- \bullet Every irreducible \mathcal{H} -module is isomorphic to a left cell module.
- $[\Gamma] \cong [\Gamma']$ if and only if Γ , Γ' lie in the same two-sided cell.
- $\mathcal{K} \otimes_{\mathcal{A}} \mathcal{H} \cong \bigoplus_{\Gamma \subset W_n} [\Gamma]_{\mathcal{K}}.$

"The problem seems to have two parts: the use of algebraic methods to reduce to questions about Weyl groups, and then combinatorics to study these questions." - Vogan

Let (W, S, \mathcal{L}) be an arbitrary weighted Coxeter system, and let the right descent set of $w \in W$ be $\mathcal{R}(w) := \{ s \in S : \ell(ws) < \ell(w) \}$. Then $y \sim_L w \Rightarrow \mathcal{R}(y) = \mathcal{R}(w)$.

$$W \ = \ \bigsqcup_{I \subseteq S} \ \big\{ \, w \in W \, : \, \mathcal{R}(w) = I \, \big\}.$$

"The problem seems to have two parts: the use of algebraic methods to reduce to questions about Weyl groups, and then combinatorics to study these questions." - Vogan

Let (W, S, \mathcal{L}) be an arbitrary weighted Coxeter system, and let the right descent set of $w \in W$ be $\mathcal{R}(w) := \{ s \in S : \ell(ws) < \ell(w) \}$. Then $y \sim_L w \Rightarrow \mathcal{R}(y) = \mathcal{R}(w)$.

$$W = \bigsqcup_{I \subseteq S} \{ w \in W : \mathcal{R}(w) = I \}.$$

Bonnafé–Geck generalise this as follows.

Let
$$S^{\mathscr{L}} := S \cup \{ sts : \mathscr{L}(t) > \mathscr{L}(s) \},$$

$$\mathcal{R}^{\mathscr{L}}(w) := \{ \sigma \in S^{\mathscr{L}} : \ell(w\sigma) < \ell(w) \}.$$

Then $y \sim_L w \Rightarrow \mathcal{R}^{\mathscr{L}}(y) = \mathcal{R}^{\mathscr{L}}(w)$. If W is of type $I_2(m)$, then the converse holds too.

Let
$$\overline{S}^{\mathscr{L}} := S \cup \left\{ s_k \cdots s_1 t s_1 \cdots s_k : \begin{array}{l} \mathscr{L}(t) > k \cdot \mathscr{L}(s_i) \text{ and} \\ m_{i,i+1} = 3 \text{ for } 1 \leqslant i \leqslant k-1 \end{array} \right\},$$

$$\overline{\mathcal{R}}^{\mathscr{L}}(w) := \left\{ \sigma \in \overline{S}^{\mathscr{L}} : \ell(w\sigma) < \ell(w) \right\}.$$

Proposition (H., 2017)

- Let (W, S, \mathcal{L}) be a finite weighted Coxeter system. Then $y \sim_L w \Rightarrow \overline{\mathcal{R}}^{\mathcal{L}}(y) = \overline{\mathcal{R}}^{\mathcal{L}}(w)$.
- Consider (W_n, S, \mathcal{L}) with $b/a \in (k, k+1] \subseteq (1, n]$, with $k \in \mathbb{Z}$. Then $\overline{\mathcal{R}}^{\mathcal{L}}$ partitions W_n into $2^{n-k} \cdot 3^k$ non-empty subsets.

Let
$$\overline{S}^{\mathscr{L}} := S \cup \left\{ s_k \cdots s_1 t s_1 \cdots s_k : \begin{array}{l} \mathscr{L}(t) > k \cdot \mathscr{L}(s_i) \text{ and} \\ m_{i,i+1} = 3 \text{ for } 1 \leqslant i \leqslant k-1 \end{array} \right\},$$

 $\overline{\mathcal{R}}^{\mathscr{L}}(w) := \left\{ \sigma \in \overline{S}^{\mathscr{L}} : \ell(w\sigma) < \ell(w) \right\}.$

Proposition (H., 2017)

- Let (W, S, \mathcal{L}) be a finite weighted Coxeter system. Then $y \sim_L w \Rightarrow \overline{\mathcal{R}}^{\mathcal{L}}(y) = \overline{\mathcal{R}}^{\mathcal{L}}(w)$.
- Consider (W_n, S, \mathcal{L}) with $b/a \in (k, k+1] \subseteq (1, n]$, with $k \in \mathbb{Z}$. Then $\overline{\mathcal{R}}^{\mathcal{L}}$ partitions W_n into $2^{n-k} \cdot 3^k$ non-empty subsets.

Suppose that we are in the asymptotic case; that is, b/a > n-1.

	W_3	W_4	W_5	W_6	W_7
\mathcal{R}	8	16	32	64	128
$\overline{\mathcal{R}}^{\mathscr{L}}$	18	54	162	486	1456
cells	20	76	312	1384	6512

Parabolic subgroups

Consider (W, S, \mathcal{L}) and let $I \subseteq S$ be non-empty. Then $W_I := \langle I \rangle$ is a subgroup called a parabolic subgroup. Aspects of its structure can be realised in the group W, for instance, the Kazhdan–Lusztig cells of W_I (with respect to the weight function $\mathcal{L}|_{W_I}$).

If $\varphi: W_I \longrightarrow W_I$ is any map, then φ (left) extends to a map $\varphi^L: W \longrightarrow W$ in a natural way.

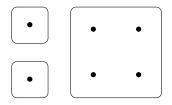
Consider some (W, S, \mathcal{L}) and let $I = \{s_i, s_j\} \subseteq S$ with $m_{ij} = 3$. The parabolic subgroup $W_I \cong \mathfrak{S}_3$ has six elements.

Consider some (W, S, \mathcal{L}) and let $I = \{s_i, s_j\} \subseteq S$ with $m_{ij} = 3$. The parabolic subgroup $W_I \cong \mathfrak{S}_3$ has six elements.

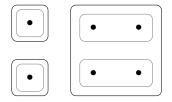
• • •

• • •

Consider some (W, S, \mathcal{L}) and let $I = \{s_i, s_j\} \subseteq S$ with $m_{ij} = 3$. The parabolic subgroup $W_I \cong \mathfrak{S}_3$ has six elements.



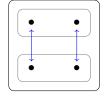
Consider some (W, S, \mathcal{L}) and let $I = \{s_i, s_j\} \subseteq S$ with $m_{ij} = 3$. The parabolic subgroup $W_I \cong \mathfrak{S}_3$ has six elements.



Consider some (W, S, \mathcal{L}) and let $I = \{s_i, s_j\} \subseteq S$ with $m_{ij} = 3$.

The parabolic subgroup $W_I \cong \mathfrak{S}_3$ has six elements.

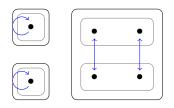
Define $\sigma: W_I \longrightarrow W_I$ by:



Consider some (W, S, \mathcal{L}) and let $I = \{s_i, s_j\} \subseteq S$ with $m_{ij} = 3$.

The parabolic subgroup $W_I \cong \mathfrak{S}_3$ has six elements.

Define $\sigma: W_I \longrightarrow W_I$ by:



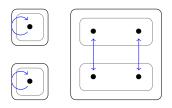
Note that $\sigma: W_I \longrightarrow W_I$ has the following properties:

- Γ is a left cell of $W_I \iff \sigma(\Gamma)$ is a left cell of W_I .
- $u \sim_{R,I} \sigma(u) \quad \forall u \in W_I$.

Consider some (W, S, \mathcal{L}) and let $I = \{s_i, s_j\} \subseteq S$ with $m_{ij} = 3$.

The parabolic subgroup $W_I \cong \mathfrak{S}_3$ has six elements.

Define $\sigma: W_I \longrightarrow W_I$ by:



Note that $\sigma: W_I \longrightarrow W_I$ has the following properties:

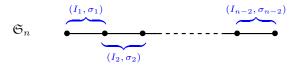
- Γ is a left cell of $W_I \iff \sigma(\Gamma)$ is a left cell of W_I .
- $u \sim_{R,I} \sigma(u) \quad \forall u \in W_I.$

It can be seen that the map $\sigma^L: W \longrightarrow W$ is such that:

- Γ is a left cell of $W \iff \sigma^L(\Gamma)$ is a left cell of W.
- $w \sim_R \sigma^L(w) \quad \forall w \in W$.

The map σ^L is a *-operation for W (Vogan, Kazhdan-Lusztig).

Generalised τ -invariant



For (W, S, \mathcal{L}) , these involutive maps σ^L permute the elements of W, so $\mathcal{P}(*) := \langle \sigma^L : \sigma^L \text{ is a *-operation for } W \rangle$ is a permutation group.

The *-operations, together with \mathcal{R} , are used to define the generalised τ -invariant (Vogan, 1979).

Generalised τ -invariant

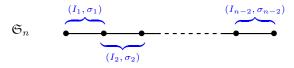


For (W, S, \mathcal{L}) , these involutive maps σ^L permute the elements of W, so $\mathcal{P}(*) := \langle \sigma^L : \sigma^L \text{ is a *-operation for } W \rangle$ is a permutation group.

The *-operations, together with \mathcal{R} , are used to define the generalised τ -invariant (Vogan, 1979).

• Let $y, w \in W$. If $\mathcal{R}(y) = \mathcal{R}(w)$, continue.

Generalised τ -invariant

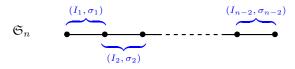


For (W, S, \mathcal{L}) , these involutive maps σ^L permute the elements of W, so $\mathcal{P}(*) := \langle \sigma^L : \sigma^L \text{ is a *-operation for } W \rangle$ is a permutation group.

The *-operations, together with \mathcal{R} , are used to define the generalised τ -invariant (Vogan, 1979).

- Let $y, w \in W$. If $\mathcal{R}(y) = \mathcal{R}(w)$, continue.
- Apply a *-operation σ^L to y and w. If $\mathcal{R}(\sigma^L(y)) = \mathcal{R}(\sigma^L(w))$, continue.

Generalised τ -invariant

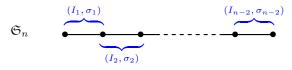


For (W, S, \mathcal{L}) , these involutive maps σ^L permute the elements of W, so $\mathcal{P}(*) := \langle \sigma^L : \sigma^L \text{ is a *-operation for } W \rangle$ is a permutation group.

The *-operations, together with \mathcal{R} , are used to define the generalised τ -invariant (Vogan, 1979).

- Let $y, w \in W$. If $\mathcal{R}(y) = \mathcal{R}(w)$, continue.
- Apply a *-operation σ^L to y and w. If $\mathcal{R}(\sigma^L(y)) = \mathcal{R}(\sigma^L(w))$, continue.
- If $\mathcal{R}(\nu(y)) = \mathcal{R}(\nu(w))$ for all $\nu \in \mathcal{P}(*)$, then we write $y \approx_{\tau} w$, and say that y and w have the same generalised τ -invariant.

Generalised τ -invariant



For (W, S, \mathcal{L}) , these involutive maps σ^L permute the elements of W, so $\mathcal{P}(*) := \langle \sigma^L : \sigma^L \text{ is a *-operation for } W \rangle$ is a permutation group.

The *-operations, together with \mathcal{R} , are used to define the generalised τ -invariant (Vogan, 1979).

- Let $y, w \in W$. If $\mathcal{R}(y) = \mathcal{R}(w)$, continue.
- Apply a *-operation σ^L to y and w. If $\mathcal{R}(\sigma^L(y)) = \mathcal{R}(\sigma^L(w))$, continue.
- If $\mathcal{R}(\nu(y)) = \mathcal{R}(\nu(w))$ for all $\nu \in \mathcal{P}(*)$, then we write $y \approx_{\tau} w$, and say that y and w have the same generalised τ -invariant.
- $y \sim_L w \Rightarrow y \approx_{\tau} w$.

KL-admissible pairs

Let $I \subseteq S$ and $\delta: W_I \longrightarrow W_I$ be such that the following are satisfied:

- (A1) If $\Gamma \subseteq W_I$ is a left cell, then so is $\delta(\Gamma)$.
- (A2) The map δ induces a \mathcal{H}_I -module isomorphism $[\Gamma] \cong [\delta(\Gamma)]$.
- (A3) We have $u \sim_{R,I} \delta(u)$ for all $u \in W_I$.

Then the pair (I, δ) is called a strongly KL-admissible pair.

KL-admissible pairs

Let $I \subseteq S$ and $\delta: W_I \longrightarrow W_I$ be such that the following are satisfied:

- (A1) If $\Gamma \subseteq W_I$ is a left cell, then so is $\delta(\Gamma)$.
- (A2) The map δ induces a \mathcal{H}_I -module isomorphism $[\Gamma] \cong [\delta(\Gamma)]$.
- (A3) We have $u \sim_{R,I} \delta(u)$ for all $u \in W_I$.

Then the pair (I, δ) is called a *strongly KL-admissible pair*.

Theorem (Bonnafé–Geck, 2015)

Let (I, δ) be a strongly KL-admissible pair. Then (S, δ^L) is a strongly KL-admissible pair.

KL-admissible pairs

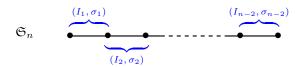
Let $I \subseteq S$ and $\delta: W_I \longrightarrow W_I$ be such that the following are satisfied:

- (A1) If $\Gamma \subseteq W_I$ is a left cell, then so is $\delta(\Gamma)$.
- (A2) The map δ induces a \mathcal{H}_I -module isomorphism $[\Gamma] \cong [\delta(\Gamma)]$.
- (A3) We have $u \sim_{R,I} \delta(u)$ for all $u \in W_I$.

Then the pair (I, δ) is called a *strongly KL-admissible pair*.

Theorem (Bonnafé-Geck, 2015)

Let (I, δ) be a strongly KL-admissible pair. Then (S, δ^L) is a strongly KL-admissible pair.



Vogan classes

Consider a weighted Coxeter system $(W,S,\mathcal{L}),$ and let:

- Δ be a collection of strongly KL-admissible pairs for (W, S, \mathcal{L}) ,
- ρ be an invariant of the left cells of W,
- $\bullet \ \mathcal{P}(\Delta) := \langle \, \delta^L \, : \, (I, \delta) \in \Delta \, \rangle.$

We say that $y, w \in W$ are in the same left Vogan (Δ, ρ) -class if:

$$\rho(\nu(y)) = \rho(\nu(w)) \quad \forall \nu \in \mathcal{P}(\Delta).$$

Vogan classes

Consider a weighted Coxeter system (W, S, \mathcal{L}) , and let:

- Δ be a collection of strongly KL-admissible pairs for (W, S, \mathcal{L}) ,
- ρ be an invariant of the left cells of W,
- $\bullet \ \mathcal{P}(\Delta) := \langle \, \delta^L \, : \, (I, \delta) \in \Delta \, \rangle.$

We say that $y, w \in W$ are in the same left Vogan (Δ, ρ) -class if:

$$\rho(\nu(y)) = \rho(\nu(w)) \qquad \forall \nu \in \mathcal{P}(\Delta).$$

Theorem (Bonnafé-Geck, 2015)

If $y \sim_L w$ then $y \approx^{\Delta, \rho} w$.

Vogan classes

Consider a weighted Coxeter system (W, S, \mathcal{L}) , and let:

- Δ be a collection of strongly KL-admissible pairs for (W, S, \mathcal{L}) ,
- ρ be an invariant of the left cells of W,
- $\bullet \ \mathcal{P}(\Delta) := \langle \, \delta^L \, : \, (I, \delta) \in \Delta \, \rangle.$

We say that $y, w \in W$ are in the same left Vogan (Δ, ρ) -class if:

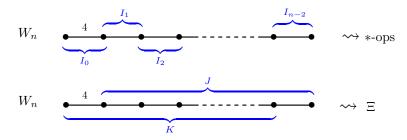
$$\rho(\nu(y)) = \rho(\nu(w)) \qquad \forall \nu \in \mathcal{P}(\Delta).$$

Theorem (Bonnafé–Geck, 2015)

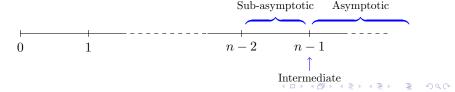
If $y \sim_L w$ then $y \approx^{\Delta, \rho} w$.

Write $y \stackrel{\Delta}{\longleftrightarrow} w$ if $w = \nu(y)$ for some $\nu \in \mathcal{P}(\Delta)$, and say that y and w lie in the same Δ -orbit. Then we have

- $y \stackrel{\Delta}{\longleftrightarrow} w \Rightarrow y \sim_R w$ and $y \sim_L w \iff y^{-1} \sim_R w^{-1}$, so:
- $y^{-1} \stackrel{\Delta}{\longleftrightarrow} w^{-1} \Rightarrow y \sim_L w \Rightarrow y \approx^{\Delta, \rho} w$.



We have $W_K = W_{n-1}$ and $W_J \cong \mathfrak{S}_n$. The cells of \mathfrak{S}_n are understood. If b/a > n-2, then we are in the asymptotic case for W_K , and its cells are known as well. **From now on, we assume** b/a > n-2, putting us in one of the following cases:

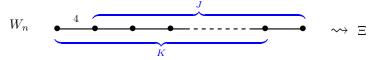


Let (I, δ) be a strongly KL-admissible pair. We say that (I, δ) is maximally KL-admissible if it additionally satisfies the condition:

(A4) If $u \sim_{R,I} v$, then $\exists k \in \mathbb{Z}_{\geqslant 0}$ such that $u = \delta^k(v)$.

Let (I, δ) be a strongly KL-admissible pair. We say that (I, δ) is maximally KL-admissible if it additionally satisfies the condition:

(A4) If $u \sim_{R,I} v$, then $\exists k \in \mathbb{Z}_{\geqslant 0}$ such that $u = \delta^k(v)$.

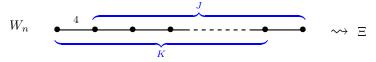


There exist maps $\varepsilon: W_J \longrightarrow W_J$ and $\psi: W_K \longrightarrow W_K$ such that both (J, ε) and (K, ψ) are maximally KL-admissible pairs.

Set
$$\Xi := \{(J, \varepsilon), (K, \psi)\}$$
 and $\mathcal{P}(\Xi) := \langle \varepsilon^L, \psi^L \rangle$.

Let (I, δ) be a strongly KL-admissible pair. We say that (I, δ) is maximally KL-admissible if it additionally satisfies the condition:

(A4) If $u \sim_{R,I} v$, then $\exists k \in \mathbb{Z}_{\geq 0}$ such that $u = \delta^k(v)$.

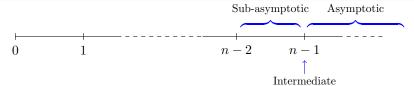


There exist maps $\varepsilon: W_J \longrightarrow W_J$ and $\psi: W_K \longrightarrow W_K$ such that both (J, ε) and (K, ψ) are maximally KL-admissible pairs.

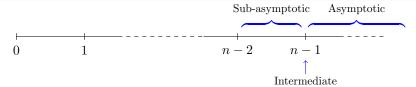
Set
$$\Xi := \{(J, \varepsilon), (K, \psi)\}$$
 and $\mathcal{P}(\Xi) := \langle \varepsilon^L, \psi^L \rangle$.

Proposition (H., 2017)

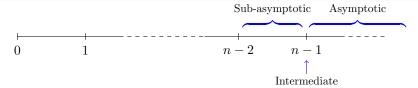
- The group $\mathcal{P}(\Xi)$ is independent of the choices made during the construction of the maps ε and ψ .
 - Therefore, the left Vogan (Ξ, ρ) -classes are well-defined.
- We have $\mathcal{P}(\Delta) \leqslant \mathcal{P}(\Xi)$. Therefore, for all $y, w \in W_n$, we have $y \approx^{\Xi, \rho} w \Rightarrow y \approx^{\Delta, \rho} w$.



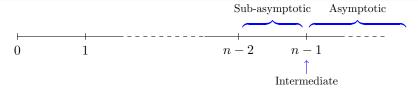
W_3	W_4	W_5	W_6	W_7



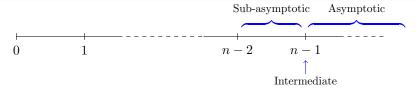
	W_3	W_4	W_5	W_6	W_7
cells $b/a = n - 1$	16	68	296	1352	6448



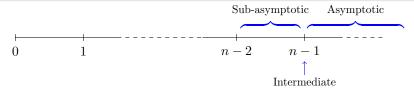
	W_3	W_4	W_5	W_6	W_7
cells $b/a = n - 1$	16	68	296	1352	6448
cells $b/a = n - 1$ cells $b/a > n - 1$	20	76	312	1384	6512



	W_3	W_4	W_5	W_6	W_7
cells $b/a = n - 1$	16	68	296	1352	6448
cells $b/a > n-1$	20	76	312	1384	6512
orbits of $\mathcal{P}(\Xi)$	26	90	342	1446	6638



	W_3	W_4	W_5	W_6	W_7
cells $b/a = n - 1$	16	68	296	1352	6448
cells $b/a > n-1$	20	76	312	1384	6512
orbits of $\mathcal{P}(\Xi)$	26	90	342	1446	6638
orbits of $\mathcal{P}(*)$	26	118	602	3334	20064



Orbits of $\mathcal{P}(\Xi)$ partition W_n ; right cells of W_n are unions of Ξ -orbits.

	W_3	W_4	W_5	W_6	W_7
cells $b/a = n - 1$	16	68	296	1352	6448
cells $b/a > n-1$	20	76	312	1384	6512
orbits of $\mathcal{P}(\Xi)$	26	90	342	1446	6638
orbits of $\mathcal{P}(*)$	26	118	602	3334	20064

Theorem (H., 2017)

Consider (W_n, S, \mathcal{L}) with $b/a \ge n-1$. Then:

$$y \sim_L w \iff y \approx^{\Xi, \overline{\mathcal{R}}^{\mathscr{L}}} u$$

Thank you for your attention!