Decomposable Specht modules

Liron Speyer

University of Virginia Charlottesville, VA 22904 USA 1.speyer@virginia.edu

Abstract

I will give a brief survey of the study of decomposable Specht modules for the symmetric group and its Hecke algebra, which includes results of Murphy, Dodge and Fayers, and myself. I will then report on an ongoing project with Louise Sutton, in which we are studying decomposable Specht modules for the Hecke algebra of type B indexed by 'bihooks'.

1 Decomposable Specht modules in level 1

Let \mathbb{F} be a field of characteristic $p \ge 0$ throughout.

The Specht modules $\{S^{\lambda} \mid \lambda \vdash n\}$ over \mathfrak{S}_n are the ordinary irreducible \mathfrak{S}_n -modules, indexed by partitions λ of n.

We have the following fundamental fact about Specht modules.

Theorem 1.1 [9, Corollary 13.18]. If $p \neq 2$ or λ is 2-regular, then S^{λ} is indecomposable.

When p = 2 and λ is 2-singular, it is a difficult problem to determine whether or not S^{λ} is decomposable. However, some special cases are very tractable.

Theorem 1.2 [11, Theorems 4.1 and 4.5]. Let $\lambda = (a, 1^b)$, with a + b = n. If n is even, then S^{λ} is indecomposable.

If n is odd and $n \ge 2b$, then S^{λ} is indecomposable if and only if $a-b-1 \equiv 0 \pmod{2^L}$, where $2^{L-1} \le b < 2^L$.

Given that S^{λ} is decomposable if and only if $S^{\lambda'}$ is, where λ' is the conjugate of λ , the restriction that $a \ge b$ is in fact not a problem, and Murphy's result gives a complete classification of which Specht modules indexed by hook partitions are decomposable.

Note that as n gets larger, so does the proportion of Specht modules indexed by hook partitions which are decomposable.

Example. Let n = 13. Then we have the following (and their conjugates).

λ	S^{λ} is
(13)	indecomposable
(12, 1)	indecomposable
$(11, 1^2)$	indecomposable
$(10, 1^3)$	decomposable
$(9, 1^4)$	decomposable
$(8, 1^5)$	decomposable
$(7, 1^6)$	indecomposable

Similarly, when n = 21, only 5 of the 17 interesting Specht modules are indecomposable.

30 years later, Dodge and Fayers found the first new examples of decomposable Specht modules since Murphy:

Theorem 1.3 [7, **Theorem 3.1**]. Suppose $\lambda = (a, 3, 1^b)$ with $a \ge 4$ and $b \ge 2$. Then S^{λ} is decomposable if at least one of the following holds:

- $a + b \equiv 0 \text{ or } 2 \pmod{8}, a \ge 6 \text{ and } b \ge 4;$
- $a + b \equiv 2 \pmod{4}$ and $\binom{a+b-3}{a-3}$ is odd;
- $a+b \equiv 0 \pmod{4}$ and $\binom{a+b-9}{a-5}$ is odd.

A natural generalisation of this problem is to instead consider Specht modules over the Iwahori–Hecke algebra of the symmetric group. This is the unital, associative \mathbb{F} -algebra \mathscr{H}_n with generators $T_1, T_2, \ldots, T_{n-1}$ and relations

$$\begin{aligned} (T_i - q)(T_i + 1) &= 0 & \text{for all } i, \\ T_i T_j &= T_j T_i & \text{for } |i - j| > 1, \\ T_i T_{i+1} T_i &= T_{i+1} T_i T_{i+1} & \text{for } 0 \leqslant i \leqslant n - 2, \end{aligned}$$

where $q \in \mathbb{F}$ is a primitive *e*th root of unity.

Now the Specht modules $\{S^{\lambda} \mid \lambda \vdash n\}$ over \mathscr{H}_n are the ordinary irreducible \mathscr{H}_n -modules, indexed by partitions λ of n.

As for symmetric groups, we have (following [5, Theorem 3.5]) that S^{λ} is decomposable if and only if $S^{\lambda'}$ is and:

Theorem 1.4 [6, Corollary 8.7]. If $e \neq 2$ or λ is 2-regular, then S^{λ} is indecomposable.

Once again, when e = 2 (i.e. q = -1), and λ is 2-singular, it is difficult to determine whether or not S^{λ} is decomposable.

Shortly after Dodge and Fayers obtained their results, we extended Murphy's result to \mathscr{H}_n .

Theorem 1.5 [13, Theorem 6.12]. Suppose $p \neq 2$ and $\lambda = (a, 1^b)$. Then S^{λ} is indecomposable if and only if n is even or b = 2 or 3 with $p \mid \lfloor \frac{a}{2} \rfloor$.

2 KLR algebras

We may further generalise our setting to cyclotomic Hecke algebras, deformations of the complex reflection groups $G(l, 1, n) = \mathbb{Z}/l\mathbb{Z} \wr \mathfrak{S}_n$. For our purposes, the following theorem of Brundan and Kleshchev will provide the perspective we take in looking for decomposable Specht modules.

Theorem 2.1 [3, Main Theorem]. The (integral) cyclotomic Hecke algebra in quantum characteristic $e \ge 2$ is isomorphic to a level l cyclotomic Khovanov–Lauda–Rouquier algebra \mathscr{R}^{Λ}_n of type $A^{(1)}_{e-1}$ if $e < \infty$, or A_{∞} if $e = \infty$ (i.e. corresponding to dominant weight $\Lambda = \Lambda_{\kappa_1} + \Lambda_{\kappa_2} + \cdots + \Lambda_{\kappa_l}$).

The cyclotomic KLR algebra \mathscr{R}_n^{Λ} is a unital, associative \mathbb{F} -algebra with generators

 $\{e(i) \mid i \in (\mathbb{Z}/e\mathbb{Z})^n\} \cup \{y_1, y_2, \dots, y_n\} \cup \{\psi_1, \psi_2, \dots, \psi_{n-1}\}$

subject to a long list of relations. This algebra is naturally \mathbb{Z} -graded, which leads us to studying the graded representation theory of cyclotomic Hecke algebras.

2.1 Specht modules over \mathscr{R}_n^{Λ}

There is a theory of Specht modules over cyclotomic Hecke algebras which naturally lead to Specht modules over \mathscr{R}_n^{Λ} , which are the ordinary irreducibles. In fact, we recently constructed an analogous Specht module theory for \mathscr{R}_n^{Λ} in type C in [2]. We are mostly interested in the non-semisimple story.

Theorem 2.2. Let $\alpha_{i,n}^{\vee} = \alpha_i^{\vee} + \alpha_{i+1}^{\vee} + \cdots + \alpha_{i+n-1}^{\vee}$.

[1]In type $A_{e-1}^{(1)}$ or A_{∞} , \mathscr{R}_n^{Λ} is semisimple if and only if e > n and $\langle \Lambda, \alpha_{i,n}^{\vee} \rangle \leq 1$ for all $i \in \mathbb{Z}/e\mathbb{Z}$.

[14, Theorem 1.1] In type $C_{e-1}^{(1)}$ or C_{∞} , $\mathscr{R}_{n}^{\Lambda}$ is semisimple if and only if $\langle \Lambda, \alpha_{i,n}^{\vee} \rangle \leq 1$ for all $i \in \mathbb{Z}/e\mathbb{Z}$ and $\frac{n-1}{2} \leq \overline{\kappa_{j}} \leq e - \frac{n+1}{2}$ for all $1 \leq j \leq l$.

Let $\lambda = (\lambda^{(1)}, \lambda^{(2)}, \dots, \lambda^{(l)})$ be an *l*-multipartition of *n* and let T^{λ} denote the *column initial* λ -tableau, and denote by i^{λ} its residue sequence modulo *e*.

Example. Let $\lambda = ((4, 3), (3, 2, 1))$. Then

$$\mathbf{T}^{\lambda} = \boxed{\begin{array}{c} 7 & 9 & 11 & 13 \\ 8 & 10 & 12 \end{array}} \\ \hline \begin{array}{c} 1 & 4 & 6 \\ 2 & 5 \\ 3 \end{array}$$

For a λ -tableau T, define the permutation w^{T} to be the permutation satisfying $w^{T}T^{\lambda} = T$.

Following [10], the Specht module S^{λ} is the cyclic \mathscr{R}_n^{Λ} -module with homogeneous generator z^{λ} subject to the following relations.

1.
$$e(i)z^{\lambda} = \delta_{i,i^{\lambda}}z^{\lambda};$$

2.
$$y_r z^{\lambda} = 0$$
 for all r ;

- 3. $\psi_r z^{\lambda} = 0$ whenever r and r + 1 are in the same column of T^{λ} ;
- 4. Garnir relations.

For each $w \in \mathfrak{S}_n$, fix a reduced expression $w = s_{i_1} \dots s_{i_r}$, and define the corresponding element $\psi_w := \psi_{i_1} \dots \psi_{i_r} \in \mathscr{R}_n^{\Lambda}$. In general these elements depend on the choice of reduced expression, since the ψ generators do not satisfy braid relations! Finally, let $\psi^{\mathsf{T}} = \psi_{w^{\mathsf{T}}}$.

Theorem 2.3 ([4, 10]). Let λ be an *l*-multipartition of *n*. The Specht module S^{λ} is graded, with homogeneous basis

$$\{v^{\mathsf{T}} := \psi^{\mathsf{T}} z^{\lambda} \mid \mathsf{T} \in \mathrm{Std}(\lambda)\}.$$

Theorem 2.4 ([12, 8]). If $e \neq 2$ and $\kappa_i \neq \kappa_j$ for all $i \neq j$, or if λ is a conjugate Kleshchev multipartition, then S^{λ} is indecomposable.

It is natural to now look for decomposable Specht modules in higher levels. Our presentation and basis allow us to calculate endomorphisms of Specht modules, as any $\varphi \in \operatorname{End}(S^{\lambda})$ satisfies

$$\varphi(z^{\lambda}) = \sum a_{\mathsf{T}} v^{\mathsf{T}} \text{ for some } a_{\mathsf{T}} \in \mathbb{F},$$

where we sum over all $T \in \text{Std}(\lambda)$ such that res $T = i^{\lambda}$, and the right-hand side must satisfy the defining relations of S^{λ} .

3 Decomposable Specht modules in level 2

We now fix l = 2, so that $\Lambda = \Lambda_{\kappa_1} + \Lambda_{\kappa_2}$ and \mathscr{R}_n^{Λ} is isomorphic to a Hecke algebra of type B, and assume that $p \neq 2$.

For now, we fix $e \ge 3$ and $\Lambda = 2\Lambda_0$. We study Specht modules indexed by *bihooks* $\lambda = ((a, 1^b), (c, 1^d))$, a natural generalisation of hooks in level 1.

Theorem 3.1 ([15]). [Small bihooks] Let $n \leq 2e$. Then S^{λ} is decomposable if and only if n = 2e and $\lambda = ((a, 1^b), (a, 1^b))$ for some a, b.

'Proof'. It is easy to check that if $\lambda = ((a, 1^b), (a, 1^b))$ is a bipartition of n < 2e, λ is conjugate Kleshchev, and is thus indecomposable. In all other cases, we deduce indecomposability by looking at the few tableaux of the correct residue and showing that there cannot be a non-trivial endomorphism. If n = 2e and $\lambda = ((a, 1^b), (a, 1^b))$ for some a, b, there is an endomorphism given by swapping the two components of T^{λ} . A long calculation shows that this endomorphism is an idempotent.

The following is still work in progress, but will become a theorem soon!

Conjecture 3.2 ([15]). Let $\lambda = ((k), (k))$. Then S^{λ} is decomposable if and only if $k \ge e$.

Using some tricks with *i*-induction and *i*-restriction, we show the following.

Theorem 3.3 ([15]). Let $k \ge 1$, $0 \le a \le e-1$ and $0 \le b \le e-1$ with $a+b \ne e$. The Specht module $S^{((ke),(ke))}$ is decomposable if and only if $S^{((ke+a,1^b),(ke+a,1^b))}$ is.

Thus proving Conjecture 3.2 will yield a large family of decomposable Specht modules.

Example. Let e = 3 and $\lambda = ((6), (6))$. There are six standard λ -tableaux with residue sequence i^{λ} , obtained by permuting the *e*-bricks.

$T^{\lambda} = \boxed{7 \mid 8 \mid 9 \mid 10 \mid 11 \mid 12}$	R = 4 5 6 101112	$\mathbf{S} = \boxed{4 \ 5 \ 6 \ 7 \ 8 \ 9}$
1 2 3 4 5 6	1 2 3 7 8 9	1 2 3 10 11 12
T = 1 2 3 10 11 12	$\mathtt{U} = \begin{bmatrix} 1 & 2 & 3 & 7 & 8 & 9 \end{bmatrix}$	$\mathtt{W} = \boxed{1 \ 2 \ 3 \ 4 \ 5 \ 6}$
4 5 6 7 8 9	4 5 6 10 11 12	789101112.

There is a homomorphism given by $\varphi(z^{\lambda}) = 4v^{\mathsf{R}} + 2v^{\mathsf{S}} + 2v^{\mathsf{T}} + v^{\mathsf{U}}$.

It can be shown that $v^{\mathbf{S}} - v^{\mathsf{T}}$ and v^{W} are eigenvectors for this endomorphism, with eigenvalues -4 and -6. Thus there are at least two distinct generalised eigenspaces, and S^{λ} is decomposable.

Future work: find families of decomposable Specht modules when e = 2 and $\Lambda = 2\Lambda_0$ or $\Lambda_0 + \Lambda_1$.

References

- [1] S. Ariki, On the semi-simplicity of the Hecke algebra of $(\mathbb{Z}/r\mathbb{Z}) \wr \mathfrak{S}_n$, J. Algebra 169 (1994), no. 1, 216–225. [Page 3.]
- [2] S. Ariki, E. Park, and L. Speyer, Specht modules for quiver Hecke algebras of type C, arXiv:1703.06425, 2017, preprint. [Page 3.]
- [3] J. Brundan and A. Kleshchev, Blocks of cyclotomic Hecke algebras and Khovanov-Lauda algebras, Invent. Math. 178 (2009), no. 3, 451–484. [Page 3.]
- [4] J. Brundan, A. Kleshchev, and W. Wang, *Graded Specht modules*, J. Reine Angew. Math. 655 (2011), 61–87. [Page 4.]
- [5] R. Dipper and G. D. James, Blocks and idempotents of Hecke algebras of general linear groups, Proc. London Math. Soc. 54 (1987), no. 3, 57–82. [Page 2.]
- [6] _____, q-tensor space and q-Weyl modules, Trans. Amer. Math. Soc. 327 (1991), 251–282. [Page 2.]
- [7] C. Dodge and M. Fayers, Some new decomposable Specht modules, J. Algebra. 357 (2012), 235–262. [Page 2.]
- [8] M. Fayers and L. Speyer, Generalised column removal for graded homomorphisms between Specht modules, J. Algebraic Combin. 44 (2016), no. 2, 393–432. [Page 4.]
- [9] G. D. James, *The Representation Theory of the Symmetric Groups*, Lecture Notes in Mathematics, vol. 682, Springer, Berlin, 1978. [Page 1.]
- [10] A. Kleshchev, A. Mathas, and A. Ram, Universal graded Specht modules for cyclotomic Hecke algebras, Proc. London Math. Soc. 105 (2012), 1245–1289. [Pages 3, 4.]

- [11] G. Murphy, On decomposability of some Specht modules for symmetric groups, J. Algebra 66 (1980), 156–168. [Page 1.]
- [12] R. Rouquier, q-Schur algebras and complex reflection groups, Mosc. Math. J. 8 (2008), 119–158. [Page 4.]
- [13] L. Speyer, Decomposable Specht modules for the Iwahori-Hecke algebra ℋ_{F,-1}(𝔅_n),
 J. Algebra 418 (2014), 227-264. [Page 2.]
- [14] _____, On the semisimplicity of the cyclotomic quiver Hecke algebra of type C, Proc. Amer. Math. Soc. (to appear). [Page 3.]
- [15] L. Speyer and L. Sutton, Decomposable Specht modules indexed by bihooks, 2018, in preparation. [Page 4.]