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Decomposition numbers for G,

F  field of characteristic p > 0

S*  Specht module

D" James module head(S") for p-restricted A
> dominance order on partitions

Want to know decomposition numbers [S* : D¥].

Basic result: [S* : D¥] = 1, and [S* : D¥] > 0 only if A > 4.
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p-core of A: obtained by repeatedly removing rim p-hooks.

p=5

p-weight: number of rim p-hooks removed.

Brauer—Robinson Theorem 1947: D" and D* (or S* and S¥)
lie in the same block of F&, if and only if A and u have the
same p-core (and hence the same p-weight).

So a block B of some &, is determined by its weight w and its
core v (and then n = |v| + pw).

Look at blocks of small weight . ..
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Robinson 1961: B a block of F&,, of weight 1.
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length i.

> AP g g AD,




Blocks of weight 1

— — — —

O=NDwWwhHhoo
o~~~
~
< S

w
—
N

A a partition of p-weight 1.
Leg length of A: leg length
of the unique p-hook of A.

length i.
> AP g g A0,
» All except A° are p-restricted.

Robinson 1961: B a block of F&,, of weight 1.
» Foreach 0 < i < p, B contains a unique partition A’ of leg




Blocks of weight 1

— — — —

O=NDwWwhHhoo
o~~~
~
< S

w
—
N

A a partition of p-weight 1.
Leg length of A: leg length
of the unique p-hook of A.

length i.
> AP g g A0,
» All except A° are p-restricted.
> [SM DY) =6+ 51,

Robinson 1961: B a block of F&,, of weight 1.
» Foreach 0 < i < p, B contains a unique partition A’ of leg
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Decomposition numbers for blocks of weight 2:

Martin 1988: Principal blocks of &5, ..., Gap-1-

Scopes 1991: [S* : D¥] < 1, other bounds.

Richards 1996: Combinatorial formula for decomposition
numbers.



Blocks of weight 2: p = 5, core (3,2)



Blocks of weight 2: p = 5, core (3,2)

3,2,110
~
82318
6 346
32° 3%
3320212
— ~
3421 423, 14
~ —
5,4,3,13\ /6 4,15
6,4,2,13 N 5
6,4,3 12/ \ 8.2.1
6,421 8,2213
~—
7,4.3,1 /
~
8,321
8,4,3
8,7
11,4

/
13,2



5, core (3,2)

Blocks of weight 2: p

n
-
\\\\\\\\\\\\\\\ I e R
©
5\ /3
~— A
\\\\\\\\\\\ < TN
© 0
o /TN
© M..I A 21,
\\\\\ —_ [ o N L
N o
©
A WANYA WA
~— — - - a2} <
e T B
MM, = <~ < M i~y —
™ 19 ©
o/ N\ /N \_/ \/\
- © — NS V)
— ~ ~ .
T Yoo 5o
o ™ © —



Blocks of weight 2: p = 5, core (3,2)

Can arrange the diagram in

“strings” such that:

~— A
“““““““ < TN
© 0
o /TN
© M..I A NS
\\\\\ owlywwwoo,\\\n/_u\\\\\\\23\\\\\\\\\\
™ 94__., M. o)
A WANYA WA
2 - - - = o <
\\\2‘\\wnm_/_\\\ ™Mm___ ™ _ v - - -
MM, o < < M i~y -
19 ©
o/ N\ /N \_/ \/\
A . T N
g ° % %) @ <



Blocks of weight 2: p = 5, core (3,2)

Can arrange the diagram in
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B a block of weight 2, core v.

If Ain B, then we remove two rim p-hooks to reach v from A.

JdA = difference between leg lengths of removed rim p-hooks.

p=5 | A=[3-4=1
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Weight 2 blocks

B a block of weight 2, core v.

If Ain B, then we remove two rim p-hooks to reach v from A.

JdA = difference between leg lengths of removed rim p-hooks.

p=5 | IN=3-2 =1
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Weight 2 blocks

B a block of weight 2, core v.

If Ain B, then we remove two rim p-hooks to reach v from A.

JdA = difference between leg lengths of removed rim p-hooks.

p=5 o=

If oA = 0, say A is black if it has:

» arim 2p-hook with leg length 0 or 3 (mod 4), or
» two rim p-hooks, with the larger leg length even

and white otherwise.
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Weight 2 blocks

Theorem (Richards 1996): B a weight 2 block of F&,,.
» The partitions in B with a given 0-value form a <-chain.
» u in B is p-restricted unlesss it is the most dominant with
its d-value (and its colour).

If 1 in Bis p-restricted, let u* be the next one in the dominance
order with the same o-value (and colour).
» If podd, then [S* : D¥] =1 if:
> A=,
> A=utor
> u<<A<putand|dr—du| =1,
and 0 otherwise.




i <
\8
° /3
\\\\\\\\\\\\\ 11\\\\\ 11
pe S ®
©
/A \ /
< [sp]
© il - —
\\\\\ - S o \ J
@ NG < DA «
AN i
— — — - — )
\122\\\nw_/_\\\3\\\3,\\\3,\\\4,\\\4,:\
o o < < N < - T
/ 3/ 7o) © ~
5 / / \ / \/
2 —
N Y A N N~
o < B2 - N o
Ioe) © @ ~— © OJ
\\\\\\ 2.\\\\\\\\\\\\124,\\\ o
: . - o
3 ™ o



N
-
I
=
125
_
~<
(a°8
©
c
©
£ . L
o
~— !AT 4
I = =2 =
= I v
A< < x o
~ A A A llm, \\\\\\\\\\\\\\\\\\
9N, o
5\ /s
“““““““ A Vi
© ©
4\ /3\ /
© - - e
\\\\\ Y o
@ ¥ < s
©
NG NGNS N
~— — AR AR - o <
e VI I R e
s " < <~ ~ o -
® ™ T} ©



N
-
I
=
IS
_
<
<
©
c
©
£
= 5 X
~— !AT <
= = <
= I v
A< < x o
< A A A <
S28 oy
5\ /s
\\\\\\\\\\\\\ M\\\\122,:\\\\\\\\\\\\\\ ™
© o
e /
© ~— ] NS
“““ B il K |
™ N ] )
)
NG NG, N
~— — AR AR - o <
B N Y . Y O
Al (aV] < < <t -
- [0 _ _ - 8 ~—
AN
— _\ [ o I ~No o\
N ~ [eo] ©9
™ © © - N
\\\\\\ N - 00
) S -



N
—
I
=
155
_
<
o
o
c
©
£
= 5 =
~— !AT 4
I £ =2 <=
= I v
A< < x o
<~ A A DN | T <
N o
—_ 8
5\ /s
“““““““ G- @
© ©
4\ @
© ~— ] Nt
“““ B [
™ N ] 0]
©
NG NG N
— — 1 — y (sp) <t
B N Y . Y O
N N <~ < N )
- [0 - 8 bt
AN
. Y. \/
— _\ [ o I ~No o\
N ~ [eo] ©9
™ © © - N
\\\\\\ N - 00
(sp} © —



|

1
Il
=
ge)
_
<
(a3
©
C
©
= T
o
bl !AT 4
I £ =2 <=
= Il Il Vv
A< = =
e & a2
0,
© -
\\\\\ n<..ul.\\\‘nd”\\\ [aV]
© R
/N /N
[oe) N
— — o)
\\\22,\\\“2,\\\3\\\3\\\4\\\
5] ™
m\ / /1\
-\ / o
(aV ~
o © ®
\\\\\\ 2\\\\\\\\\\\\\‘




N
-
I
=
125
_
~<
(a°8
©
c
©
£ . L
o
~— !AT 4
I = =2 =
= I v
A< < x o
~ A A A llm, \\\\\\\\\\\\\\\\\\
9N, o
5\ /s
“““““““ A Vi
© ©
4\ /3\ /
© - - e
\\\\\ Y o
@ ¥ < s
©
NG NGNS N
~— — AR AR - o <
e VI I R e
s " < <~ ~ o -
® ™ T} ©



N
—
I
=
IS
_
<
<
©
c
©
E= s T
o
~— !AT <
I £ =2 <=
= I v
A< < x o
B AN llm, \\\\\\\\\\\\\\\\\\
S28 oy
5\ /s
\\\\\\\\\\\\ ~ -
© o
L/ /3\ /
© — — gt
\\\\\ o o
@ ¥ < <
©
NG NGNS N
— — S - y (sp) <t
e T T
AN o < < < © -
\3 (<o) \5 © N~
. " \/
-\ ] oL I LS
o] < (e}
™ © © N N
\\\\\\ 2\\\\\\\\\\\\\ <t T M
™ N —



N
—
I
=
IS
_
<
<
©
c
©
E= s T
o
~— !AT <
I £ =2 <=
= I v
A< < x o
B AN llm, \\\\\\\\\\\\\\\\\\
S28 oy
5\ /s
\\\\\\\\\\\\ ~ -
© o
L/ /3\ /
© — — gt
\\\\\ o o
@ ¥ < <
©
NG NGNS N
— — S - y (sp) <t
e T T
AN o < < < © -
\3 (<o) \5 © N~
. " \/
-\ ] oL I LS
o] < (e}
™ © © N Y
\\\\\\ 2\\\\\\\\\\\\\ h S o . (.5 ]
™ N —



N
-
I
=
59
_
<
<
©
c
©
£ .k
o
~— !AT 4
I < =2 <=
= I v
A< < x o
B AN llm, \\\\\\\\\\\\\\\\\\
S28 oy
5\ /s
\\\\\\\\\\\\ ~ -
© 0
L/ /3\ /
© - - o
\\\\\ D R IS A
[3¢)
) < )
WAL 7
AR A VA WV
— — S . N [sp) <
T T L I s [
AN o < < N 0| —
\3 (<o) \5 © N~
3 " \/
-\ ] oL I LS
o] < (e}
™ © © N Y
\\\\\\ 2\\\\\\\\\\\\\ h S o . (.5 ]
™ N —



N
-
I
=
)
_
~<
o
°
[y
©
£ . L
o
~— !AT <
I = =2 =
= I IV
A< < x o
~ A A A llm, \\\\\\\\\\\\\\\\\\
9N, o
5\ /3
““““““““ R Vil
© ©
4\ /3\ /
© - — =
\\\\\ Y o
@ ¥ < s
©
SN NN N
— ~— — — - ) <
B e VI T ] B R
s I~ <~ < . o —
® ™ T} ©



N
—
I
=
IS
_
<
<
©
c
©
= = %
o
~— !AT 4
I £ =2 <=
= I v
A< < x o
B AN llm, \\\\\\\\\\\\\\\\\\
9N, o
5\ /s
\\\\\\\\\\\\ A Vi
© o
L/ /3\ /
© - — gt
\\\\\ D R IS A
(30}
) < )
WA 7
— — —| | - o <
L L M 1 B | e
s " < < ~ o -
(a0} (<o) o) © N~



|

1
I
X
g=)
_
<
o
o)
c
©
= L
= o
Y
I = =2 =
= I v
A< < x o
<~ A A DN | T <
22 ©




Weight 2 blocks



Weight 2 blocks

Richards’s theorem proved using the Jantzen—Schaper formula.



Weight 2 blocks

Richards’s theorem proved using the Jantzen—Schaper formula.

Applies also to Hecke algebras of type A.



Weight 2 blocks

Richards’s theorem proved using the Jantzen—Schaper formula.

Applies also to Hecke algebras of type A.

Similar theorems for:



Weight 2 blocks

Richards’s theorem proved using the Jantzen—Schaper formula.

Applies also to Hecke algebras of type A.

Similar theorems for:
» Hecke algebras of type B (F. 2006);



Weight 2 blocks

Richards’s theorem proved using the Jantzen—Schaper formula.

Applies also to Hecke algebras of type A.
Similar theorems for:

» Hecke algebras of type B (F. 2006);

» Ariki—Koike algebras (Lyle—Ruff 2016).
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én: <S1,

with relations
22 =1,
2

'ysn—1vz>

ZSj = §;Z,

S = 1, S5iSji+1Sj = Sj+1SiSj+1, SiSj = Z5;S; for i —j > 1.
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When n > 4, &, is a Schur cover of &, so controls the
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A double cover of &,

6[’] - <S1,...,Sn_1,z>
with relations
Z2=1,  zs;=sz
S,-2 =1, S5iSji+1Sj = Sj+1SiSj+1, SiSj = Z5;S; for i —j > 1.

When n > 4, &, is a Schur cover of &, so controls the
projective representations of &,

Given a simple &,-module, z acts as +1 or —1.

If z acts as +1 ~ simple &,-module. p-modular decomposition
is the same as for &,.

So we look at the faithful simples for &, where z acts as —1.
(Called spin modules.)

p odd from now on.
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Superalgebras
Superalgebra: Z/27-graded algebra A, i.e.

A=Ay D A AiAi C Aiyj (mod2)-
A-supermodule: Z/27Z-graded module, i.e.

M= My e M AiM; C My} (mod2)-

Simple supermodule: no subsupermodules.

Work with F&, as a superalgebra by putting
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Simple spin supermodules for &,

Strict partition: no equal positive parts.

Schur 1911: For each strict partition A of n, there is a simple
C&,-supermodule S
These are all the simple spin CS -supermodules.

Nazarov 1990: Explicit construction of 5.
p-strict partition: the parts not divisible by p are distinct.

restricted p-strict partition: A; — Ay < p,and A; — Ay < pifp
divides A;.

Brundan—Kleshchev 2002: F = I, characteristic p odd.

For each restricted p-strict partition A of n, there is a simple
F& p-supermodule D?.

These are all the simple spin FS ,-supermodules.
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Spin decomposition numbers for &,

Consider a p-modular reduction of §*: call this §* also.

Want to know the decomposition numbers [S* : D¥].
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Brundan—Kleshchev:
[S#:DHF] =1, and [S* : D¥] > 0 only if A & .
Now look at individual blocks ...
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p-bars
Morris 1960s: A a p-strict partition. Removing a p-bar means:
» reducing a part by p, or
» removing two parts whose sum is p.
Repeatedly removing p-bars yields the p-bar-core.

p=5

p-bar-weight: number of p-bars removed.

Humphreys 1986: D" and D* (or $* and S*) lie in the same
block of F&,, if and only if A and u have the same p-bar-core
(and hence the same p-bar-weight).

So we can talk about the weight and core of a block.

Look at blocks of small weight ...
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Leg length

Removable p-bars «+— p-hooks in the doubled diagram:




Leg length

Removable p-bars «+— p-hooks in the doubled diagram:

— leg length of a removable p-bar (Hoffman—Humphreys).
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Spin blocks of weight 1

oa=
p=7 | <@
LIRS Leg length of A: leg length
3 (84311 - - of the unique p-bar of A.
2 (8,521)| 11
1 (8,7,1) 11
0 (15,1) -1

Miiller 2003: B a spin block of &,, of weight 1.
» Foreach0 </ < %p, B contains a unique partition A’ of
leg length /.
b A2 g g A0,
» All except A° are restricted.
> [SM : IAD/U] =0+ 5,-(/',1).




Spin blocks of weight 2



Spin blocks of weight 2

How do we gather data?



Spin blocks of weight 2

How do we gather data?

Known decomposition numbers:



Spin blocks of weight 2

How do we gather data?

Known decomposition numbers:
» Morris—Yaseen 1980s: n < 11

(by inducing projective characters).



Spin blocks of weight 2

How do we gather data?

Known decomposition numbers:

» Morris—Yaseen 1980s: n < 11
(by inducing projective characters).

» Maas 2011: n < 18 (computational methods).



Spin blocks of weight 2

How do we gather data?

Known decomposition numbers:

» Morris—Yaseen 1980s: n < 11
(by inducing projective characters).

» Maas 2011: n < 18 (computational methods).

Richards used the Jantzen—Schaper formula



Spin blocks of weight 2

How do we gather data?

Known decomposition numbers:

» Morris—Yaseen 1980s: n < 11
(by inducing projective characters).

» Maas 2011: n < 18 (computational methods).

Richards used the Jantzen—Schaper formula — determines all
decomp numbers in a block if you know they are all 0 or 1.



Spin blocks of weight 2

How do we gather data?

Known decomposition numbers:

» Morris—Yaseen 1980s: n < 11
(by inducing projective characters).

» Maas 2011: n < 18 (computational methods).

Richards used the Jantzen—Schaper formula — determines all
decomp numbers in a block if you know they are all 0 or 1.

Problem: we don’t have a spin Jantzen—-Schaper formula.



Spin blocks of weight 2

How do we gather data?

Known decomposition numbers:

» Morris—Yaseen 1980s: n < 11
(by inducing projective characters).

» Maas 2011: n < 18 (computational methods).

Richards used the Jantzen—Schaper formula — determines all
decomp numbers in a block if you know they are all 0 or 1.

Problem: we don’t have a spin Jantzen—-Schaper formula.

Instead, we use the Fock space ....
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Spin Fock space
Letr=(p—1). U= UC,(AIEi)1 ). C(q)-algebra with generators
Fock space F is a U-module with basis
P, := {p-strict partitions}.
Assign spin residues to nodes:

p=7:|0[1]2]3][2][1]0]0[1][2]3]2][1]0]0][1]|2]3]2]
0/1/2[3/2[1]o]0|1]|2][3]2[1]0]|0[1]2
0/1/2[3/2]1]o]0]1]2
0/1]2
Then
t,')L€<)L>

fiA € (u| p=AUan i-node)
eA e (u| up=A\ani-node).
(Kashiwara—Miwa—Petersen—Yung 1996, Leclerc—Thibon 1997.)
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Canonical basis

Submodule of F generated by & is the basic representation.
This possesses a canonical basis

{G(p) | p arestricted p-strict partition}

(computable via the LT algorithm).
Define dy,(q) € C(q) by
G(p) = )_du(q)A.
A
Conjecturg (Leclerc—Thibon): For blocks of small weight,
dr,(1) = [S*: DH].

Hope this is true for blocks of weight 2, and calculate . ..
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Blocks of weight 2
p=>5

5-bar-core (6, 1) E oo
M .o
0 b © &
Lo
(6,5,3,2,1) | 1 -
(7,6,3,1) |22 1 -
(8,6,2,1) 1 2 1
(10,6,1) 11 1
(11,3,2,1) 1
(11,5,1) 1 1
(11,6) -
(16,1) 1

Let’s try a Richards formula anyway ...
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A spin Richards formula?
B weight 2 spin block of &,, with p-bar-core v.

If Ain B, then we remove two p-bars to get from A to v.

dA := difference between the leg lengths. (Requires a slight
modification of the leg length from before.)

Can also define black/white when oA = 0 or 1. But some
partitions are both black and white.

Two special partitions:

> & =(...,0%...);
» W = unique minimal partition with & > &.
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A spin Richards formula

e
“Richards matrix” | @ o~ - ® &
10 00O o s
d Lo
2 1 (6,5,3,2,1) i - .
3 0 (6,5,1)% |1 1 1
31 (763, 1)% |11 11 .
3 1 (8,6,2,1) 1 1 -
@ 0 (10,6,1) 1 1 1
2 (11,3,2,1) . 1 -
3 1 (11,51) 1 11
@ 0 (11.6) .
> 0 (16,1) 1

Now take all columns starting with & or ending with & and add
together in adjacent pairs.
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together in adjacent pairs.

22



(L'9'01) - -
:,N_o,wv -_—_——
(L'e'9'2) -
A—._Nm>®v AN AN — ~— ~—
(1'2'e's'9) |— o=+
(L'9'04) -
AF.N.m_wv -
(1'e'9'2) -
(126'9) - - -
© (156'9) —_———
= (1'2'€'g'9) |— ——
S —g@_ -
O X N o= oG
= L T <o T O
[7)] = - - O MLW O
] g |whoo =g
O OMNOT™ 7™ v v+
a S SN S N N e e e e
< ©
(&) © V|~ O+~~~ OWN+—~OO
— <
o Q2 SRR X X
c o«
a
n
<C

Now take all columns starting with & or ending with & and add

together in adjacent pairs. Delete the & row.
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A spin Richards formula

N~ - N~ -
“Richards matrix” N R A I BN R
0w n oo 0004
9 Lo Lo =
2 1 (653211 - - - . . 1
30 (5% |11 1 - -
31 (763 HW |1 111 . 221 .
3 1 (8621 |- 1 1 1211 .
@ 0 (10,6,1) -1 11 11 - 11
2 (11,3,2,1) | - 1 - SR
3 1 (11,51) 1 11 -1 11
@ 0 (11,6) : -1 : -1
> 0 (16,1) 1 1 .

Now take all columns starting with & or ending with & and add
together in adjacent pairs. Delete the & row.

Conjecture: This produces the decomposition matrix of B.
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How to prove it

Step 1: Prove it for the d,,(q).

(LT algorithm)

Step 2: Prove the LT conjecture for weight 2.
(Kessar—Schaps pairs, (modular) branching rules)

Final question: what is the Richards matrix?

1 . . . 1. . . ..
221 . 1111 [T
1211 . SRR IEENEE
LR IR B I RS I IR I B
o1 1. T
11 111 :
R T 1
1. .. 1
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