Schur-Weyl duality and dominant dimension

Ming Fang

Institute of Mathematics, Chinese Academy of Sciences

Representation Theory of Symmetric Groups and Related Algebras, 11-20 December 2017, Singapore

Notation

Let *k* be a field and *E* be an *n*-dimensional *k*-vector space. The symmetric group Σ_r acts on the *r*-fold tensor product $E^{\otimes r}$ via:

$$(e_1 \otimes \cdots \otimes e_r)\sigma = e_{1\sigma} \otimes \cdots \otimes e_{r\sigma}, \quad \forall e_1, \ldots, e_r \in E, \sigma \in \Sigma_r$$

The Schur algebra $S_k(n, r)$ is known to be $\operatorname{End}_{\Sigma_r}(E^{\otimes r})$, and the Schur functor \mathcal{F} is:

$$\operatorname{Hom}_{\mathcal{S}_k(n,r)}(E^{\otimes r},-):\mathcal{S}_k(n,r)\operatorname{-mod}\longrightarrow k\Sigma_r\operatorname{-mod}$$

Notation

Let *k* be a field and *E* be an *n*-dimensional *k*-vector space. The symmetric group Σ_r acts on the *r*-fold tensor product $E^{\otimes r}$ via:

$$(e_1 \otimes \cdots \otimes e_r)\sigma = e_{1\sigma} \otimes \cdots \otimes e_{r\sigma}, \quad \forall e_1, \ldots, e_r \in E, \sigma \in \Sigma_r$$

The Schur algebra $S_k(n, r)$ is known to be $\operatorname{End}_{\Sigma_r}(E^{\otimes r})$, and the Schur functor \mathcal{F} is:

$$\operatorname{Hom}_{\mathcal{S}_k(n,r)}(E^{\otimes r},-): \mathcal{S}_k(n,r)\operatorname{-mod} \longrightarrow k\Sigma_r\operatorname{-mod}$$

Theorem (Schur-Weyl duality)

The canonical morphism $k\Sigma_r \to \operatorname{End}_{S_k(n,r)}(E^{\otimes r})$ is always an epimorphism of k-algebras, and is an isomorphism if $n \ge r$.

Motivation

Around 2000, Doty,Hemmer,Kleschev and Nakano compared the cohomologies of general linear and symmetric groups and obtained: If $n \ge r$ and p = char(k) > 0, then the Schur functor \mathcal{F} induces

$$\operatorname{Ext}^{i}_{\mathcal{S}_{k}(n,r)}(M,N)\cong\operatorname{Ext}^{i}_{\Sigma_{r}}(\mathcal{F}(M),\mathcal{F}(N)) \qquad 0\leq i\leq p-3$$

for any *M* and *N* with *N* filtered by dual Weyl modules.

Question: Is p - 3 the best upper bound? What is its meaning?

In 2004, Doty, Erdmann and Nakano set up a general framework to study the cohomological behavior of general Schur functors: Given an idempotent e in a finite dimensional k-algebra A, how are the extension groups preserved under the Schur functor

 $\operatorname{Hom}_{A}(Ae, -) : A \operatorname{-mod} \longrightarrow eAe \operatorname{-mod}$.

Question: Can we recover the result above for Schur algebras? What about other algebras?

In 2004, Doty, Erdmann and Nakano set up a general framework to study the cohomological behavior of general Schur functors: Given an idempotent e in a finite dimensional k-algebra A, how are the extension groups preserved under the Schur functor

 $\operatorname{Hom}_{A}(Ae, -) : A \operatorname{-mod} \longrightarrow eAe \operatorname{-mod}$.

Question: Can we recover the result above for Schur algebras? What about other algebras?

In 2001, Koenig-Slungård-Xi gave a computation free proof of the Schur-Weyl duality by showing that the Schur algebra $S_k(n, r)$ has dominant dimension at least two if $n \ge r$.

Question: What happens if the dominant dimension is large? What is the dominant dimension of $S_k(n, r)$?

Definition

Definition (Koenig-F 2011)

A finite dimensional k-algebra A is called gendo-symmetric if it is an endomorphism ring of a generator over some symmetric algebra.

Definition

Definition (Koenig-F 2011)

A finite dimensional k-algebra A is called gendo-symmetric if it is an endomorphism ring of a generator over some symmetric algebra.

Remark. Each gendo-symmetric algebra *A* contains a unique (up to conjugate) idempotent $e \in A$ such that *Ae* is a projective, injective and faithful left *A*-module, and any other faithful left *A* modules must contain *Ae* as a direct summand. Therefore, we also denote by (*A*, *e*) a gendo-symmetric algebra.

Definition (Koenig-F 2010)

Let class *A* denote the set of all finite dimensional *k*-algebras *A* satisfying

- (1) A is quasi-hereditary;
- (2) A is gendo-symmetric;
- (3) A has an anti-involution.

Definition (Koenig-F 2010)

Let class \mathcal{A} denote the set of all finite dimensional k-algebras A satisfying

- (1) A is quasi-hereditary;
- (2) A is gendo-symmetric;
- (3) A has an anti-involution.

Examples: (quantized) Schur algebras $S_k(n, r)$ for $n \ge r$ and their blocks; cyclotomic Schur algebras and block algebras of BGG category O, etc.

Definition (Nakayama, Tachikawa)

The dominant dimension of a finite dimensional k-algebra A, denoted by domdim A, is the largest number t or ∞ such that in a minimal injective resolution of _AA

$$0 \to {}_{A} A \to {}^{I\!\! 0} \to {}^{I\!\! 1} \to \cdots$$

all injective modules I^0, \ldots, I^{t-1} are projective.

Definition (Nakayama, Tachikawa)

The dominant dimension of a finite dimensional k-algebra A, denoted by domdim A, is the largest number t or ∞ such that in a minimal injective resolution of _AA

$$0 \to {}_{A} A \to {I}^{0} \to {I}^{1} \to \cdots$$

all injective modules I^0, \ldots, I^{t-1} are projective.

Examples: The *k*-algebra $k[x, y]/(x^2, xy, yx, y^2)$ has dominant dimension zero;

The algebra of upper triangular 2 \times 2-matrices has dominant dimension one.

Self-injective algebras, and in particular semisimple algebras have dominant dimension $\infty.$

Dominant dimension encodes information about abundance of projective-injective modules:

a) If domdim $A \ge 2$, then A has a unique (up to conjugate) idempotent *e* such that A*e* is projective, injective and faithful and any other faithful A modules contain A*e* as a direct summand. Moreover,

$$\operatorname{End}_{A}(Ae) \cong eAe, \qquad \operatorname{End}_{eAe}(Ae) \cong A.$$

b) Nakayama conjecture: domdim $A = \infty$ if and only if A is self-injective.

Cohomological behavior of Schur functors

Theorem (Koenig-F, 2010)

Let (A, e) be an algebra in the class A. Then

- (1) domdim A is a positive even number;
- (2) domdim A = domdim R(A), the Ringel dual of A;
- (3) Standard A-modules are torsionless, i.e., are submodules of projective A-modules.
- (4) The Schur functor $eA \otimes_A : A \operatorname{-mod} \rightarrow eAe \operatorname{-mod}$ induces

 $\operatorname{Ext}^i_{\mathcal{A}}(\mathcal{M},\mathcal{N})\cong\operatorname{Ext}^i_{\mathit{eAe}}(\mathit{eM},\mathit{eN}), \qquad 0\leq i\leq \operatorname{domdim}\mathcal{A}/2-2$

for any M, N with N filtered by standard A-modules, and the bound domdim A/2 - 2 is optimal.

Theorem (Miyachi-F)

For an algebra (A, e) in the class A, the Schur functor induces:

 $\operatorname{HH}^{i}(A) \cong \operatorname{HH}^{i}(eAe), \quad 0 \leq i \leq \operatorname{domdim} A - 2$

and the best upper bound is either domdim A - 2 or domdim A - 1. Moreover, any homogeneous generator of the reduced Hochschild cohomology ring $\overline{HH}^*(eAe)$ has degree 0 or at least domdim A - 1.

Dominant dimension when $n \ge r$

Theorem (Keonig-F, 2010)

If $n \ge r$ and p = char(k), then

domdim
$$S_k(n,r) = \left\{egin{array}{cc} 2(p-1), & 0$$

Dominant dimension when $n \ge r$

Theorem (Keonig-F, 2010)

If $n \ge r$ and p = char(k), then

domdim
$$S_k(n,r) = \left\{egin{array}{cc} 2(p-1), & 0$$

Theorem (Miyachi-F)

If $n \ge r$ and ℓ is the quantum characteristic, then

domdim
$$S_q(n,r) = \begin{cases} 2(\ell-1), & \ell \leq r; \\ \infty, & \textit{else.} \end{cases}$$

Theorem (Hu, Miyachi, Koenig, F)

If $n \ge r$ and q is a root of one in the field k of characteristic p. Then for each block $B_{\tau,w}$ of $S_q(n,r)$,

gldim
$$B_{\tau,w} = 2(\ell w - d_{\ell,p}(\ell w)),$$

domdim $B_{\tau,w} = \begin{cases} 2(\ell-1), & w \neq 0; \\ \infty, & w = 0. \end{cases}$

Dominant dimension when *n* < *r*

Theorem (Hu-F)

For all n and r, the endomorphism ring $\operatorname{End}_{S_k(n,r)}(E^{\otimes r})$ is a gendo-symmetric algebra, hence has dominant dimension at least two. For any partition λ and μ of r, the dimension of $\operatorname{Hom}_{S_k(n,r)}(S^{\lambda}E, D^{\mu}E)$ is independent of the characteristic of the ground field.

Theorem (F,2014)

For all n and r, there exists a $S_k(n, r)$ -bimodule morphism

$$\Theta: A_k(n,r) \otimes A_k(n,r) \to A_k(n,r)$$

defined over \mathbb{Z} , which defines an associative multiplication on $A_k(n, r)$. Moreover, if p = char(k) > 0, then the following are equivalent

(1) Θ is an epimorphism;

(2)
$$A_k(n,r) = D_p(n,r);$$

(3)
$$r \leq n(p-1)$$
.

In particular, if $r \le n(p-1)$, then $S_k(n, r)$ is gendo-symmetric, hence has dominant dimension at least two, and given by

domdim $S_k(n, r) = \max\{d \mid H_i(\mathcal{B}_{\bullet}) = 0, 0 \le i \le d\} + 1$

where \mathcal{B}_{\bullet} is the bar complex associated to $A_k(n, r)$ and Θ .

Dominant dimension at least two

Theorem (Kerner-Yamagata-F,2017)

Let A be a finite dimensional k-algebra, and D(A) the k-dual of A. Let $V = Hom_A(D(A), A)$. Then domdim $A \ge 2$ if and only if

 $\mathsf{D}(A)\otimes_{\mathcal{A}}V\otimes_{\mathcal{A}}\mathsf{D}(A)\cong\mathsf{D}(A)$

as A-bimodules, and A is an endomorphism algebra of a generator over some self-injective algebra if and only if domdim $A \ge 2$ and $D(A) \otimes_A V \cong V \otimes_A D(A)$ as A-bimodules.

Characterization of dominant dimension

Theorem (Koenig-F, 2011,2016)

Let A be a finite dimensional k-algebra and D(A) be the k-dual of A. Then A is a gendo-symmetric algebra if and only if $D(A) \otimes_A D(A) \cong D(A)$ as A-bimodules. Moreover let μ be the induced multiplication on D(A) and C_• be the associated bar complex, then

domdim $A = \max\{d \mid H_i(\mathcal{C}_{\bullet}) = 0, 0 \le i \le d\} + 1.$

Derived invariance

Theorem (Hu-Koenig-F)

Let A be a k-algebra with an anti-automorphism fixing simples. Then for any algebra B derived equivalent to A,

 $\operatorname{gldim} B \geq \operatorname{gldim} A.$

In particular, if both A and B have anti-automorphisms fixing simples, then gldimA = gldimB. If furthermore, both A and B have dominant dimension at least one, then domdim A = domdim B.