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Data Fitting

Common Scientific Problem: We are given data about
some underlying function f (scientific process) and we
wish to ‘fit the data’ to answer some question about f

This talk will concentrate on

Optimality of Algorithms

Certifiable Performance

We put forward general principles can be tailored to any
specific application
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Your Favorite Application
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Data Tasks

Two types of tasks

Prediction: Approximate f

Quantity of Interest: calculate some narrower
quantity

maximum/minimum of f
average behavior: calculate an integral of f
value of f at some designated point

This talk will concern algorithms which, in some sense,
can be proven optimal for recovering f or answering
questions of interest about f : optimal and certifiable
performance
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Mathematical Formulation

Consider the full approximation problem for f

Form of the Data?: We assume
wj = lj(f), j = 1, . . . ,m, where lj are linear

functionals
Measurement map M(f) = w := (w1, . . . , wm)

How to measure performance? We measure
distortion by a norm ‖ · ‖X with X a Banach space

An algorithm is a mapping A : IRm 7→ X where A(M(f))
is an approximation to f ∈ X giving error

E(f,A)X := E(f,M,A)X := ‖f −A(M(f))‖X
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Model Classes

With no other information we can say nothing about the
error or discuss best algorithms

To state a meaningful problem we need to have
additional information about f

This additional information is typically given in an
assumption that f ∈ K ⊂ X

The set K is called a model class

Typical deterministic model classes K are given by

smoothness: Lipschitz, Sobolev, Besov balls

spectral conditions: bandlimited;

In high dimensions, i.e. when f depends on a lot of
variables, model classes are built on sparsity,
compressibility, anisotropy, variable reduction, etc.
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Model Class

An accurate description of the model class K is the
most important ingredient in data assimilation

The more info we have on K the better we can do

In scientific computation this is extracted by
understanding the scientific process: for example,
bandlimits for signals, regularity theorems for PDEs

In other settings this is more nebulous and so one
seeks algorithms that are universal, i..e. work
simultaneously for a wide range of model classes
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Optimal Recovery: Best Algorithms

K, ‖ · ‖X fixed and consider any algorithm A

Define Kw := {f ∈ K :M(f) = w}
Membership in Kw is all we know about f

Pointwise error: E(Kw,M,A) := sup
f∈Kw

‖f −A(w)‖X

Worst case error:
E(K,M,A) := sup

f∈K
‖f − A(Mf))‖X = sup

w∈IRm

E(Kw,M,A)

Optimal Performance: E∗(K,M) := infAE(K,M,A)

Optimal Recovery: The best algorithm A∗

Let B(gw, Rw) be the smallest ball that contains Kw

A∗ : w 7→ gw is an algorithm that is pointwise optimal
E(Kw,M,A∗)X = E∗(Kw,M) = Rw
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Graphic for Optimal Recovery
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Not so Fast!

You may think that this is the end of the story

But finding the Chebyshev ball is a substantial
problem and is only carried out in certain special
settings: for certain K and certain distortion metrics
‖ · ‖X
Results where optimal recovery is known are
summarized in Micchelli-Rivlin

The main point of this talk is to point out that there is a
general setting where we can determine optimal or near
optimal algorithms and we can determine a priori the
optimal performance

This setting will also expose when one has good
data or bad data
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Approximation Sets

Any algorithm will be based on some form of
approximation!

Let V = Vn be the functions used in the approximation:
polynomials, neural nets, wavelets, sparse sums, etc.

Since we have chosen V we think K is described by the
fact it is well approximated by V

Natural Model class: Approximation set:

K := K(ǫ, V ) = {f : dist(f, V )X ≤ ǫ}

We shall describe algorithms which are optimal over all
ǫ and you do not need to know ǫ
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Performance estimates

Full approximation problem: Performance determined
by V and null space N := {f ∈ X : M(f) = 0} via

µ(N , V ) := µ(N , V )X := sup
η∈N

‖η‖
dist(η, V )

When X is a Hilbert space best performance for an
approximation set K = K(ǫ, V ) is

E∗(K,M) = µ(N , V )ǫ

When X is a general Banach space best performance
E(K,M) for an approximation set K = K(ǫ, V ) satisfies

µ(N , V )ǫ ≤ E(K,M) ≤ 2µ(N , V )ǫ

Important: µ is easy to compute and (near) best
algorithms can be described as will follow
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A simple example

Take X to be a Hilbert space

If lj(f) = 〈f, ωj), j = 1, . . . ,m with (ωj)
m
j=1 ONS, then

v∗(w) := Argmin
v∈V

‖w −M(v)‖ℓ2
A : w 7→ v∗(w) is near optimal with constant 2

If u∗(w) ∈ Kw is the closest element v∗(w) then
A∗ : w 7→ u∗(w) is linear and pointwise optimal

Best algorithm is essentially least squares fit:

µ can be computed by SVD of cross Grammian

What is new?: Generally you do not see µ and
performance estimates for least squares

Note: Data is good if µ is small and bad if µ is large
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Hilbert space geometry
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Choosing V

The above optimal estimates take the form
‖f −A(M(f)‖X ≤ Cµ(N , V ) dist(f, V )

Here there is a competition between µ and dist(f, V )

Increasing the complexity of V improves dist(f, V )
but increases µ(N , V )

I want to illustrate this with a (toy) example

X = C(D) with D a domain in IRd

wj = lj(f) = f(xj) with xj ∈ D, j = 1, . . . ,m

V ⊂ C(D) a linear space of dimension n ≤ m

µ(N , V ) = 1 + µ(V,N ) where

µ(V,N ) = sup
v∈V

‖v‖C(D)

max1≤j≤m |v(xj)|
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Point values

Near best algorithm is v∗ := Argminv∈V ‖w −M(v)‖ℓ∞
Example X = C([0, 1]), ξ1, . . . , ξm equally spaced,
V = Pn−1 - polynomials of degree < n. Then it is known

If you choose n = m then µ(N ,Pm) ≈ aN , a > 1

If n =
√
m then µ(N ,Pn) ≤ 3

This gives ‖f − A(M(f))‖C ≤ 3 dist(f,P√
n)C

This points out the importance of the choice of V

Do not interpolate!!

Analogy with statistical learning: Do not overfit data

computing µ tells you what overfit means
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High dimension

What happens when f depends on many
variables/parameters: many features in data

The main issue is what is the correct model class K -
what is the correct V to avoid the curse of
dimensionality

Model classes K are proposed built on sparsity,
anisotropy, variable reduction, feature selection, etc.

Typical V are built on highly nonlinear methods such
as dictionary appproximation, neural networks

To have a quantitative theory (certifiable
performance) we need to understand

Which functions are approximated well by V - if
and only if theorems
What is µ(N , V ) for given data and V
Computational complexity of optimal algorithms
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Additional Remarks

The main references for the above are:
Binev-Cohen-Dahmen-DeVore-Petrova-Wojtaszczyk
(Hilbert space), DeVore -Petrova-Wojtaszczyk (Banach
space)

Closely related work emphasizing more the issue of
stable computation is given by Adcock, Hansen,
Shadrin, Trefethen, et al
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Linear Algorithms

An interesting question is whether there are optimal or
near optimal algorithms that are linear

For Hilbert space this is clear from the above

For X = C(Ω) and lj(f) = f(xj) this can be proved

using generalizations of Kalman’s convexity theorem
(DeVore-Foucart-Petrova- Wojtaszczyk

DFPW There is a linear algorithm

A∗(w) =
∑m

j=1 wjφj(x) with φj ∈ C(D)

For each x ∈ D, the mapping w 7→ ∑m
j=1 wjφj(x) is

optimal for recovering δx(f) = f(x)

The proof based on Functional Analysis and is not
constructive
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Quasi-interpolants

A very constructive way to find a near optimal algorithm
A is through quasi-interpolant operators for V

A linear operator Λ : C(D) 7→ C(D) is called a
quasi-interpolant if there exist points
ξj ∈ D, j = 1, . . . , N , and ψj ∈ C(D) such that the

operator Λ(f) :=
∑N

j=1 f(ξj)ψj satisfies

Λ(v) = v for all v ∈ V

‖Λ‖X 7→X ≤ C0

There always exists quasi-interpolants - the issue is
how large is N? For algebraic or trigonometric
polynomials one can take N = 2n with C0 ≤ 4

Once a quasi-interpolant is known, one can construct a
near optimal linear algorithm by solving N constrained
ℓ1 minimization problems
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Quantities of Interest

A similar theory of optimal recovery exists for quantities
of interest Q

Performance now controlled by

µ(N , V,Q) := µ(N , V,Q)X := sup
η∈N

‖Q(η)‖
dist(η, V )

For any Banach space X we have the performance
bounds

µ(N , V,Q)ǫ ≤ E(Q,K(ǫ, V ),M) ≤ 2µ(N , V,Q)ǫ
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Constructive Opt. Linear Algorithm

When K is an approximation set and Q is a linear
functional then one can find an optimal algorithm that is
linear by constrained optimization:

Let LQ := {l = ∑m
j=1 ajlj : l(v) = Q(v), v ∈ V } and

l∗ := Argmin
l∈LQ

‖Q− l‖X∗ =

m∑

j=1

a∗j lj

Then A∗ : w 7→ ∑m
j=1 a

∗
jwj is an optimal algorithm

Note this may be numerically intensive constrained
minimization

Perf: |Q(f)−A∗(Mf)| ≤ ‖Q− l∗‖X∗ dist(f, V )X

You see µ ≤ ‖Q− l∗‖X∗
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Example: Quadrature

Integration: Option trading, uncertainty quantification,
Quasi-Monte Carlo, etc.

Data are point values lj(f) = f(xj), j = 1, . . . ,m,

We want to compute Q(f) =
∫
D
ω(x)f(x) dx, f ∈ K(ǫ, V )

The optimal quadrature on X = C(D) using the points
xj ∈ D is

A∗(f) =
∑m

j=1 a
∗
jf(xj)

(a∗j ) := Argmin{∑m
j=1 |aj | :

∑m
j=1 ajv(xj) =∫

D
ω(x)v(x) dx}

This is a constrained ℓ1 minimization problem

µ(N , V,Q) =
∑m

j=1 |a∗j |
|
∫
f − A∗(M(f))| ≤ µ(N , V,Q) dist(f, V )C(D)
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Example: Global Temperature

Let T (x, t) denote temperature at position x on earth
and time t

Quantity of interest Q(T ) =
∫
Y ear

∫
Earth

T (x, t) dx dt

Roughly 14K sites from 1950 till 2017
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Obstacles to Mathematical Analysis

Life would be good if

We knew the right model class for T (x, t) - the right V

if data sites, equipment, and measuring times did not
change each year

Current algorithms use models based on pw
polynomials - not clear what space

We will use spherical harmonics

We compare Spherical Harmonics versus GISTemp
(NASA) on their adjusted data set

We can compute µ for spherical harmonics but not for
GISTemp
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Current Algorithms

There are many algorithms

The following flowchart gives the main steps of the
NOAA and NASA algorithms using piecewise
polynomials on a uniform grid

Impossible to analyze accuracy because of the ad hoc
adjustments to the data
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Comparison:GISTempvs. SH6
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Comparison: GISTemp vs. SH9
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Typical Growth of µ

Are we computing global temperature?

This would require proving validity of our model
class: would require analysis from physical principles

Also depends on behavior of µ

n 3 6 9 12 15 18

µ 1 1.03 2.61 24.13 223.50 2779.85

We see that even if we justify our model class, we need
to restrict the size of n
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Summary

We have given a mathematical view of Data
Assimilation

This theory require a valid model class for the
functions we want to capture

If this validity is established then
We have given optimal algorithms
We have given certified performance of these
algorithms

The challenge in application scenarios is

verification of the correct model class - this is
especially challenging in high dimensions

Feasibility of the computation of an optimal algorithm

Understanding µ
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