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Visit to China
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Young Carl
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My # 60
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Presidential Medal

|

deRoorFect — n R/RA



The Tuxedo

|

deRoorFect — n 7/3A




Data Fitting
-

# Common Scientific Problem: We are given data about
some underlying function f (scientific process) and we
wish to ‘fit the data’ to answer some question about f

# This talk will concentrate on
s Optimality of Algorithms
» Certifiable Performance

o We put forward general principles can be tailored to any
specific application

|
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our Favorite Application

Global Temperatures

Groundwater Modeling Manifold Learning
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Data Tasks

# Two types of tasks
s Prediction: Approximate f

» Quantity of Interest: calculate some narrower
quantity
s Mmaximum/minimum of f
s average behavior: calculate an integral of f
s value of f at some designated point

# This talk will concern algorithms which, in some sense,
can be proven optimal for recovering f or answering
qguestions of interest about f: optimal and certifiable
performance

|
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Mathematical Formulation

-

o Consider the full approximation problem for f

s Form of the Data?: We assume
w; =1;(f), 7=1,...,m,where(; are linear
functionals
s Measurement map M(f) = w = (wy, ..., wy)

s How to measure performance? We measure
distortion by a norm || - [ x with X" a Banach space

# An algorithm is a mapping A : IR™ — X where A(M(f))
IS an approximation to f € X giving error

E(f,A)x =E(f,M,A)x = ||f — AM(f))||x

|
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Model Classes
-

With no other information we can say nothing about the
error or discuss best algorithms

To state a meaningful problem we need to have
additional information about f

This additional information is typically given in an
assumptionthat f € £ C X

The set £ is called a model class

Typical deterministic model classes K are given by
s smoothness: Lipschitz, Sobolev, Besov balls
» Sspectral conditions: bandlimited;

s In high dimensions, i.e. when f depends on a lot of
variables, model classes are built on sparsity,
compressibility, anisotropy, variable reduction, etc. J
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Model Class
-

An accurate description of the model class I is the
most important ingredient in data assimilation

The more info we have on K the better we can do

In scientific computation this is extracted by
understanding the scientific process: for example,
bandlimits for signals, regularity theorems for PDEs

In other settings this is more nebulous and so one
seeks algorithms that are universal, i..e. work
simultaneously for a wide range of model classes

|
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Optimal Recovery: Best Algorithms
-

® C, || -||x fixed and consider any algorithm A

® Define Iy :={fec: M(f)=w}
s Membership in IC,, is all we know about f

» Pointwise error: E(IC,, M, A) == sup ||f — A(w)]| x
fey

® Worst case error:

E(K, M, A) = sup || f — AM[))|lx = sup E(Kw, M, A)
fex welR™

# Optimal Performance: | E*(IC, M) :=inf 4 E(K, M, A)

o Optimal Recovery: The best algorithm A*
s Let B(g,, R,) be the smallest ball that contains /C,,

s A" :w— gy IS an algorithm that is pointwise optimal J
E(Ky, M, A" x = E*(Kyw, M) = Ry,
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Graphic for Optimal Recovery
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Not so Fast!
-

# You may think that this is the end of the story

s But finding the Chebyshev ball is a substantial
problem and is only carried out in certain special
settings: for certain K and certain distortion metrics

I llx

» Results where optimal recovery is known are
summarized in Micchelli-Rivlin

# The main point of this talk is to point out that there is a
general setting where we can determine optimal or near
optimal algorithms and we can determine a priori the
optimal performance

s This setting will also expose when one has good
data or bad data J
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Approximation Sets

-

Any algorithm will be based on some form of
approximation!

Let V =V, be the functions used in the approximation:
polynomials, neural nets, wavelets, sparse sums, etc.

Since we have chosen V' we think K is described by the
fact it is well approximated by 1/

Natural Model class: Approximation set:
K=K, V)=A{f: dist(f,V)x <€}

We shall describe algorithms which are optimal over all
¢ and you do not need to know ¢
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Performance estimates

-

Full approximation problem: Performance determined
by V and null space NV :={f € X : M(f) =0} via

_ _ 7]
puN, V) = pu(N,V)x = 2;1/13 Tt (. V)

When X is a Hilbert space best performance for an
approximation set L = IC(e, V) Is

EX(IC, M) = (N, V)e

When X is a general Banach space best performance
E(K, M) for an approximation set I = IC(e, V') satisfies

uN Ve < E(KK, M) < 2u(N,V)e

Important: ;1 Is easy to compute and (near) best
algorithms can be described as will follow J
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°

A simple example
Take X to be a Hilbert space T
I lj(f) — <f, wj), 17=1,...,m with (wj) ONS then

s U*(w) L= Afggf‘l"/liﬂ Hw - M( )H&
v

s A:w— v"(w)is near optimal with constant 2

s If u*(w) € Ky Is the closest element v*(w) then
A* w — w*(w) IS linear and pointwise optimal

Best algorithm is essentially least squares fit:
1 can be computed by SVD of cross Grammian

What is new?: Generally you do not see ;; and
performance estimates for least squares

Note: Data is good if 1z is small and bad if . is large J
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Hilbert space geometry

|

deRoorFect — n 20/RA



© o o o o

Choosing V/

The above optimal estimates take the form
If =AM (f)llx < CuN,V)dist(f, V)

Here there is a competition between ;. and dist(f, V)

s Increasing the complexity of IV improves dist(f, V)
but increases (N, V)

| want to illustrate this with a (toy) example
X = C(D) with D a domain in R*

w; =1i(f)=flz;)withz; €e D, j=1,....m
V C C(D) alinear space of dimension n < m
PN, V) =1+ w(V,N') where

lolleoy
u(V. N') = sup
VN = s i erem [V |
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Point values

-

Near best algorithm is v* := Argmin, oy |[w — M(v)|,_

Example X = C([0,1]), &, ..., &, equally spaced,
V ="P,_1 - polynomials of degree < n. Then it is known

» If you choose n = m then u(\N, P,,) ~a, a > 1
s Ifn=./mthen pu(N,P,) <3

s This gives | f — A(M(f))llc < 3dist(f,P z)c
This points out the importance of the choice of V
Do not interpolate!!

Analogy with statistical learning: Do not overfit data
computing ;. tells you what overfit means

|
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High dimension

# What happens when f depends on many T
variables/parameters: many features in data

s [The mainissue is what is the correct model class K -
what is the correct V' to avoid the curse of
dimensionality

» Model classes K are proposed built on sparsity,
anisotropy, variable reduction, feature selection, etc.

s Typical IV are built on highly nonlinear methods such
as dictionary appproximation, neural networks

s To have a quantitative theory (certifiable
performance) we need to understand
s Which functions are approximated well by V' - if
and only if theorems
s Whatis (N, V) for given data and V J

s Computational complexity of optimal algorithms
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Additional Remarks
-

# The main references for the above are:
Binev-Cohen-Dahmen-DeVore-Petrova-Wojtaszczyk
(Hilbert space), DeVore -Petrova-Wojtaszczyk (Banach
space)

# Closely related work emphasizing more the issue of
stable computation is given by Adcock, Hansen,
Shadrin, Trefethen, et al

|
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# An interesting question is whether there are optimal or

Linear Algorithms

-

near optimal algorithms that are linear

o

o

For Hilbert space this is clear from the above

For X = C'(€2) and [;(f) = f(z;) this can be proved
using generalizations of Kalman’s convexity theorem
(DeVore-Foucart-Petrova- Wojtaszczyk

DFPW There is a linear algorithm

A*(w) = ZT:l wipi(x) with ¢; € C'(D)

For each = € D, the mapping w — > ." w;¢;(x) is
optimal for recovering 6..(f) = f(x)

The proof based on Functional Analysis and is not
constructive

|
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Quasi-interpolants

-

# A very constructive way to find a near optimal algorithm
A 1s through quasi-interpolant operators for 1/

s Alinear operator A : C(D) — C(D) is called a
quasi-interpolant if there exist points
¢ eD,jg=1,...,N,and y; € C(D) such that the

operator A(f) =" f(&;)1; satisfies
s ANv)=vforallveV
s [[Allxex < Co
# There always exists quasi-interpolants - the issue is

how large is N? For algebraic or trigonometric
polynomials one can take N = 2n with Cy < 4

# Once a quasi-interpolant is known, one can construct a
near optimal linear algorithm by solving NV constrained J

/1 minimization problems
deRoorFect — n 2R/RA



Quantities of Interest

# A similar theory of optimal recovery exists for quan’[i’[iesT
of interest ()

# Performance now controlled by

" I (0]
PNV Q) i= p NV Q) = sup i 53

# For any Banach space X we have the performance
bounds

PN,V Q)e < B(Q,K(e, V), M) < 2u(N, V, Q)e

|
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Constructive Opt. Linear Algorithm
-

# When C is an approximation set and () is a linear
functional then one can find an optimal algorithm that is
linear by constrained optimization:

o letlyp:={l= Z L ajl l(v) = Qv), ve V}and

[* := Argmin ||Q — || x~ —Z azl;

leLg

® Then|A* :w— Y " afw;|is an optimal algorithm

# Note this may be numerically intensive constrained
minimization

® Perf:||Q(f) — A*(Mf)] < ||Q — I*|| x- dist(f, V) x
® Yousee i < ||Q — "] x- J
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Example: Quadrature

-

Integration: Option trading, uncertainty quantification,
Quasi-Monte Carlo, etc.

Data are point valuesl-(f) = f(x;), j: L,...,m,

We want to compute Q(f) = [, w(x)f(x)dz, f € K(e, V)
The optimal quadrature on X = (J( ) using the points
Tj € D Is

s A'(f) =231 a4} f(x)
s (a7) = Afgmlﬂ{zj Llagl s D250 aju(ay) =

fD r)dr}
Thisis a constralned /1 minimization problem
u(N,V, Q) = ZTzl ‘afﬂ J

® | [f=A (M) < puWN,V,Q)dist(f,V)e ()
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Example: Global Temperature

-

# Let 7(z,t) denote temperature at position = on earth
and time ¢

® Quantity of interest Q(T') = [, [, ., T(x,t)dzdt
# Roughly 14K sites from 1950 till 2017
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Obstacles to Mathematical Analysis

o Life would be good if T
» We knew the right model class for 7'(x, ¢) - the right /

s If data sites, equipment, and measuring times did not
change each year

o Current algorithms use models based on pw
polynomials - not clear what space

#® We will use spherical harmonics

#® We compare Spherical Harmonics versus GISTemp
(NASA) on their adjusted data set

# We can compute 1 for spherical harmonics but not for
GISTemp

|
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Current Algorithms

# There are many algorithms T

o The following flowchart gives the main steps of the
NOAA and NASA algorithms using piecewise
polynomials on a uniform grid

Surface Air
Temperature Outlier Removal

# and # Urban Adjustment

NOAA/NCEI Quality Control

GHCN v3
SCAR/READER

‘—I

Grid Generation Sea Surface
And * Temperatures * Merge Land and Sea
Temperature Data

Smoothing NOAA/NCEI ERSST v4

# Impossible to analyze accuracy because of the ad hoc J
adjustments to the data
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omparison:GISTempvs. SH6

Global Anomalies by Year
T T T

a6 L L
1980 1965 1870 175 1980 1985 1990 1998 2000 2005 2010 2018
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Comparison: GISTemp vs. SH9

Global Anomalies by Year

T T T T T T
— Anom, I
——cisTenr | |

0 1
1960 1988 1970 1975 1980 1985 1990 1995 2000 2008 2010 2018
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o Are we computing global temperature?

Typical Growth of 1

-

s This would require proving validity of our model
class: would require analysis from physical principles

» Also depends on behavior of 4

T

3

6

9

12

15

18

14

1

1.03

2.61

24.13

223.50

2779.85

o We see that even if we justify our model class, we need

to restrict the size of n

|
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Summary

-

o We have given a mathematical view of Data
Assimilation

s This theory require a valid model class for the
functions we want to capture

s |f this validity is established then
s We have given optimal algorithms
s We have given certified performance of these
algorithms
o The challenge in application scenarios is

» Vverification of the correct model class - this is
especially challenging in high dimensions

» Feasibility of the computation of an optimal algorithm
s Understanding . J
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