Optimal DATA Assimilation Ronald DeVore

Collaborators: Peter Binev, Albert Cohen, Wolfgang Dahmen, Guergana Petrova, Przemek Wojtaszczyk

deBoorFest - p. 1/36

Dinner with Carl

deBoorFest - p. 2/36

Visit to China

deBoorFest - p. 3/36

Young Carl

deBoorFest - p. 4/36

deBoorFest - p. 5/36

Presidential Medal

deBoorFest - p. 6/36

The Tuxedo

deBoorFest – p. 7/36

Data Fitting

- Common Scientific Problem: We are given data about some underlying function *f* (scientific process) and we wish to 'fit the data' to answer some question about *f*
- This talk will concentrate on
 - Optimality of Algorithms
 - Certifiable Performance
- We put forward general principles can be tailored to any specific application

Your Favorite Application

MRI

Groundwater Modeling

Global Temperatures

Manifold Learning

Data Tasks

- Two types of tasks
 - Prediction: Approximate *f*
 - Quantity of Interest: calculate some narrower quantity
 - maximum/minimum of f
 - average behavior: calculate an integral of f
 - value of f at some designated point
- This talk will concern algorithms which, in some sense, can be proven optimal for recovering *f* or answering questions of interest about *f*: optimal and certifiable performance

deBoorFest - p. 10/36

Mathematical Formulation

- Consider the full approximation problem for f
 - Form of the Data?: We assume

 $w_j = l_j(f), \quad j = 1, \dots, m$, where l_j are linear functionals

- Measurement map $M(f) = w := (w_1, \ldots, w_m)$
- How to measure performance? We measure distortion by a norm $\|\cdot\|_X$ with X a Banach space
- An algorithm is a mapping $A : \mathbb{R}^m \mapsto X$ where A(M(f)) is an approximation to $f \in X$ giving error

 $E(f,A)_X := E(f,M,A)_X := \|f - A(M(f))\|_X$

deBoorFest - p. 11/36

Model Classes

- With no other information we can say nothing about the error or discuss best algorithms
- To state a meaningful problem we need to have additional information about *f*
- This additional information is typically given in an assumption that $f \in \mathcal{K} \subset X$
- The set \mathcal{K} is called a model class
- Typical deterministic model classes \mathcal{K} are given by
 - smoothness: Lipschitz, Sobolev, Besov balls
 - spectral conditions: bandlimited;
 - In high dimensions, i.e. when *f* depends on a lot of variables, model classes are built on sparsity, compressibility, anisotropy, variable reduction, etc.

deBoorFest - p. 12/36

Model Class

- An accurate description of the model class \mathcal{K} is the most important ingredient in data assimilation
- The more info we have on \mathcal{K} the better we can do
- In scientific computation this is extracted by understanding the scientific process: for example, bandlimits for signals, regularity theorems for PDEs
- In other settings this is more nebulous and so one seeks algorithms that are universal, i..e. work simultaneously for a wide range of model classes

Optimal Recovery: Best Algorithms

- $\mathcal{K}, \|\cdot\|_X$ fixed and consider any algorithm A
- Define $\mathcal{K}_w := \{f \in \mathcal{K} : M(f) = w\}$
 - Membership in \mathcal{K}_w is all we know about f
- Pointwise error: $E(\mathcal{K}_w, M, A) := \sup_{f \in \mathcal{K}_w} \|f A(w)\|_X$
- Worst case error: $E(\mathcal{K}, M, A) := \sup_{f \in \mathcal{K}} \|f - A(Mf))\|_X = \sup_{w \in I\!\!R^m} E(\mathcal{K}_w, M, A)$
- Optimal Performance: $E^*(\mathcal{K}, M) := \inf_A E(\mathcal{K}, M, A)$
- Optimal Recovery: The best algorithm A*
 - Let $B(g_w, R_w)$ be the smallest ball that contains \mathcal{K}_w
 - $A^* : w \mapsto g_w$ is an algorithm that is pointwise optimal $E(\mathcal{K}_w, M, A^*)_X = E^*(\mathcal{K}_w, M) = R_w$

deBoorFest - p. 14/36

Graphic for Optimal Recovery

deBoorFest - p. 15/36

Not so Fast!

You may think that this is the end of the story

- But finding the Chebyshev ball is a substantial problem and is only carried out in certain special settings: for certain \mathcal{K} and certain distortion metrics $\|\cdot\|_X$
- Results where optimal recovery is known are summarized in Micchelli-Rivlin
- The main point of this talk is to point out that there is a general setting where we can determine optimal or near optimal algorithms and we can determine a priori the optimal performance
 - This setting will also expose when one has good data or bad data

deBoorFest - p. 16/36

Approximation Sets

- Any algorithm will be based on some form of approximation!
- Let $V = V_n$ be the functions used in the approximation: polynomials, neural nets, wavelets, sparse sums, etc.
- Since we have chosen V we think K is described by the fact it is well approximated by V
- Natural Model class: Approximation set:

 $\mathcal{K} := \mathcal{K}(\epsilon, V) = \{ f : \operatorname{dist}(f, V)_X \le \epsilon \}$

We shall describe algorithms which are optimal over all e and you do not need to know e

deBoorFest - p. 17/36

Performance estimates

• Full approximation problem: Performance determined by *V* and null space $\mathcal{N} := \{f \in X : M(f) = 0\}$ via

$$\mu(\mathcal{N}, V) := \mu(\mathcal{N}, V)_X := \sup_{\eta \in \mathcal{N}} \frac{\|\eta\|}{\operatorname{dist}(\eta, V)}$$

• When X is a Hilbert space best performance for an approximation set $\mathcal{K} = \mathcal{K}(\epsilon, V)$ is

 $E^*(\mathcal{K}, M) = \mu(\mathcal{N}, V)\epsilon$

• When X is a general Banach space best performance $E(\mathcal{K}, M)$ for an approximation set $\mathcal{K} = \mathcal{K}(\epsilon, V)$ satisfies

 $\mu(\mathcal{N}, V)\epsilon \le E(\mathcal{K}, M) \le 2\mu(\mathcal{N}, V)\epsilon$

Important: μ is easy to compute and (near) best algorithms can be described as will follow

deBoorFest - p. 18/36

A simple example

- Take X to be a Hilbert space
- If $l_j(f) = \langle f, \omega_j \rangle$, $j = 1, \dots, m$ with $(\omega_j)_{j=1}^m$ ONS, then
 - $v^*(w) := \underset{v \in V}{\operatorname{Argmin}} \|w M(v)\|_{\ell_2}$
 - $A: w \mapsto v^*(w)$ is near optimal with constant 2
 - If $u^*(w) \in \mathcal{K}_w$ is the closest element $v^*(w)$ then $A^*: w \mapsto u^*(w)$ is linear and pointwise optimal
- Best algorithm is essentially least squares fit:
- μ can be computed by SVD of cross Grammian
- What is new?: Generally you do not see μ and performance estimates for least squares
- Note: Data is good if μ is small and bad if μ is large

deBoorFest - p. 19/36

Hilbert space geometry

deBoorFest - p. 20/36

Choosing V

- The above optimal estimates take the form $\|f A(M(f))\|_X \le C\mu(\mathcal{N}, V) \operatorname{dist}(f, V)$
- Here there is a competition between μ and dist(f, V)
 - Increasing the complexity of V improves ${\rm dist}(f,V)$ but increases $\mu(\mathcal{N},V)$
- I want to illustrate this with a (toy) example
- X = C(D) with D a domain in \mathbb{R}^d
- $w_j = l_j(f) = f(x_j)$ with $x_j \in D, j = 1, ..., m$
- $V \subset C(D)$ a linear space of dimension $n \leq m$
- $\mu(\mathcal{N}, V) = 1 + \mu(V, \mathcal{N})$ where $\mu(V, \mathcal{N}) = \sup_{v \in V} \frac{\|v\|_{C(D)}}{\max_{1 \le j \le m} |v(x_j)|}$

deBoorFest - p. 21/36

Point values

- Near best algorithm is $v^* := \operatorname{Argmin}_{v \in V} \|w M(v)\|_{\ell_{\infty}}$
- Example $X = C([0, 1]), \xi_1, \dots, \xi_m$ equally spaced, $V = \mathcal{P}_{n-1}$ - polynomials of degree < n. Then it is known
 - If you choose n = m then $\mu(\mathcal{N}, \mathcal{P}_m) \approx a^N, a > 1$
 - If $n = \sqrt{m}$ then $\mu(\mathcal{N}, \mathcal{P}_n) \leq 3$
 - This gives $||f A(M(f))||_C \le 3 \operatorname{dist}(f, \mathcal{P}_{\sqrt{n}})_C$
- This points out the importance of the choice of V
- Do not interpolate!!
- Analogy with statistical learning: Do not overfit data
- computing μ tells you what overfit means

deBoorFest – p. 22/36

High dimension

- What happens when *f* depends on many variables/parameters: many features in data
 - The main issue is what is the correct model class K what is the correct V to avoid the curse of dimensionality
 - Model classes \mathcal{K} are proposed built on sparsity, anisotropy, variable reduction, feature selection, etc.
 - Typical V are built on highly nonlinear methods such as dictionary appproximation, neural networks
 - To have a quantitative theory (certifiable performance) we need to understand
 - Which functions are approximated well by V if and only if theorems
 - What is $\mu(\mathcal{N}, V)$ for given data and V
 - Computational complexity of optimal algorithms

deBoorFest - p 23/36

Additional Remarks

- The main references for the above are: Binev-Cohen-Dahmen-DeVore-Petrova-Wojtaszczyk (Hilbert space), DeVore -Petrova-Wojtaszczyk (Banach space)
- Closely related work emphasizing more the issue of stable computation is given by Adcock, Hansen, Shadrin, Trefethen, et al

Linear Algorithms

- An interesting question is whether there are optimal or near optimal algorithms that are linear
 - For Hilbert space this is clear from the above
 - For $X = C(\Omega)$ and $l_j(f) = f(x_j)$ this can be proved using generalizations of Kalman's convexity theorem (DeVore-Foucart-Petrova- Wojtaszczyk
 - **DFPW** There is a linear algorithm $A^*(w) = \sum_{j=1}^m w_j \phi_j(x)$ with $\phi_j \in C(D)$
 - For each $x \in D$, the mapping $w \mapsto \sum_{j=1}^{m} w_j \phi_j(x)$ is optimal for recovering $\delta_x(f) = f(x)$
 - The proof based on Functional Analysis and is not constructive

deBoorFest - p. 25/36

Quasi-interpolants

- A very constructive way to find a near optimal algorithm A is through quasi-interpolant operators for V
 - A linear operator $\Lambda : C(D) \mapsto C(D)$ is called a quasi-interpolant if there exist points $\xi_j \in D, \ j = 1, \dots, N$, and $\psi_j \in C(D)$ such that the operator $\Lambda(f) := \sum_{j=1}^N f(\xi_j) \psi_j$ satisfies
 - $\Lambda(v) = v$ for all $v \in V$
 - $\|\Lambda\|_{X\mapsto X} \le C_0$
- There always exists quasi-interpolants the issue is how large is N? For algebraic or trigonometric polynomials one can take N = 2n with $C_0 \le 4$
- Once a quasi-interpolant is known, one can construct a near optimal linear algorithm by solving N constrained ℓ_1 minimization problems

Quantities of Interest

- A similar theory of optimal recovery exists for quantities of interest Q
- Performance now controlled by

$$\mu(\mathcal{N}, V, Q) := \mu(\mathcal{N}, V, Q)_X := \sup_{\eta \in \mathcal{N}} \frac{\|Q(\eta)\|}{\operatorname{dist}(\eta, V)}$$

For any Banach space X we have the performance bounds

 $\mu(\mathcal{N}, V, Q)\epsilon \le E(Q, \mathcal{K}(\epsilon, V), M) \le 2\mu(\mathcal{N}, V, Q)\epsilon$

Constructive Opt. Linear Algorithm

When K is an approximation set and Q is a linear functional then one can find an optimal algorithm that is linear by constrained optimization:

• Let
$$\mathcal{L}_Q := \{l = \sum_{j=1}^m a_j l_j : l(v) = Q(v), v \in V\}$$
 and
 $l^* := \operatorname{Argmin}_{l \in \mathcal{L}_Q} ||Q - l||_{X^*} = \sum_{j=1}^m a_j^* l_j$

• Then $A^*: w \mapsto \sum_{j=1}^m a_j^* w_j$ is an optimal algorithm

Note this may be numerically intensive constrained minimization

• Perf:
$$|Q(f) - A^*(Mf)| \le ||Q - l^*||_{X^*} \operatorname{dist}(f, V)_X$$

• You see
$$\mu \leq \|Q - l^*\|_{X^*}$$

deBoorFest – p. 28/36

Example: Quadrature

- Integration: Option trading, uncertainty quantification, Quasi-Monte Carlo, etc.
- Data are point values $l_j(f) = f(x_j), j = 1, ..., m$,
- We want to compute $Q(f) = \int_D \omega(x) f(x) dx, \ f \in \mathcal{K}(\epsilon, V)$
- The optimal quadrature on X = C(D) using the points $x_j \in D$ is
 - $A^*(f) = \sum_{j=1}^m a_j^* f(x_j)$
 - $(a_j^*) := \operatorname{Argmin}\{\sum_{j=1}^m |a_j| : \sum_{j=1}^m a_j v(x_j) = \int_D \omega(x) v(x) \, dx\}$
- This is a constrained ℓ_1 minimization problem
- $\mu(\mathcal{N}, V, Q) = \sum_{j=1}^{m} |a_j^*|$
- $|\int f A^*(M(f))| \le \mu(\mathcal{N}, V, Q) \operatorname{dist}(f, V)_{C(D)}$ deBoorFest – p. 29/36

Example: Global Temperature

- Let T(x,t) denote temperature at position x on earth and time t
- Quantity of interest $Q(T) = \int_{Year} \int_{Earth} T(x,t) dx dt$
- Roughly 14K sites from 1950 till 2017

deBoorFest - p. 30/36

Obstacles to Mathematical Analysis

- Life would be good if
 - We knew the right model class for T(x,t) the right V
 - if data sites, equipment, and measuring times did not change each year
- Current algorithms use models based on pw polynomials not clear what space
- We will use spherical harmonics
- We compare Spherical Harmonics versus GISTemp (NASA) on their adjusted data set
- We can compute μ for spherical harmonics but not for GISTemp

deBoorFest - p. 31/36

Current Algorithms

- There are many algorithms
- The following flowchart gives the main steps of the NOAA and NASA algorithms using piecewise polynomials on a uniform grid

Impossible to analyze accuracy because of the ad hoc adjustments to the data

deBoorFest - p. 32/36

Comparison: GISTempvs. SH6

deBoorFest - p. 33/36

Comparison: GISTemp vs. SH9

deBoorFest - p. 34/36

Typical Growth of μ

- Are we computing global temperature?
 - This would require proving validity of our model class: would require analysis from physical principles
 - Also depends on behavior of μ

n	3	6	9	12	15	18
μ	1	1.03	2.61	24.13	223.50	2779.85

We see that even if we justify our model class, we need to restrict the size of n

Summary

- We have given a mathematical view of Data Assimilation
 - This theory require a valid model class for the functions we want to capture
 - If this validity is established then
 - We have given optimal algorithms
 - We have given certified performance of these algorithms
- The challenge in application scenarios is
 - verification of the correct model class this is especially challenging in high dimensions
 - Feasibility of the computation of an optimal algorithm
 - Understanding μ

deBoorFest – p. 36/36