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Polynomial Splines

Let k be a positive integer. The linear space of all polynomials
of order ≤ k is denoted by Pk.

A real sequence t := (ti)i∈Z is called a knot sequence if
ti ≤ ti+1 for all i ∈ Z. If ti−1 < ti = · · · = ti+m−1 < ti+m and
τ = ti, then we say that the multiplicity of τ in t is m.

Let t be a knot sequence with ti < ti+k for all i ∈ Z. A
function f from R to R is called a spline of order k with knot
sequence t if it satisfies the following two conditions:

1. f |(tj ,tj+1) ∈ Pk|(tj ,tj+1) for all j with tj < tj+1;

2. If τ is a knot in t with multiplicity m, then
Drf(τ−) = Drf(τ+) for r = 0, 1, . . . , k −m− 1, where
Drf denotes the rth derivative of f .

The collection of all splines of order k with knot sequence
t is denoted by Sk,t.



B-splines

B-splines were introduced by Curry and Schoenberg in 1947.
Let t be a given knot sequence with ti < ti+k for all

i ∈ Z. The B-splines of order k for t are given by

Bi(x) := Bi,k,t(x) := (ti+k−ti)[ti, . . . , ti+k](·−x)k−1
+ , x ∈ R,

where [ti, . . . , ti+k] denotes the kth order divided difference at
the points ti, . . . , ti+k, and u+ := max{u, 0}.

The kth divided difference of a function g at the points
τi, . . . , τi+k is the leading coefficient of the polynomial of order
k+1 which agrees with g at the points τi, . . . , τi+k. It is denoted
by

[τi, . . . , τi+k]g.

See Carl de Boor, A Practical Guide to Splines, Springer-

Verlag, 1978.



Properties of B-splines

It is easily seen that each Bi lies in Sk,t. Moreover, by using
the properties of divided difference we have

Bi(x) = 0 for x /∈ [ti, ti+k]

and ∑
i∈Z

Bi(x) = 1 ∀x ∈ R.

Theorem (Curry and Schoenberg, 1966)
Any function f ∈ Sk,t can be uniquely represented as

f =
∑
i∈Z

aiBi,k,t,

where ai ∈ R for i ∈ Z.



Quasi-interpolants
The above theorem can be proved by using quasi-interpolants.

Theorem (de Boor and Fix, 1973)
Let λi be the linear functional given by the rule

λif =
k∑
r=1

(−D)r−1ψi(ξ)D
k−rf(ξ),

with ψi(t) := (ti+1 − t) · · · (ti+k−1 − t)/(k − 1)!, and ξ some
arbitrary point in the open interval (ti, ti+k). Then

λiBj = δij ∀ i, j ∈ Z,

where δij = 1 for i = j, and δij = 0 for i 6= j.

The quasi-interpolation scheme made a profound impact
on many areas of analysis beyond spline theory.



Discrete B-splines
Suppose s = (si)i∈Z is a subsequence of t. Then any B-spline
Bj,k,s is a linear combination of the B-splines Bi,k,t:

Bj,k,s =
∑
i∈Z

βj,k,s,t(i)Bi,k,t.

For each j ∈ Z, the function that maps i ∈ Z to βj,k,s,t(i)
is called a discrete B-spline. Clearly, βj(i) = δij if s = t.

Suppose that the knot sequence s is formed by dropping

an entry tz from t, that is, si = ti for i < z and si = ti+1

for i ≥ z. Then we have βj(i) = δij for j + k ≤ z − 1 and
βj(i) = δi−1,j for j ≥ z. In the case j < z ≤ j + k we have
βj(i) = 0 for j < i− 1 or j > i. Moreover,

βi−1(i) =
ti+k − tz
ti+k − ti

and βi(i) =
tz − ti
ti+k − ti

.



Total Positivity

Theorem (Jia 1983)
Let k be a positive integer, let t = (ti)i∈Z be a knot sequence
with ti < ti+k for all i ∈ Z, and let s be a subsequence of t.
Suppose I = (i1, . . . , im) ∈ Zm and J = (j1, . . . , jm) ∈ Zm
are two sequences such that i1 < . . . < im and j1 < . . . < jm.
Then

detQ(I, J) ≥ 0,

where Q(I, J) denotes the matrix (βj,k,s,t(i))i∈I,j∈J .

We abbreviate βj,k,s,t(i) to βj(i). If s = t, or if s is
obtained from dropping one knot from t, then

Q(I, J) = βj1(i1) · · · βjm(im) ≥ 0.

For the general case we use induction on the number of

new knots in t but not in s to finish the proof.



Spline Collocation Matrix
The above theorem can be used to give an easy proof for total
positivity of the spline collocation matrix. Write Bj = Bj,k,t

for j ∈ Z. Suppose x1 < · · · < xn. If I = (1, . . . , n) and
J = (j1, . . . , jn) with j1 < . . . < jn, then

det
(
Bj(xi)

)
i∈I,j∈J ≥ 0.

This result was originally established by Karlin in 1968.

Let s be a knot refinement of t such that each xi (i =
1, . . . , n) appears exactly k times in s. Then

Bj,k,t =
∑
i∈Z

βj,k,t,s(r)Br,k,s.

Suppose sri−1 < xi = sri = · · · = sri+k−1 < sri+k. Then
Bj,k,t(xi) = βj,k,t,s(ri). So the desired result can be derived
from the corresponding theorem on discrete B-splines.



Sign Changes
Given a vector a = (a1, . . . , an) of real numbers, we use S−(a)
to denote the sigh changes in the sequence a1, . . . , an.

Theorem (Lane and Riesenfeld 1983)
If f =

∑
i aiBi,k,t =

∑
i biBi,k,s, where s is a refinement of t,

then S−(b) ≤ S−(a).

The following proof was given by de Boor and DeVore in 1985.
It suffices to show that the statement is true for the insertion
of a single additional knot. Then Bi,k,t = αiBi,k,s + βiBi+1,k,s

with αi ≥ 0 and βi ≥ 0 for each i. It follows that

bi = βi−1ai−1 + αiai.

Thus bi will have the same sign as either ai−1 or ai. Therefore,

S−(a) = S−(. . . , ai−1, bi, ai, bi+1, ai+1, . . .) ≥ S−(b).



Variation Diminishing Property
Given a function f , we use S−(f) to denote the number of sign
changes of f .

The original result on variation diminishing was stated by
Schoenberg in 1967 and proved by Karlin in 1968. It says that

S−
(∑

i

aiBi,k,t

)
≤ S−(a)

for any finite sequence a.
Indeed, let f :=

∑
i aiBi,k,t and suppose x1 < · · · < xr+1 are so

chosen that S−(f) = S−(f(x1), . . . , f(xr+1)). Let s be a knot
refinement of t such that each xi (i = 1, . . . , r + 1) appears
exactly k times in s. Then f can be written as

∑
j bjBj,k,s. If

sji−1 < xi = sji = · · · = sji+k−1 < sji+k, then f(xi) = bji .
Hence S−(f) ≤ S−(b). But S−(b) ≤ S−(a). This shows

S−(f) ≤ S−(a).



Zeros of Splines
A point y is a zero of f with multiplicity m if f (j)(y) = 0 for
j = 0, . . . ,m− 1, f (m) is continuous at y and f (m)(y) 6= 0.

Theorem (Goodman1994)
Let f =

∑n
j=1 ajBj,k,t. Suppose that for every x ∈ (t1, tn+k)

there exists some j with aj 6= 0 and tj < x < tj+k. Then
Z(f) ≤ S−(a), where Z(f) denotes the total number of zeros
of f in (t1, tn+k), counting multiplicities.

Let x be a zero of f in (t1, tn+k) of multiplicity m. Then
the multiplicity of x in the knot sequence t does not exceed
k − m − 1. Insert x repeatedly into the knot sequence until
x has multiplicity k − m − 1 in the resulting knot sequence.
Also insert knots in x − h and x + h, each with multiplicity
k, where h > 0 is sufficiently small. Recall that knot insertion
does not increase the number of sign changes. We can use the
quasi-interpolants of de Boor and Fix to finish the proof.



B-spline Collocation Matrix
Let k and n be positive integers, t := (ti)i∈Z a knot sequence,
and z = (zi)1≤i≤n a nondecreasing sequence of real numbers.
It is required that any point appear at most k times totally in z
and t. For 1 ≤ i ≤ n we use µi to denote the number of j < i
for which zj = zi.

Theorem (de Boor 1976)
Let I := (1, . . . , n), J = (j1, . . . , jn) a sequence of integers
with j1 < · · · < jn, and

A(I, J) :=
(
DµiBj(zi)

)
i∈I,j∈J .

Then detA(I, J) ≥ 0 with strict inequality if and only if
tji < zi < tji+k for all i = 1, . . . , n.

The last statement of this theorem can be proved by
considering zeros of splines.



Spline Interpolation

Let t = (ti)1≤i≤n and z = (zi)1≤i≤n+k be nondecreasing se-
quences of real numbers. It is assumed that any point appear
at most k times totally in z and t. The following result was
first obtained by Schoenberg and Whitney in 1953 for the case
where z is a strictly increasing sequence. For 1 ≤ i ≤ n we use
µi to denote the number of j < i for which zj = zi.

Theorem (de Boor 1976)
The interpolations problem{

f ∈ Sk,t
Dµif(zi) = yi, i = 1, . . . , n+ k,

has a unique solution for arbitrary (yi)1≤i≤n+k if and only if
zi < ti < zi+k for all i = 1, . . . , n.



Bounds for Least-squares Approximation by Splines
Let t = (ti)1≤i≤n+k be a finite knot sequence. Given f ∈
L∞[t1, tn+k], we use Ltf to denote the least-squares approxi-
mation to f from Sk,t. A basic question is whether the linear
projector L := Lt is bounded on L∞[t1, tn+k].

This problem can be reformulated as follows. For f, g ∈
L2(a, b) with a := t1 and b := tn+k, we use 〈f, g〉 to denote the

integral
∫ b
a
f(x)g(x) dx. Let

Mi := kBi/(ti+k − ti), i = 1, . . . , n.

Then
∫ b
a
Mi(x) dx = 1. We use Gt to denote the matrix

(〈Mi, Bj〉)1≤i,j≤n.

In 1973 de Boor raised the conjecture

sup
t
‖(Gt)

−1‖∞ <∞.

This is equivalent to saying that Lt is bounded on L∞[t1, tn+k].



Confirmation of de Boor’s Conjecture

Theorem (Shadrin 2001)
For all k ∈ N,

sk := sup
t
‖G−1

t ‖∞ <∞,

with the supremum taken over all finite knot sequence t that
are k-complete, meaning that the first and the last knot
appear with maximal multiplicity k.

Shadrin’s proof is rather long and complicated. A short
and simple proof was given by Golitschek recently in 2014.

Shadrin’s Theorem is proved only for k-complete finite

sequences hence says nothing about principal submatrices of
Gt, since there is no reason for any finite section of t to be
k-complete. Also, it is not clear how the result can be extended
to (bi)infinite knot sequences.

These problems were settled by de Boor himself in 2012.



Totally Positive Matrices
Shadrin’s Theorem together with the following lemma shows
supt ‖(Gt)

−1‖∞ <∞.

Lemma (de Boor, Jia, and Pinkus 1982)
If B ∈ Rn×n is totally positive and invertible, then for any
integer interval m ⊆ {1, 2, . . . ,m}, so is the principal
submatrix C := B(m,m) ∈ Rm×m, and

0 ≤ (−1)i+jC−1(i, j) ≤ (−1)i+jB−1(i, j), i, j ∈m.

The (bi)infinite case is settled in the following theorem.

Theorem (de Boor 2012)
Let A ∈ RI×I with I equals N or Z, and assume that A is
totally positive and banded. If for some positive number s and
all finite integer intervals m ⊂ I, the principal submatrix
Am := A(m,m) is invertible and ‖(Am)−1‖ ≤ s, then A is
invertible as a linear map on `∞(I), and ‖A−1‖∞ ≤ s.



Multivariate Splines

In his talk “The way things were in multivariate splines: A per-
sonal view” presented in 2009, de Boor gave a personal account
of his encounters with multivariate splines during their early his-
tory.

In 1960, as a research assistant for G. Birkhoff, de Boor
was aware that Birkhoff and H. Garabedian had developed a
scheme for interpolation to data on a rectangular grid. Then
de Boor pointed out that the same scheme could be achieved by
using the tensor-product of univariate cubic spline interpolation.
The resulting surface will be C2 rather than just C1. This is
now known as bicubic spline interpolation, and has become a
mainstay in the construction of smooth interpolants to gridded
data.



Multivariate B-splines
In his talk given at the second Texas conference in 1976, on
the central role played by B-splines in the univariate spline the-
ory, de Boor finished with a brief discussion of Schoneberg’s
multivariate B-splines.

In 1965, in a letter to Phil Davis, I. J. Schoenberg sketched
a bivariate quadratic B-spline. This geometric construction pre-
ceded the later development of polyhedral splines.

In 1978, C. A. Micchelli constructed simplex splines and
obtained a recurrence formula for simplex splines. In the spirit
of Micchelli’s view of Schoenberg’s multivariate B-spline, for a
convex body B in Rn and a linear map P from Rn to Rs, the
corresponding B-spline MB is defined as the distribution on Rs

given by

MB(φ) :=

∫
B

φ ◦ P, all test functions φ.



Polyhedral Splines

Under the assumption that B is a convex polytope, it can be
shown that MB is indeed a piecewise polynomial. Carl de Boor
and Klaus Höllig called MB a polyhedral spline.

Thus Schoenberg’s B-spline became a simplex spline. In
early 1980’s W. Dahmen and C. A. Micchelli were engaged in
an extensive study of simplex splines. In particular, Dahmen in-
troduced multivariate truncated powers, which can be regarded
as cone splines.

In 1980 de Boor and DeVore had a discussion on the
approximation order achieved by a space of piecewise polyno-
mials on a partition. They suddenly realized that Courant’s
hat function is the 2-dimensional (skewed) shadow of a 3-cube.
Some other finite elements could also be obtained as shadows
of higher-dimensional cubes. This motivated them to introduce
box splines (cube splines).



Box Splines
Given an s × n real matrix X, the box spline MX associated
with X is the distribution given by the rule

φ 7→
∫

[0,1)n
φ(Xt) dt for φ ∈ C(Rs).

Suppose X = [x1, . . . , xn]. We assume that X is of full rank
and xj ∈ Zs \ {0} for j = 1, . . . , n. The box spline MX is
nonnegative on Rs and its support is the zonotope

[X] :=
{ n∑
j=1

xjtj : 0 ≤ tj ≤ 1
}
.

Moreover, it is a piecewise polynomial.

C. de Boor, K. Hölliog, and S. Riemenschneider, Box
Splines, Springer-Verlag, 1993.



The Influence of Box Splines

The study of box splines made a profound impact on many areas
of mathematics.

Box splines are piecewise polynomials, so they provide a
powerful tool for approximation and interpolation. Their study
led to comprehensive research on approximation by scaled shift-
invariant spaces.

Box splines are refinable. Thus they are suitable for subdi-
vision schemes and wavelet construction. Subdivision schemes
play a vital role in computer aided geometric design. The
wavelets induced by box splines are useful for numerical analysis.

From their construction, box splines, or more generally,
polyhedral splines, inherit certain nice algebraic and geometric
properties. Indeed, box splines have found some interesting
applications in algebra, geometry, and combinatorics.



The Linear Algebra of Box Spline Spaces
The multi-integer shifts of a box spline form a partition of unity:∑

j∈Zs

MX(· − j) = 1.

The sequence (MX(· − j))j∈Zs is said to be (globally) lin-
early independent if

∑
j∈Zs c(j)MX(· − j) = 0 implies c(j) = 0

for all j ∈ Zs. The sequence is locally linearly independent if,
for any bounded open subset G of Rs, all shifts of MX having
some support in G are linearly independent there.

Theorem (Dahmen–Micchelli 1983-5, Jia 1984-5)
The following statements are equivalent:

1. The shifts of MX are linearly independent.

2. The shifts of MX are locally linearly independent.

3. All bases in X have determinant ±1.



Polynomials in Box Spline Spaces

For a vector y in Rs, the directional derivative operator Dy is
defined as Dyf := limt→0[f(·+ ty)− f ]/t. For a multiset Y of
vectors in Rs, we define DY :=

∏
y∈Y Dy. Let ker(DY ) be the

space of all smooth functions f on Rs such that DY f = 0.

We view X as a multiset of vectors in Rs. Let A(X) be
the collection of all smallest subsets Y of X for which X \ Y
does not span Rs. Define

D(X) := ∩Y ∈A(X) ker(DY ).

Then the box spline MX is piecewise in D(X). Further, D(X)
is the space of all polynomials generated by shifts of MX .

Theorem (Dahmen and Micchelli 1985)
The dimension of D(X) is equal to the number of bases of Rs

in X. It is also equal to the volume of the zonotope Z[X].



Approximation Power of Box Splines
Given a compactly supported function φ ∈ Lp(Rs), 1 ≤ p ≤ ∞,
we use S(φ) to denote the space of functions of the form∑

j∈Zs b(j)φ(· − j). For h > 0, let σh be the scaling opera-
tor given by σhf := f(·/h).

Theorem
If
∑

j∈Zs q(j)φ(· − j) = q for all polynomials q of degree at
most k− 1, then S(φ) provides Lp-approximation order k, that
is, for every sufficiently smooth function f in Lp(Rs),

inf
g∈σh(S(φ))

{
‖f − g‖Lp

}
≤ Cfh

k ∀h > 0,

where Cf is a constant independent of h.

For a box spline MX , the approximation order of S(MX) is
min{#Z : Z ∈ A(X)}. A quasi-interpolation scheme can be
used to achieve the approximation order.



Splines on a Three Direction Mesh
Let e1 := (1, 0) and e2 := (0, 1) be the two unit coordinate
vectors in R2, and let e3 := e1 + e2. Further, let ∆ be the
partition of R2 into triangles obtained from three families of
meshlines {v + tei : v ∈ Z2, t ∈ R}, i = 1, 2, 3. We use Sρk,∆
to denote the space of all Cρ-functions which are piecewise
polynomials of degree at most k on the partition ∆. Let Πm

denote the space of all polynomials of degree at most m.

Theorem (de Boor and Höllig 1983)
A necessary condition for Sρk,∆ to provide approximation order
m is Sρk,∆ ⊃ Πm−1. But the optimal approximation order of
S1

3,∆ is 3, not 4, even S1
3,∆ ⊃ Π3.

Let φ1 be the box spline MX1 with X1 := {e1, e1, e2, e3}, and
let φ2 be the box spline MX2 with X2 := {e1, e2, e2, e3}. Then
φ1, φ2 ∈ S1

3,∆. A quasi-interpolation scheme with φ1 and φ2 can
be used to achieve approximation order 3.



Subdivision Schemes
The box spline MX associated with X = (x1, . . . , xn) satisfies
the refinement equation

MX(x) =
∑
α∈Zs

a(α)MX(2x− α), x ∈ Rs,

where the refinement mask a is given by∑
α∈Zs

a(α)e−iα·ξ =
n∏
j=1

1 + e−ix
j ·ξ

2
, ξ ∈ Rs.

Given a mask a : Zs → R, the subdivision operator Sa is the
operator on sequences on Zs given by

Saλ(α) :=
∑
β∈Zs

a(α− 2β)λ(β), α ∈ Zs.

A. S. Cavaretta, W. Dahmen, and C. A. Micchelli, Stationary
Subdivision, AMS Memoirs, No. 453, 1991.



Spline Wavelets

During 1988–1990 malltiresolution analysis was introduced by
Y. Meyer and S. Mallat, and compactly supported orthogonal
wavelets were constructed by I. Daubechies.

In early 1990’s, C. K. Chui and J. Z. Wang used cardinal
B-splines to construct compactly supported prewavelets.

Box splines are refinable, so they are suitable for construct-
ing wavelets. This was first done by S. Riemenschneider and
Z. W. Shen for dimensions 2 and 3 in their 1991 paper.

Extensions of mutliresolution analysis as well as construc-
tions of wavelets and prewavelets in higher dimensions using
box splines were investigated by R. Q. Jia and C. A. Micchelli
in their 1991 paper, and by C. de Boor, R. Devore, and A. Ron
in their 1993 paper.

The book “Box Splines” also contains some interesting
results on the construction of wavelets in Rs for s ≤ 3.



Dimension of Kernels of Linear Operators
The algebraic theory of box splines was extended to the study
of kernels of certain linear operators. Around 1990 de Boor and
Ron applied polynomial ideals to multivariate splines. Mean-
while Dahmen and Micchelli connected piecewise polynomial
spaces with solutions of systems of partial differential equations.
Soon after Z. W. Shen solved a difficult conjecture of Dahmen
and Micchelli. This motivated the joint work of Jia, Riemen-
schneider, and Shen on dimesnion of kernals of linear operators,
using matroid theory and algebraic geometry.
In this direction the following two important papers appeared in
Advances in Applied Mathematics in 1996: C. de Boor, A. Ron,
and Z. W. Shen, On ascertaining inductively the dimension of
the joint kernel of certain commuting linear operators. W. Dah-
men, A. Dress, and C. A. Micchelli, On multivariate splines,
matroids, and the Ext-functor. Both papers were selected by
Math Reviews to have featured reviews.



Perturbation of Polynomial Ideals
My paper “Perturbation of polynomial ideals” appeared in the
same issue. It was influenced by the previous work of de Boor
and Ron on polynomial ideals. Let K be a field. We denote by
K[Z1, . . . , Zs] (resp. K[[Z1, . . . , Zs]]) the ring of polynomials
(resp. the ring of formal power series) in s indeterminates over
K. Let I be an ideal of K[Z1, . . . , Zs]. The codimension of
I is the dimension of the quotient space K[Z1, . . . , Zs]/I over
K. The kernel of I is the set

I⊥ := {f ∈ K[[Z1, . . . , Zs]] : p(D)f = 0 ∀ p ∈ I}.

Theorem (de Boor and Ron 1991, Jia 1996)
Let K be an algebraically closed field of characteristic zero. If
I is an ideal of K[Z1, . . . , Zs] with finite codimension, then

codim(I) = dim(I⊥).

Polynomial ideals played a vital role in the study of de Boor
on multivariate interpolation.



Magic Squares
An m × m matrix with nonnegative integer entries is called a
magic r-square of order m if every row and column sums to r.
Let Hm(r) denote the number of all magic r-squares of order m.
It was proved by R. Stanley in 1973 that Hm(r) is a polynomial
of degree (m− 1)2.
A study of magic squares led to linear diophantine equations. It
was Dahmen and Micchelli who first revealed the close relation-
ship between linear diophantine equations and the so-called dis-
crete truncated powers. Thus the theory of multivariate splines
could be applied to certain combinatorial and algebraic prob-
lems. Using this approach, they succeeded in re-proving and
extending certain results of Stanley on magic squares. Their
insight into this problem opened a new way of attacking the
more difficult problem of Stanley’s conjecture about symmetric
magic squares, which had remained unsolved for a long time by
using commutative algebra.



Symmetric Magic Squares
Theorem (Stanley 1976)
Let m ≥ 1, and let Sm(r) be the number of m×m symmetric
magic r-squares. Then

1. Sm(r) = Pm(r) + (−1)rQm(r) for all r ∈ N, where
Pm(r) and Qm(r) are polynomials in r.

2. degPm =
(
m
2

)
.

3. degQm ≤
(
m−1

2

)
− 1 if m is odd; degQm ≤

(
m−2

2

)
− 1 if

m is even.
He conjectured that equality holds for all m in part 3 of the

above theorem.
In 1992, using multivariate discrete splines, I gave a proof of

this long-outstanding conjecture. My two papers “Multivariate
discrete splines and linear diophatine equations” and “Symmet-
ric magic squares and multivariate splines” were cited in the
book R. Stanley, Enumerative Combinatorics: Volume 1, Sec-
ond Edition, Cambridge University Press, 2012.



Recent Developments
Written by two Lie algebraists, Corrado De Concini and Claudio
Procesi, the book “Topics in Hyperplane Arrangements, Poly-
topes and Box-Splines” (Springer 2010) brought together many
areas of research that focus on methods to compute the num-
ber of integral points in suitable families or variable polytopes.
Multivariate splines, in particular box splines, play a central role
in the book.

In their 2011 paper, Olga Holtz and Amos Ron introduced
zonotopal algebra associated with a given zonotope and further
enhanced the algebraic theory originated from the study of box
splines.

In their 2010 paper Bernd Sturmfels and Zhiqiang Xu used
multivariate splines to solve some interesting problems in com-
mutative algebra related to combinatorics. In his 2011 paper
Xu showed that box splines could be employed to recast many
important results in discrete geometry.


