

Engineering, Test & Technology Boeing Research & Technology

Solving Systems of Spline Equations: A Linear Programming-based Approach

Thomas Grandine Senior Technical Fellow Support and Analytics Technology

Copyright © 2016 Boeing. All rights reserved.

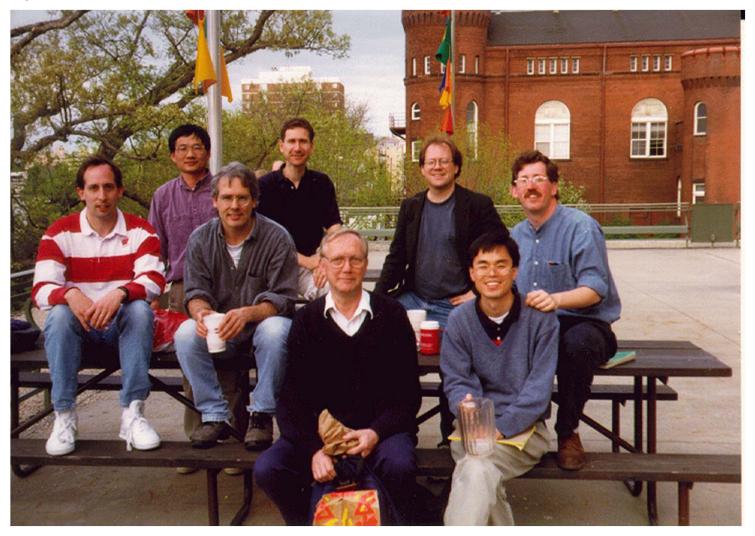
Author, 12/19/2017, Filename.ppt 1

A fun occasion in 1985

A few moments later . . .

Copyright © 2016 Boeing. All rights reserved.

... and 11+ years later in 1997



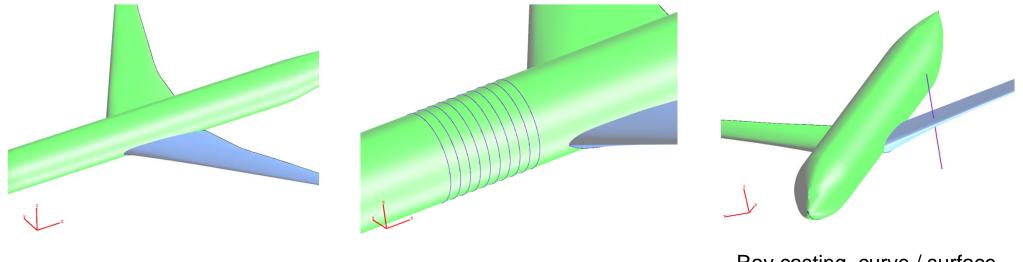
Copyright © 2016 Boeing. All rights reserved.

Author, 12/19/2017, Filename.ppt 4

Engineering, Test & Technology

Boeing needs to solve approximately 200 million spline systems every day

Applications include



Surface intersection

Planar cut, structured meshing

Ray casting, curve / surface intersection

Reliability is essential

- The surface intersection algorithm requires solving, on average, about 20 systems.
- If the spline system solver is has 99% reliability, then the surface intersection algorithm is less than 82% reliable.
- Even at 99.9% reliability, the surface intersector will still fail 2% of the time.

Copyright © 2016 Boeing. All rights reserved.

Three references stand out

- [H14] Hanniel, I. "Solving multivariate polynomial systems using hyperplane arithmetic and linear programming," *Computer-Aided Design* 46, pp. 101–109.
- [MPR03] Mourrain, B., V. Y. Pan, and O. Ruatta. "Accelerated solution of multivariate polynomial systems of equations," SIAM Journal of Computing 32, pp. 435–454.
- [SP93] Sherbrooke, E. C. and N. M. Patrikalakis. "Computation of the solutions of nonlinear polynomial systems," *Computer Aided Geometric Design* 10, pp. 379–405.
- A few remarks:
 - The papers all exclusively focus on polynomial, rather than spline systems.
 - They eschew algebraic techniques in favor of numerical methods.
 - They focus heavily on robustness.

The best method for almost 25 years is due to Sherbrooke and Patrikalakis (1993)

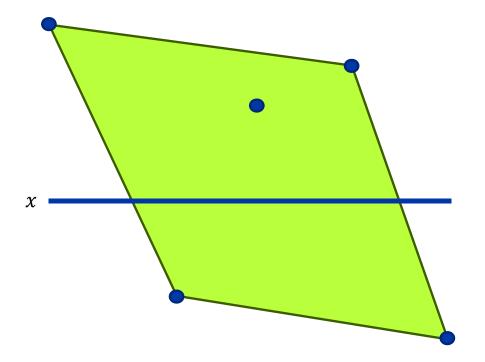
- Method is usually referred to as The Projected Polyhedron Method
- Given a spline function of one variable:

$$f(x) = \sum_{i=0}^{n} \alpha_i B_i(x) = 0$$

• Consider the B-spline series for the graph of *f*:

$$\binom{x}{f(x)} = \sum_{i=0}^{n} \binom{x_i}{\alpha_i} B_i(x)$$

 The graph of the function lies inside the convex hull of these control points.



The projected polyhedron idea generalizes to more than one variable

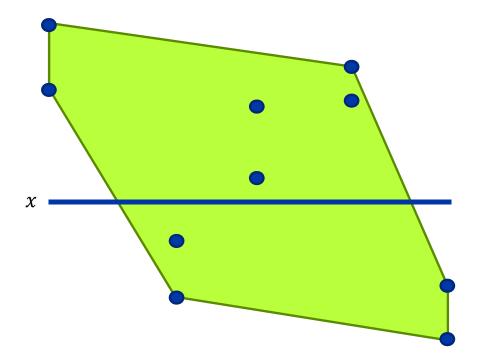
Consider a tensor product spline function:

$$f(x, y) = \sum_{i} \left(\sum_{j} \alpha_{ij} C_{j}(y) \right) B_{i}(x) = 0$$

- This can be thought of as a univariate spline whose B-spline coefficients are functions of the other variables.
- For each *i*, consider the two control points

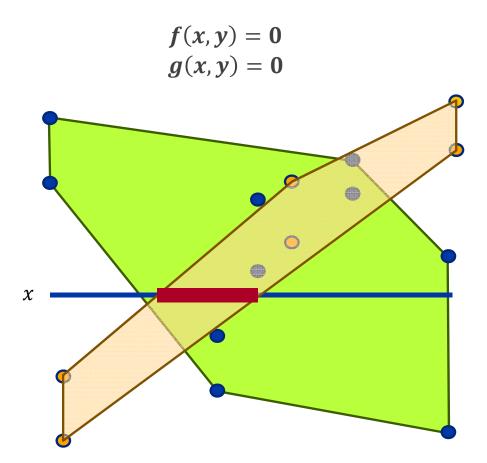
$$\begin{pmatrix} x_i \\ \min_j \alpha_{ij} \end{pmatrix} \quad \begin{pmatrix} x_i \\ \max_j \alpha_{ij} \end{pmatrix}$$

The convex hull trick still works



The algorithm considers variables one at a time

Suppose one wants to solve



Copyright © 2016 Boeing. All rights reserved.

Author, 12/19/2017, Filename.ppt | 10

With this building block in hand, the rest of the algorithm is straightforward

- **1.** Start with first independent variable
- 2. Project onto current independent variable
- 3. Trim splines to smaller interval of definition
- 4. If sufficient amount trimmed from interval (I use 30%):
 - 1. Advance to next independent variable; go to step 2.
- **5.** Otherwise:
 - 1. Split domain into two pieces in current independent variable. Solve recursively.

Notes:

- Algorithm converges linearly
- Exhibits all the usual problems with multiple roots
- Accuracy can be improved with scaling and shifting

Iddo Hanniel has suggested a sharper means of pruning the intervals

Considering again the graph of a univariate spline function and its zeros

$$\binom{x}{f(x)} = \sum_{i=0}^{n} \binom{x_i}{\alpha_i} B_i(x) = \binom{x}{0}$$

• A necessary condition for solving it is that there exist λ_i such that

$$\sum_{0}^{n} \begin{pmatrix} x_{i} \\ \alpha_{i} \\ 1 \end{pmatrix} \lambda_{i} = \begin{pmatrix} x \\ 0 \\ 1 \end{pmatrix}, \qquad \lambda_{i} \geq 0$$

Attaching the objective functions and solving linear programming problems

 $\min x \max x$

Creates sharper bounds than are obtained by projected polyhedron

Copyright © 2016 Boeing. All rights reserved.

Author, 12/19/2017, Filename.ppt 12

Spline systems can be solved using the same methodology

To solve

$$f(x, y) = \sum_{i} \alpha_{i} B_{i}(x, y) = 0$$
$$g(x, y) = \sum_{j} \beta_{j} C_{j}(x, y) = 0$$

Refine using the linear programs

min **x** max **x** min **y** max **y** subject to

$$\sum_{i} \begin{pmatrix} x_{i} \\ y_{i} \\ \alpha_{i} \\ 1 \end{pmatrix} \lambda_{i} = \sum_{j} \begin{pmatrix} x_{j} \\ y_{j} \\ \beta_{j} \\ 1 \end{pmatrix} \mu_{i} = \begin{pmatrix} x \\ y \\ 0 \\ 1 \end{pmatrix}, \qquad \lambda_{i} \ge 0, \mu_{j} \ge 0$$

Copyright © 2016 Boeing. All rights reserved.

Author, 12/19/2017, Filename.ppt | 13

Hanniel has dubbed this method the "naïve LP" method

- 1. The number of problem variables grows exponentially with dimension
- 2. The computational cost of solving LPs is potentially exponential rather than $O(n \log n)$.

Many applications have separable problem structure

Consider the curve intersection problem

$$p(u) - q(v) = 0.$$

• The constraints for this problem are of the form

$$\sum_{i}\sum_{j}\binom{u_{i}}{v_{j}}{p_{i}-q_{j}}\lambda_{ij} = \binom{u}{v}{0}{1}$$

These reduce to

$$\sum_{i} \begin{pmatrix} u_i \\ 0 \\ p_i \\ 1 \\ 0 \end{pmatrix} \lambda_i + \sum_{j} \begin{pmatrix} 0 \\ v_j \\ -q_j \\ 0 \\ 1 \end{pmatrix} \mu_j = \begin{pmatrix} u \\ v \\ 0 \\ 1 \\ 1 \end{pmatrix}.$$

Copyright © 2016 Boeing. All rights reserved.

Even problems with partial separability are amenable to this idea

Consider

$$f(u, v, w) = f_1(u, v) + f_2(v, w) = 0.$$

Then

$$\sum_{i}\sum_{j}\alpha_{ij}B_{ij}(u,v) + \sum_{j}\sum_{k}\beta_{jk}C_{jk}(v,w) = 0$$

Reduces to

$$\sum_{ij} \begin{pmatrix} u_{ij} \\ v_{ij} \\ 0 \\ 0 \\ \alpha_{ij} \\ 1 \\ 0 \end{pmatrix} \lambda_{ij} + \sum_{jk} \begin{pmatrix} 0 \\ 0 \\ v_{jk} \\ w_{jk} \\ \beta_{jk} \\ 0 \\ 1 \end{pmatrix} \mu_{jk} = \begin{pmatrix} u \\ v \\ v \\ w \\ 0 \\ 1 \\ 1 \end{pmatrix}.$$

Copyright © 2016 Boeing. All rights reserved.

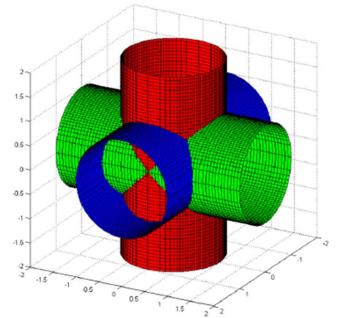
Author, 12/19/2017, Filename.ppt | 16

What happens when the method is tried on test problems?

Consider the test problem

$$f_i(x_1,...,x_n) = \sum_{j\neq i} x_j^2 - 1 = 0.$$

n	[H14] runtime (ms)	# of LPs	# of solutions
2	12.29	13	4
3	69.74	36	8
4	720.5	64	16
5	6360	129	32
6	137130	257	64
7		513	128
8		1025	256
9		2047	512



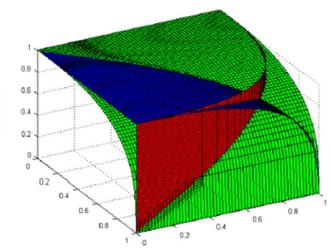
Copyright © 2016 Boeing. All rights reserved.

What happens when the method is tried on test problems?

Consider the test problem

$$f_i(x_1,...,x_n) = \sum_{j\neq i} x_j^3 - 1 = 0.$$

n	[H14] runtime (ms)	# of LPs	# of solutions
2	18.78	3	1
3	87.4	5	1
4	1257	5	1
5	31730	5	1
6	759257	6	1
7		6	1
8		6	1
20		7	1



Consider the Broyden tridiagonal system

$$x_{i-1} - (3 - 2x_i)x_i + 2x_{i+1} - 1 = 0, \quad i = 1, ..., n$$

n	[H14] runtime (ms)	# of LPs	# of solutions
2	19.97	11	2
3	93.846	14	2
4	340.81	16	2
5	1409.1	23	2
6	6588	32	2
7		40	2
8		54	2
20		344	2

Things do go bad when the system gets dense

$$\sum_{i=1}^{k} x_i^2 - x_i - \frac{1}{4} \left(\sum_{i=1}^{k} x_i \right)^2 = 0, \qquad k = 1, \dots, n$$

n	[H14] runtime (ms)	# of LPs	# of solutions
2	na	7	1
3	na	11	1
4	na	12	1
5	na	13	1
6	na	13	1
7		14	1
8		?	
20		?	

On one Boeing test problem, results were dramatic

Problem was a three surface intersection problem given by 6 equations in 6 unknowns

F(u,v) = G(s,t) = H(a,b).

- Projected polyhedron required over 30000 subdivision steps for this problem.
- Linear programming method isolated and found both solutions in 13 subdivision steps.

For "naïve LP" to be viable, what is needed?

- **1.** Much smaller subdivision trees
- 2. A fast LP solver, preferably using sparse linear algebra
- **3.** Hot start capability for the LP solver
- 4. Most (all?) workhouse applications to be separable?
 - 1. Curve / surface intersection is separable
 - 2. Surface / surface intersection is separable
 - 3. Curve projection is separable
 - 4. Ray tracing is separable
 - 5. Composition of spline systems are separable

How does this work for composition of functions?

• Consider curve on surface / surface intersection:

F(u(t),v(t)) = G(r,s)

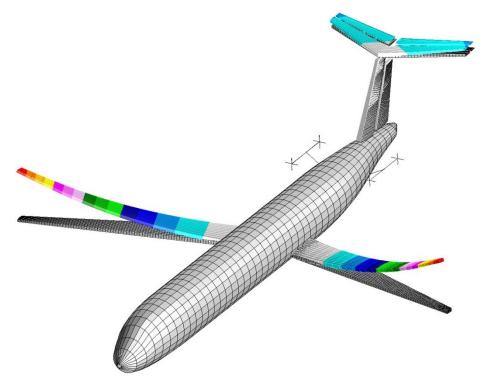
• This can be reduced to a larger system of the form:

 $F(\hat{u},\hat{v}) - G(r,s) = 0$ $u(t) - \hat{u} = 0$ $v(t) - \hat{v} = 0$

- This is a 5×5 system of equations instead of 3×3 , but it is beautifully separable.
- This is also a great example of the Betts' tradeoff (trading away nonlinearity for a small increase in problem size).

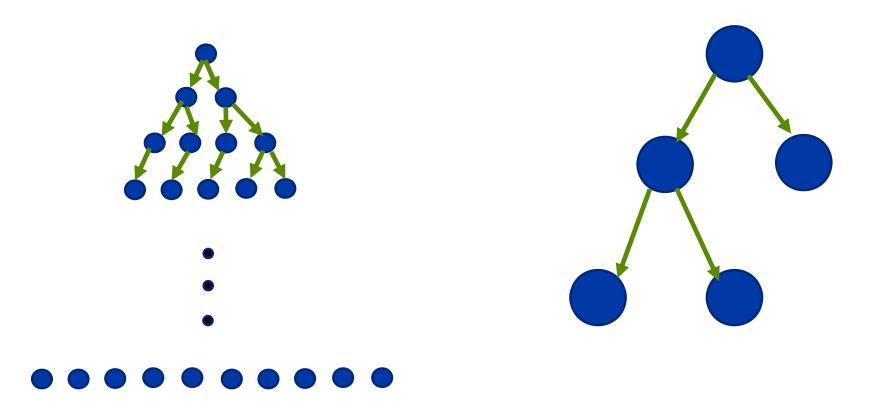
Many important applications involve composition of functions

- These include
 - Structured meshing (by constructing a mesh map so that isoparms F(u(s, t), v(s, t)) in s and t form a structured mesh.
 - Deformable solid modeling operations
 - Aeroelasticity
 - Many, many others



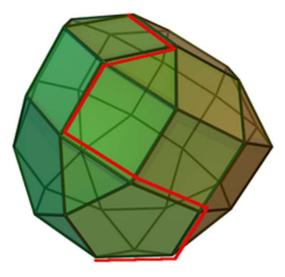
Engineering, Test & Technology

The method offers considerable potential for parallel processing



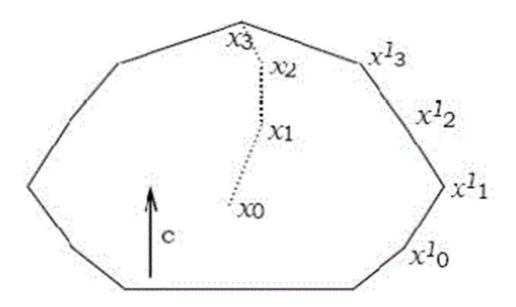
Implementation details matter in terms of algorithmic performance

- The simplex method has two phases
- The first phase finds a feasible point. Because each of the 2*n* linear programming problems has the same feasible set, it only needs to be performed once.
- Because all 2n linear programming problems are independent, they may be solved in parallel.



The interior point method may be even more advantageous

The linear system solve at each iteration can be done with 2n right-hand-sides, so all problems can be solved simultaneously.



Hanniel's "naïve LP" method is much better than advertised

Pros:

- Scales beautifully on separable and partially separable problems
- Produces sharp bounds quickly, greatly reducing number of nodes in search tree
- Offers great potential for parallel implementation
- Works for more general functions than PP method

Cons:

- Suffers curse of dimensionality on inseparable problems
- Slower than PP method on easy problems