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Frames

Frames
A family {fj}j∈J ⊂ H is called a frame with bounds A and B if

A‖f‖2 ≤
∑
j∈J

|〈f , fj〉|2 ≤ B‖f‖2

holds for all f ∈ H. If A = B, then {fj}j∈J is called a tight frame.

Hilbert space frames were introduced by Duffin and Schaeffer
in 1952.
R.J. Duffin and A.C. Schaeffer, A class of nonharmonic Fourier
series. Trans. AMS 72 (1952) 341-366.
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Gabor frames and wavelet frames

Gabor frames
Suppose that g ∈ L2(R). The frame is generated by

{exp(2πinax)g(x −mb)}n,m∈Z

is called Gabor frame, where a,b ∈ R.

Wavelet frames
For given Ψ := {ψ1, . . . , ψr} ⊂ L2(R), the wavelet system
generated by Ψ is defined as

X (Ψ) := {ψ`,n,k := 2n/2ψ`(2n · −k) : 1 ≤ ` ≤ r ; n, k ∈ Z}.

If X (Ψ) is a frame of L2(R), X (Ψ) is called wavelet frames.
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Wavelet tight frames

If X (Ψ) is a tight frame with A = B = 1, then

f =
∑

g∈X(Ψ)

〈f ,g〉g

holds for all f ∈ L2(R).



Multiresolution analysis (MRA)

MRA: A popular tool for constructing wavelet bases and wavelet
frames.

A multiresolution analysis is a family of closed subspaces
{Vj}j∈Z of L2(R) that satisfies:

Vj ⊂ Vj+1,⋃
j Vj is dense in L2(R),⋂
j Vj = {0}.

V0 be the closed shift invariant space generated by
{ϕ(· − k) : k ∈ Z} and Vj := {f (2j ·) : f ∈ V0}, j ∈ Z.
The function ϕ satisfies a refinement equation

ϕ(x) = 2
∑
j∈Z

ajϕ(2x − j). (1)
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B-splines

A special family of refinable functions is B-splines.

Let ϕ(m) be
the centered B-spline of order m, which is defined in Fourier
domain by

ϕ̂(m)(ω) = sinc(
ω

2
)m,

where

sinc(x) :=

{
sin(x)/x , for x 6= 0
1, for x = 0

. (2)

Then ϕ(m) is a refinable function.
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B-spline wavelet frame

For a given B-spline ϕ(m) of order m, it was shown by
Ron-Shen (by UEP) that the m functions,
Ψ(m) = {ψ(m)

` : ` = 1, . . . ,m}, defined in Fourier domain by

ψ̂
(m)
` (ω) := i`e−

iωjm
2

√(
m
`

)
cosm−`(ω/4) sinm+`(ω/4)

(ω/4)m ,

form a tight wavelet frame in L2(R).
A. Ron and Z. Shen, Affine system in L2(Rd ): the analyis of the
analysis operator, J. Func. Anal., 148: 408-447, 1997.



B-spline framelet

Set Ψ(m) = {ψ(m)
` : ` = 1, . . . ,m}. We call Ψ(m) as the B-spline

framelet of order m.

The B-spline framelets Ψ(m) are used in
various applications:

1 image inpainting; image denoising;
2 high and super resolution image reconstruction;
3 deblurring and blind debluring ; and image segmentation.

Z. Shen, Wavelet frames and image restorations, Proceedings of the
International congress of Mathematicians, Vol IV, Hyderabad, India,
(2010).
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Box Splines

The box spline B(·|Ξ) associated with a matrix Ξ ∈ Rs×n is the
distribution given by the rule∫

Rs
B(x |Ξ)ϕ(x)dx =

∫
[− 1

2 ,
1
2 )n
ϕ(Ξu)du, for all ϕ ∈ D(Rs), (3)

where D(Rs) is the test function space.

If we take
Ξ = (1,1, . . . ,1) ∈ R1×m, then the box spline B(·|Ξ) is reduced
to a B-spline of order m.
C. de Boor, K. Höllig and S. Riemenschneider, Box Splines,
Springer-Verlag, New York, 1993.
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A univariate box spline and B-spline framelet

Theorem
Set

Ξm,` := [1, . . . ,1︸ ︷︷ ︸
m−`

,
1
2
, . . . ,

1
2︸ ︷︷ ︸

2`

].

Then

ψ
(m)
` (x) =

√(
m
`

)
· 1

4`
· d `

dx`
B(x |Ξm,`).

The ψ(m)
` can be considered as the ` order derivative of the box

spline B(·|Ξm,`) (up to a constant).
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Recurrence formula of B-splines

Recurrence formula of B-splines:

ϕ(m+1)(x) =
2x + m + 1

2m
ϕ(m)

(
x +

1
2

)
+

m + 1− 2x
2m

ϕ(m)

(
x − 1

2

)
.



Recurrence formula of B-splines framelet

ψ
(1)
1 (x) =


1, if x ∈ [−1/2,0) ,

−1, if x ∈ [0,1/2] ,

0, if |x | > 1/2.

If ` ≤ m − 1

ψ
(m+1)
`

(x) =

√
m + 1

m + 1− `
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The asymptotic convergence of B-splines

Let ϕ(m) be B-spline of order m. Then

lim
m→∞

√
mBm(

√
mx) =

√
6
π

exp
(
−6x2

)
.

M. Unser, A. Aldroubi, and M. Eden, On the asymptotic convergence
of B-splines wavelets to Gabor functions, IEEE Trans. Inf. Th.,
38(1992), pp. 864-872.



The asymptotic convergence of univariate box splines

Theorem

For each k ∈ N, let
Ξk := [a(k)

1 , . . . , a(k)
k ] ∈ R1×k

,

where a(k)
j > 0, j = 1, . . . , k. Let B(·|Ξk ) be the box spline associate with Ξk . Assume that

‖Ξk‖
2
2 = σ

2 + εk ,

with σ ∈ R is a fixed constant and lim
k→∞

εk = 0, and assume that

c1 ≤
max1≤j≤k a(k)

j

min1≤j≤k a(k)
j

≤ c2

where c1 and c2 are fixed positive constants independent of k. Then,

max
x

∣∣√ 6

πσ2
exp

(
−

6x2

σ2

)
− B(x|Ξk )

∣∣ .c1,c2
(ln k)3

k
+ |εk | · |ln(|εk |)| · ln(k).



Observations

1 The ψ(m)
` can be considered as the ` order derivative of a

univariate box spline (up to a constant).

2 The univariate box spline tend to a Gaussian function
(under some mild conditions).

Question: Can we construct frames using the derivative of
some Gaussian functions?
It is raised by Zuowei Shen (2011).
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The asymptotic convergence of B-spline framelet

G(x) =

√
6
π

√(m
`

)√
m − `/2 · 4`

· exp
(
− 12 · x2

2m − `

)
G(m)

` (x) =
d `

dx`
G(x), ` = 1, . . . ,m,

G(m) = {G(m)
1 , . . . ,G(m)

m }.



The asymptotic convergence of B-spline framelet

Theorem

Let m ∈ N be given and 1 ≤ ` ≤ m, and the framelet ψ(m)
` be

derived from B-spline of order m. Then,

max
1≤`≤m

max
x∈R
|ψ(m)

` (x)−G(m)
` (x)| . (ln m)5/2

m3/2 .



Theorem

Let X (G(m)) be the wavelet system generated by functions
G(m). Then X (G(m)) is a frame system with frame bounds Am
and Bm for sufficiently large m. Furthermore, the frame is close
to be tight as m is sufficiently large. In fact, asymptotically, we
have

lim
m→∞

Am = lim
m→∞

Bm = 1.



Theorem
Let {fj}j∈J be a frame of L2(R) with bounds A and B. Assume
that {gj}j∈J ⊂ L2(R) is such that {fj − gj}j∈J is a Bessel
sequence with a bound R < A. Then {gj}j∈J is a frame with

bounds A
(

1−
√

R
A

)2

and B
(

1 +
√

R
B

)2

.

Oel Christensen,Christopher Heil, Perturbations of Banach
Frames and Atomic Decompositions, Mathematische
Nachrichten,1997.



Table: The numerical results of frame bounds of X (G(m))

m 2 3 4 5 6 7 8
A 0.3855 0.5266 0.5898 0.6407 0.6803 0.7095 0.7274
B 1.9020 1.6239 1.5179 1.4390 1.3811 1.3403 1.3159



Thank you!


