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Standard PFs and MCMC-PFs



e Sequential MCMC methods a.k.a. MCMC-PFs:

— proposed in Berzuini et al. (1997), extended in Septier
et al. (2009); Septier and Peters (2016); Finke et al.
(2016).

e Difference with (standard) particle filters (PFs):

— PFs sample/resample particles conditionally
independently,

— MCMC-PFs sample/resample particles jointly according
to a Markov chain.

e This work:

— convergence analysis of MCMC-PFs;
— guidance on when to use standard PFs/MCMC-PFs
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Path-space Feynman—Kac model

Setup & notation:
e path-space formulation:
Xp =T = (Xn_1,2n) €EE, =E, 1 X E,
e mutation kernels: M, (x,_1,dz,),
e bounded potential functions: G, (x,) € (0, 1].
Goal: approximate distributions (7),,),,>1 on (E;),>1:
)

1 (dx,,) o fyn(dxn) = 11Q1 0 (dX,),

Qpn(dx,)(x,) = HGq 1(Xgo1) My (%421, dzy),

e unknown normalising constant: Z,, == v,(1),
e recursive definition: 7, = ®" ', where

anl (anl)

Enldn) = 11(G1)

[ ® My](dx,).
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Example: Bootstrap PF flow |

State-space model:
e Bivariate Markov chain (X,,, Y, )nen,
e with transition kernel f(dz,|z,—1)g(yn|zn)dyn,

e only Y, = v, is observed; X, is latent.

}/nfl Yn
|g 9
anZ anl f Xn f XnJrl
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Example: Bootstrap PF flow |

Take

Gn(%n) = g(ynl2n),
M, (xy-1,dz,) = f(dx,|Ta_1).

Then

N (dx%p) = p(d2 10 |[Y10-1)
=t (dx,)
~ -1 (d%n-1) Gro1 (Xn-1)
B Mn— 1( )
(A2 1|Y1n2)9(Yn—1|Tn_1)
fp d$1:n—1’y1:n72)g(yn—1’x%—l)

Mn(xn—la dxn)

f(day|z,_1),

as well as Z, = p(y1.n—1)-
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e Problem: 1), is intractable.
e Idea: recursively construct approximation 7" of 1, = ®7-1.
1. given ) | =+ SN 01, obtain the mixture

N
n- Gn—1 (‘En 1 )
op =% - [ ® M,
=1 Z] 1~'n— 1( n— l)

, ) N
2. sample N particles ¢} ... ¢ (approximately) from o
3. approximate 7, by 7 = % >V 8¢

Algorithm (PF). In Step 2, sample £} ... £V ~ L P,

Algorithm (MCMC- PF) In Step 2,
e initialise £ ~ f-@Z“ - <I>n” Y
o sample & ~ K-1(£01 ), forz':2,...,N.
- \\/-/
®n—1-invariant MCMC kernel
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Convergence analysis of MCMC-PFs



e Recall: n,(dx,,) = v, (dx,)/Z,.
e Usual estimates of v,(¢,) and Z,:

n—1
%Jz\f(‘zpn) = TIT]LV(%) H UéV(Gp%
n—1 1]7__1N .
2 ==l Y&
p=1"" =1

Proposition (unbiasedness). For any n > 1, N > 1 and
on € B(E,), if the chains are initialised from stationarity,
ie. if K = @F for 1 < p <n,

L E[Y (¢n)] = Ynlen),

2. E[ZN] = Z,.
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A1l For any n > 1, there exists i,, € N such that
sup B((K)") <1,
HEP(En—1)
where B(K) = Supx,y||K(xa ) - K(ya : )H
A2 For any n > 1, there exists a constant I}, < co and a
family of bounded integral operators (I'"),cp,_,) from
B(E,_1) to B(E,) s.t. for any (u,v) € P(E,_1)? and

I = K () < / |l = V(I (fnr dg)

B(En,—1)
and [y, 91175 (fas dg) < 1 fnll L.
e strong but similar to assumptions in Del Moral and Doucet (2010);
Brockwell et al. (2010); Bercu et al. (2012),

e satisfied, e.g.if K* is an independent MH kernel & F finite. 8 /18



Proposition (L,-error bound). Under A1, for any n,p >
1, there exist a,, b, < 0o such that for any ¢,, € B(E,) and
any N > 1,

E[|[nY — nal(ea) ] < fn onll

e Under strong mixing assumptions and if ¢, (z1.,) = @(zn),
Sup,>1 an < 0.

Corollary (strong law of large numbers). Under Al,
for any n > 1 and ¢,, € B(E,), as N — oo,

L. '7711\[(4Pn) —Vas. 'Vn(cpn)v
2. 771]1\[(9071) —as. ﬁn(%)-
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For any v-invariant Markov kernel K, define the integrated
autocorrelation time

lacty[p] =142 Z cov,;;or, ()] )

Proposition (central limit theorem).  Under A1-A2,

for any n > 1 and any ¢, € B(E,), as N — oo,

1. VNI /4 (1) = 1a)(0n) =>4 N(0, 02 [0n]),
2. \/N[U,]LV — 1) (¢n) —4 N(O, Ui[ﬂon — Mn(pn)]),

with asymptotic variance _
(typically) > 1 for MCMC-PFs

= 1 for standard PFs
7\

o] = Zvarnp [@pn ()] X fact o1 [Qpn(-)].

Here, Q.. == 7/"8) Qp.n satisfies 1,Q,., = 1.

e Under strong mixing assumptions and if ¢, (z1.,) = @(zn),
SUPy,>1 0 [n — N (n)] < 0.
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Application to state-space models



State-space model

e Bivariate Markov chain (X,,,Y},)nen,
e with transition kernel f(dz,|z,_1)g(yn|zn)dyn,
e only Y, = v, is observed; X, is latent.

Y;Lfl Kl
|g g
Xn—2 Xn—l f Xn f Xn+1
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Bootstrap PF (BPF)-type flow

Example (BPF flow).

Gn—l(xn—l) = g(yn—1|xn—1)a
Mn(xn—la dxn) = f(dl'n|$n—1)

In this case, 7, (dx,) = p(dT1:p|Y1:n—1), Zn = P(Y1:n—1) and

Pt (dxn)

yn 1|§n 1) i
= 0gi (dxp—1) f(dzplE), ).
; ] lg Yn— 1|€ ) 5n_1( * 1)f( ! |€ 1)

= can typically implement both BPF and MCMC-BPF.
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Fully-adapted auxiliary PF (FA-APF)-type flow

Example (FA-APF flow).

typically intractable!
N

Gn—l(xn—l) — ])(yn|$nfl> — T/‘g(yn’xn)f(dxn|xn—15

n|Tn dl‘n Trp—
M, (%p-1,dy) = p(dn|yn, Tn-1) = 9yl | ) .
P(Yn|Tn-1)

In this case, 7, (dx;,) = p(dz1.p|Y1:m), Zn = P(Y1:n) and

N N g

n—1 p(y"/|§n7 ) 7

(e = D o e )l )
i=1 Zuj=1P\Unlsn—1

N
X Z g(yn‘xn>5£;,1 (dxn—1>f(dxn‘§;—1)'
i=1

= can typically implement MCMC-FA-APF but not FA-APF.
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Variance—variance trade-off

BPF flow FA-APF flow
Standard PF BPF MCMC-FA-APF
(usually intractable)

MCMC-PF MCMC-BPF = \icMC-FA-APF

(not very useful)

e PFs preferable if they target the same distribution flow.
e MCMC-PFs preferable if

— they can target a more efficient distribution flow,
— the MCMC kernels do not mix too poorly.

Trade-off: variance due to importance-sampling vs. variance
due to additional particle (auto-)correlation.
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Numerical illustrations



Binary state-space model

——/ MCMC-FA-APF

relative asymptotic variance
N
1

autocorrelation of K

Asymptotic variances (relative to the asymptotic variance of the BPF).
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b-dimensional linear-Gaussian state-space model
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Estimates of the marginal likelihood (relative to the true marginal
likelihood) using N = 10,000 particles.
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Ongoing work

With Alex Thiery:
e additional dependence between particles may be more
useful within ‘conditional’ SMC algorithms,
e permits ‘local’ conditional SMC algorithms,

— better scaling in high dimensions,

— example: embedded hidden Markov model method
(Shestopaloff and Neal, 2018) which is the conditional
SMC version of MCMC-PFs.

e more on this in my talk next week.
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