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Figure: Optimizing f(x) = [x(!) 4 x®]* 4 [x(1) /2 — x(2) /2]* with three methods:
gradient descent with fixed step size equal to 1/Ly where Ly = Apnax(V3f(x0)) is

the maximum eigenvalue of the Hessian V2f at xy; classical momentum, which is
a particular case of our first explicit method with k(p) = [(p™)? + (p¥)?]/2 and
fixed step size equal to 1/Lg; and Hamiltonian descent, which is our first explicit

method with k(p) = (3/4)[(p™M)*3 + (p®)*3] and a fixed step size.
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Dissipation Field = Conformal Hamiltonian Field
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Figure: A visualization of a conformal Hamiltonian system.
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Figure: Importance of assumptions A. Solutions x; and iterates x; of our first
explicit method on f(x) = x*/4 with two different choices of k. Notice that
f*(p) = 3p*3/4 and thus k(p) = p?/2 cannot be made to satisfy assumption

A.4.
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Figure: Solutions for f(x) = x*/4 and k(p) = x?/2. The right plots show a

numerical approximation of (xt(”), pﬁ”)) and (—xt("), —p,E’”). The left plots show a

numerical approximation of (xt(e), pff”) and (—xt(a), —p§9’) for0 =n+0 € R,

which represent typical paths.
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Figure: Importance of discretization assumptions. Solutions x; and iterates x; of
our first explicit method on f(x) = x*/4. With an inappropriate choice of kinetic
energy, k(p) = p®7/(8/7), the continuous solution converges at a linear rate but

the iterates do not.
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Figure: Power kinetic energies in one dimension.
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Figure: f(x) = ¢8(x) with three different methods: gradient descent with the
optimal fixed step size, Hamiltonian descent with relativistic kinetic energy, and
Hamiltonian descent with the near dual kinetic energy.



Assumptions F.
F.1 f:R? — R differentiable and convex with unique minimum x,.

F.2 |pl, is differentiable at p € R? \ {0} with dual norm [|x| =
sup{{x,p) : Pl = 1}.

F3 B=A/(A—1),and b=a/(a—1).

F.4 There exist 11, L € (0,00) such that for all x € R¢

F(x) = F(x) = ppp(lIx — %))

PR (IVFEIL) < L(F(x) = F(x)).

F5 b>2and B>2. f:R?— R is twice continuously differentiable
for all x € R\ {x,} and there exists Ls, D¢ € (0, 00) such that for
all x € R\ {x,}

N Il 2f(x
€5 (%) <D(FX) - F(x). ()




Assumptions G.

G.1 f:R? — R differentiable and convex with unique minimum x,.

G.2

G.3

G.5

|lp|l, is differentiable at p € R? \ {0} with dual norm

sup{(x,p) : [lpll = 1}.
Be[2,00)and A= B/(B—-1).

There exist 1, L € (0,00) such that for all x € R9

F(x) = F(x) = ue3 (Ilx = x[1)

@3(IVF(R)IL) < L(FOx) = F(x))-

B > 2. Define

o(t) =

1
t—3t34+2 1<t

0 0<t<l1

x|l =

*

f :RY — R is twice continuously differentiable for all x € R\ {x,}

and there exists Ly € (0,00) such that for all x € RY\ {x.}
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