Hamiltonian Descent Methods

University of Oxford

September 20, 2018

Joint work with Chris J. Maddison, Yee Whye Teh, Brendan O'Donoghue and Arnaud Doucet

Figure: Optimizing $f(x) = [x^{(1)} + x^{(2)}]^4 + [x^{(1)}/2 - x^{(2)}/2]^4$ with three methods: gradient descent with fixed step size equal to $1/L_0$ where $L_0 = \lambda_{\max}(\nabla^2 f(x_0))$ is the maximum eigenvalue of the Hessian $\nabla^2 f$ at x_0 ; classical momentum, which is a particular case of our first explicit method with $k(p) = [(p^{(1)})^2 + (p^{(2)})^2]/2$ and fixed step size equal to $1/L_0$; and Hamiltonian descent, which is our first explicit method with $k(p) = (3/4)[(p^{(1)})^{4/3} + (p^{(2)})^{4/3}]$ and a fixed step size.

Figure: A visualization of a conformal Hamiltonian system.

Figure: Importance of assumptions A. Solutions x_t and iterates x_i of our first explicit method on $f(x) = x^4/4$ with two different choices of k. Notice that $f_c^*(p) = 3p^{4/3}/4$ and thus $k(p) = p^2/2$ cannot be made to satisfy assumption A.4.

Figure: Solutions for $f(x) = x^4/4$ and $k(p) = x^2/2$. The right plots show a numerical approximation of $(x_t^{(\eta)}, p_t^{(\eta)})$ and $(-x_t^{(\eta)}, -p_t^{(\eta)})$. The left plots show a numerical approximation of $(x_t^{(\theta)}, p_t^{(\theta)})$ and $(-x_t^{(\theta)}, -p_t^{(\theta)})$ for $\theta = \eta + \delta \in \mathbb{R}$, which represent typical paths.

Figure: Importance of discretization assumptions. Solutions x_t and iterates x_i of our first explicit method on $f(x) = x^4/4$. With an inappropriate choice of kinetic energy, $k(p) = p^{8/7}/(8/7)$, the continuous solution converges at a linear rate but the iterates do not.

Figure: Power kinetic energies in one dimension.

Figure: $f(x) = \varphi_2^8(x)$ with three different methods: gradient descent with the optimal fixed step size, Hamiltonian descent with relativistic kinetic energy, and Hamiltonian descent with the near dual kinetic energy.

Assumptions F.

F.1 $f: \mathbb{R}^d \to \mathbb{R}$ differentiable and convex with unique minimum x_{\star} .

F.2 $\|p\|_*$ is differentiable at $p\in\mathbb{R}^d\setminus\{0\}$ with dual norm $\|x\|=\sup\{\langle x,p\rangle:\|p\|_*=1\}.$

F.3 B = A/(A-1), and b = a/(a-1).

F.4 There exist $\mu, L \in (0, \infty)$ such that for all $x \in \mathbb{R}^d$

$$f(x) - f(x_{\star}) \ge \mu \varphi_b^{\mathcal{B}}(\|x - x_{\star}\|)$$

$$\varphi_a^{\mathcal{A}}(\|\nabla f(x)\|_{\star}) \le L(f(x) - f(x_{\star})).$$
 (1)

F.5 $b \geq 2$ and $B \geq 2$. $f: \mathbb{R}^d \to \mathbb{R}$ is twice continuously differentiable for all $x \in \mathbb{R}^d \setminus \{x_\star\}$ and there exists $L_f, D_f \in (0, \infty)$ such that for all $x \in \mathbb{R}^d \setminus \{x_\star\}$

$$\left(\varphi_{b/2}^{B/2}\right)^* \left(\frac{\lambda_{\max}^{\|\cdot\|}(\nabla^2 f(x))}{L_f}\right) \le D_f(f(x) - f(x_*)). \tag{2}$$

Assumptions G.

- G.1 $f: \mathbb{R}^d \to \mathbb{R}$ differentiable and convex with unique minimum x_k .
- G.2 $\|p\|_*$ is differentiable at $p\in\mathbb{R}^d\setminus\{0\}$ with dual norm $\|x\|=\sup\{\langle x,p\rangle:\|p\|_*=1\}.$
- G.3 $B \in [2, \infty)$ and A = B/(B-1).
- G.4 There exist $\mu, L \in (0, \infty)$ such that for all $x \in \mathbb{R}^d$

$$f(x) - f(x_*) \ge \mu \varphi_2^B(\|x - x_*\|)$$

$$\varphi_2^1(\|\nabla f(x)\|_*) \le L(f(x) - f(x_*)).$$
 (3)

G.5 B > 2. Define

$$\psi(t) = \begin{cases} 0 & 0 \le t < 1 \\ t - 3t^{\frac{1}{3}} + 2 & 1 \le t \end{cases}$$
 (4)

 $f: \mathbb{R}^d \to \mathbb{R}$ is twice continuously differentiable for all $x \in \mathbb{R}^d \setminus \{x_*\}$ and there exists $L_f \in (0, \infty)$ such that for all $x \in \mathbb{R}^d \setminus \{x_*\}$

$$\psi\left(\frac{B-1}{B-2}\varphi_1^{\frac{B-1}{B-2}}\left(\lambda_{\max}^{\|\cdot\|}(\nabla^2 f(x))\right)\right) \le 3(f(x) - f(x_*)). \tag{5}$$