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Figure: Optimizing f (x) = [x (1) + x (2)]4 + [x (1)/2− x (2)/2]4 with three methods:
gradient descent with fixed step size equal to 1/L0 where L0 = λmax(∇2f (x0)) is
the maximum eigenvalue of the Hessian ∇2f at x0; classical momentum, which is
a particular case of our first explicit method with k(p) = [(p(1))2 + (p(2))2]/2 and
fixed step size equal to 1/L0; and Hamiltonian descent, which is our first explicit
method with k(p) = (3/4)[(p(1))4/3 + (p(2))4/3] and a fixed step size.
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Figure: A visualization of a conformal Hamiltonian system.
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Figure: Importance of assumptions A. Solutions xt and iterates xi of our first
explicit method on f (x) = x4/4 with two different choices of k . Notice that
f ∗c (p) = 3p4/3/4 and thus k(p) = p2/2 cannot be made to satisfy assumption
A.4.
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Figure: Solutions for f (x) = x4/4 and k(p) = x2/2. The right plots show a

numerical approximation of (x
(η)
t , p

(η)
t ) and (−x (η)t ,−p(η)t ). The left plots show a

numerical approximation of (x
(θ)
t , p

(θ)
t ) and (−x (θ)t ,−p(θ)t ) for θ = η + δ ∈ R,

which represent typical paths.
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Figure: Importance of discretization assumptions. Solutions xt and iterates xi of
our first explicit method on f (x) = x4/4. With an inappropriate choice of kinetic
energy, k(p) = p8/7/(8/7), the continuous solution converges at a linear rate but
the iterates do not.
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Figure: Power kinetic energies in one dimension.
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Figure: f (x) = ϕ8
2(x) with three different methods: gradient descent with the

optimal fixed step size, Hamiltonian descent with relativistic kinetic energy, and
Hamiltonian descent with the near dual kinetic energy.



Assumptions F.

F.1 f : Rd → R differentiable and convex with unique minimum x?.

F.2 ‖p‖∗ is differentiable at p ∈ Rd \ {0} with dual norm ‖x‖ =

sup{〈x , p〉 : ‖p‖∗ = 1}.

F.3 B = A/(A− 1), and b = a/(a − 1).

F.4 There exist µ, L ∈ (0,∞) such that for all x ∈ Rd

f (x)− f (x?) ≥ µϕB
b (‖x − x?‖)

ϕA
a (‖∇f (x)‖∗) ≤ L(f (x)− f (x?)).

(1)

F.5 b ≥ 2 and B ≥ 2. f : Rd → R is twice continuously differentiable

for all x ∈ Rd \ {x?} and there exists Lf ,Df ∈ (0,∞) such that for

all x ∈ Rd \ {x?}

(
ϕ
B/2
b/2

)∗(λ‖·‖max(∇2f (x))

Lf

)
≤ Df (f (x)− f (x?)). (2)



Assumptions G.

G.1 f : Rd → R differentiable and convex with unique minimum x?.

G.2 ‖p‖∗ is differentiable at p ∈ Rd \ {0} with dual norm ‖x‖ =

sup{〈x , p〉 : ‖p‖∗ = 1}.

G.3 B ∈ [2,∞) and A = B/(B − 1).

G.4 There exist µ, L ∈ (0,∞) such that for all x ∈ Rd

f (x)− f (x?) ≥ µϕB
2 (‖x − x?‖)

ϕ1
2(‖∇f (x)‖∗) ≤ L(f (x)− f (x?)).

(3)

G.5 B > 2. Define

ψ(t) =

0 0 ≤ t < 1

t − 3t
1
3 + 2 1 ≤ t

. (4)

f : Rd → R is twice continuously differentiable for all x ∈ Rd \ {x?}
and there exists Lf ∈ (0,∞) such that for all x ∈ Rd \ {x?}

ψ

(
B−1
B−2ϕ

B−1
B−2
1

(
λ
‖·‖
max(∇2f (x))

Lf

))
≤ 3(f (x)− f (x?)). (5)


