Hamiltonian Descent Methods

University of Oxford
September 20, 2018
Joint work with Chris J. Maddison, Yee Whye Teh, Brendan O'Donoghue and Arnaud Doucet

Figure: Optimizing $f(x)=\left[x^{(1)}+x^{(2)}\right]^{4}+\left[x^{(1)} / 2-x^{(2)} / 2\right]^{4}$ with three methods: gradient descent with fixed step size equal to $1 / L_{0}$ where $L_{0}=\lambda_{\max }\left(\nabla^{2} f\left(x_{0}\right)\right)$ is the maximum eigenvalue of the Hessian $\nabla^{2} f$ at x_{0}; classical momentum, which is a particular case of our first explicit method with $k(p)=\left[\left(p^{(1)}\right)^{2}+\left(p^{(2)}\right)^{2}\right] / 2$ and fixed step size equal to $1 / L_{0}$; and Hamiltonian descent, which is our first explicit method with $k(p)=(3 / 4)\left[\left(p^{(1)}\right)^{4 / 3}+\left(p^{(2)}\right)^{4 / 3}\right]$ and a fixed step size.

Figure: A visualization of a conformal Hamiltonian system.

Figure: Importance of assumptions A. Solutions x_{t} and iterates x_{i} of our first explicit method on $f(x)=x^{4} / 4$ with two different choices of k. Notice that $f_{c}^{*}(p)=3 p^{4 / 3} / 4$ and thus $k(p)=p^{2} / 2$ cannot be made to satisfy assumption A. 4 .

Figure: Solutions for $f(x)=x^{4} / 4$ and $k(p)=x^{2} / 2$. The right plots show a numerical approximation of $\left(x_{t}^{(\eta)}, p_{t}^{(\eta)}\right)$ and $\left(-x_{t}^{(\eta)},-p_{t}^{(\eta)}\right)$. The left plots show a numerical approximation of $\left(x_{t}^{(\theta)}, p_{t}^{(\theta)}\right)$ and $\left(-x_{t}^{(\theta)},-p_{t}^{(\theta)}\right)$ for $\theta=\eta+\delta \in \mathbb{R}$, which represent typical paths.

Figure: Importance of discretization assumptions. Solutions x_{t} and iterates x_{i} of our first explicit method on $f(x)=x^{4} / 4$. With an inappropriate choice of kinetic energy, $k(p)=p^{8 / 7} /(8 / 7)$, the continuous solution converges at a linear rate but the iterates do not.

Figure: Power kinetic energies in one dimension.

$$
k(p)=\varphi_{2}^{1}(|p|)
$$

$$
k(p)=\varphi_{2}^{8 / 7}(p)
$$

Figure: $f(x)=\varphi_{2}^{8}(x)$ with three different methods: gradient descent with the optimal fixed step size, Hamiltonian descent with relativistic kinetic energy, and Hamiltonian descent with the near dual kinetic energy.

Assumptions F .

F. $1 f: \mathbb{R}^{d} \rightarrow \mathbb{R}$ differentiable and convex with unique minimum x_{\star}.
F. $2\|p\|_{*}$ is differentiable at $p \in \mathbb{R}^{d} \backslash\{0\}$ with dual norm $\|x\|=$ $\sup \left\{\langle x, p\rangle:\|p\|_{*}=1\right\}$.
F. $3 B=A /(A-1)$, and $b=a /(a-1)$.
F. 4 There exist $\mu, L \in(0, \infty)$ such that for all $x \in \mathbb{R}^{d}$

$$
\begin{align*}
f(x)-f\left(x_{\star}\right) & \geq \mu \varphi_{b}^{B}\left(\left\|x-x_{\star}\right\|\right) \\
\varphi_{a}^{A}\left(\|\nabla f(x)\|_{*}\right) & \leq L\left(f(x)-f\left(x_{\star}\right)\right) \tag{1}
\end{align*}
$$

F. $5 b \geq 2$ and $B \geq 2 . f: \mathbb{R}^{d} \rightarrow \mathbb{R}$ is twice continuously differentiable for all $x \in \mathbb{R}^{d} \backslash\left\{x_{\star}\right\}$ and there exists $L_{f}, D_{f} \in(0, \infty)$ such that for all $x \in \mathbb{R}^{d} \backslash\left\{x_{\star}\right\}$

$$
\begin{equation*}
\left(\varphi_{b / 2}^{B / 2}\right)^{*}\left(\frac{\lambda_{\max }^{\|\cdot\|}\left(\nabla^{2} f(x)\right)}{L_{f}}\right) \leq D_{f}\left(f(x)-f\left(x_{\star}\right)\right) \tag{2}
\end{equation*}
$$

Assumptions G.

G. $1 f: \mathbb{R}^{d} \rightarrow \mathbb{R}$ differentiable and convex with unique minimum x_{\star}.
G. $2\|p\|_{*}$ is differentiable at $p \in \mathbb{R}^{d} \backslash\{0\}$ with dual norm $\|x\|=$ $\sup \left\{\langle x, p\rangle:\|p\|_{*}=1\right\}$.
G. $3 B \in[2, \infty)$ and $A=B /(B-1)$.
G. 4 There exist $\mu, L \in(0, \infty)$ such that for all $x \in \mathbb{R}^{d}$

$$
\begin{align*}
f(x)-f\left(x_{\star}\right) & \geq \mu \varphi_{2}^{B}\left(\left\|x-x_{\star}\right\|\right) \tag{3}\\
\varphi_{2}^{1}\left(\|\nabla f(x)\|_{*}\right) & \leq L\left(f(x)-f\left(x_{\star}\right)\right) .
\end{align*}
$$

G. $5 B>2$. Define

$$
\psi(t)= \begin{cases}0 & 0 \leq t<1 \tag{4}\\ t-3 t^{\frac{1}{3}}+2 & 1 \leq t\end{cases}
$$

$f: \mathbb{R}^{d} \rightarrow \mathbb{R}$ is twice continuously differentiable for all $x \in \mathbb{R}^{d} \backslash\left\{x_{\star}\right\}$ and there exists $L_{f} \in(0, \infty)$ such that for all $x \in \mathbb{R}^{d} \backslash\left\{x_{*}\right\}$

$$
\begin{equation*}
\psi\left(\frac{B-1}{B-2} \varphi_{1}^{\frac{B-1}{B-2}}\left(\frac{\lambda_{\max }^{\|\cdot\|}\left(\nabla^{2} f(x)\right)}{L_{f}}\right)\right) \leq 3\left(f(x)-f\left(x_{\star}\right)\right) \tag{5}
\end{equation*}
$$

